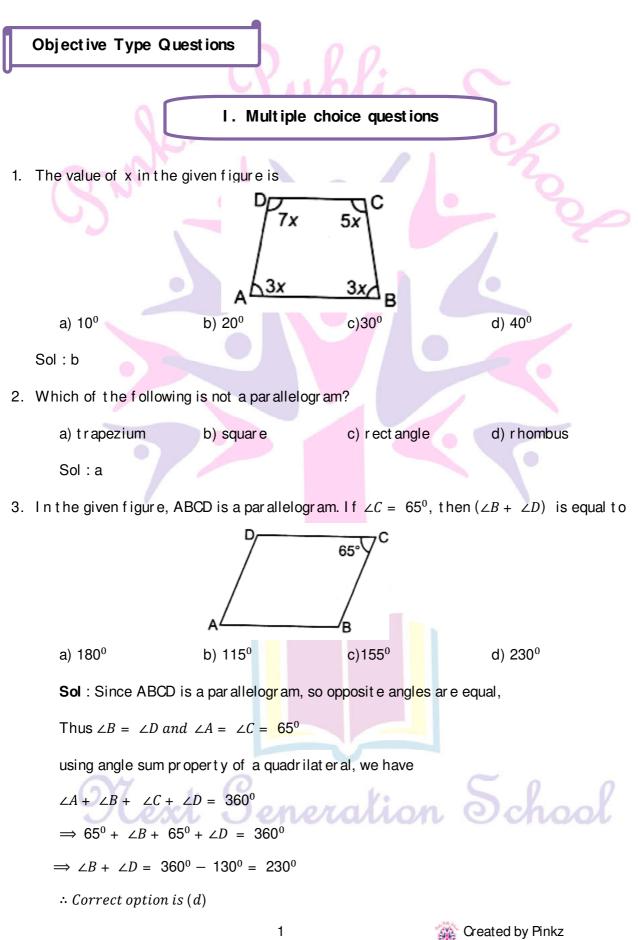
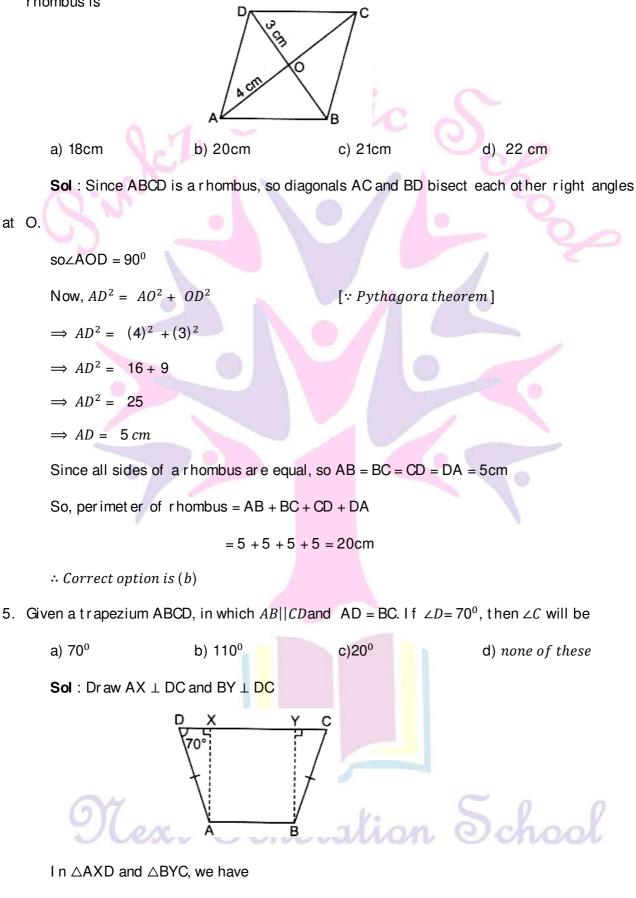


Grade IX

Lesson : 8 [Quadrilaterals]



4. In the given figure, ABCD is a rhombus, AO = 4cm and DO = 3cm. Then the perimeter of the rhombus is



[Given]

Created by Pinkz

2

AD = BC

∠AXD = ∠BYC

AX = BY

- So, $\triangle AXD \cong \triangle BYC$,
- Thus $\angle D = \angle C$
- Hence, $\angle C = 70^{\circ}$
- : Correct option is (a)
- 6.Three angles of quadrilateral are 75⁰,90⁰,75⁰, Find the fourth angle [NCERT Exemplar]

Sol : As we know that sum of four angles of quadrilateral is 360°

Let fourth angle be x.

 $\therefore 75^{0} + 90^{0} + 75^{0} + x = 360^{0}$

 $\times = 360^{\circ} - 240^{\circ} = 120^{\circ}$

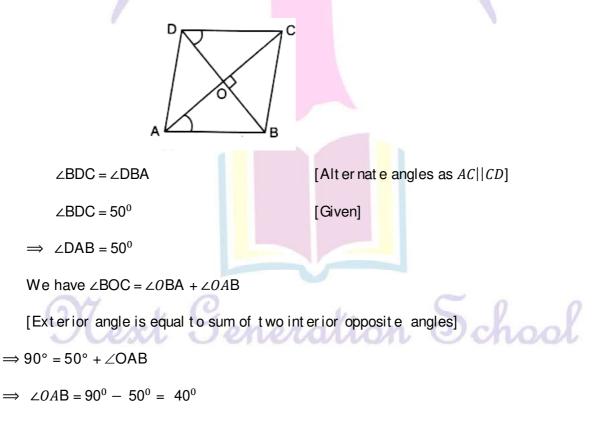
- \therefore Fourth angle = 120°
- 7. Diagonals AC and BD par allelogram ABCD intersect at O. If $\angle BOC = 90^{\circ}$ and $\angle BDC = 50^{\circ}$ find $\angle OAB$
 - Sol : In a parallelogram ABCD, O is point of intersection of diagonals AC and BD.

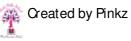
[Each90⁰]

[CPCT]

[Dist ance bet ween parallel sides]

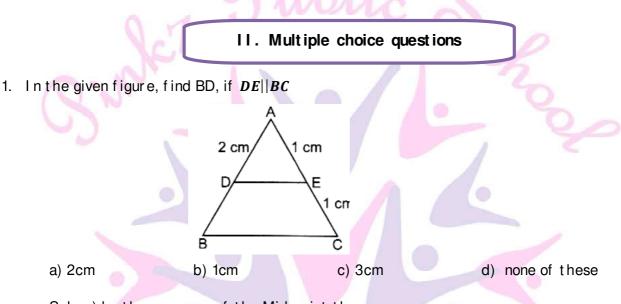
[RHS congruence rule]





8. Can all the angles of a quadrilateral be acute angles? Give reason for your answer. [NCERT Exemplar]

Sol : No, all the angles of quadrilateral cannot be acute angles. If all the angles of quadrilateral will be acute. The sum of all the four angles will be less than 360° which is not possible

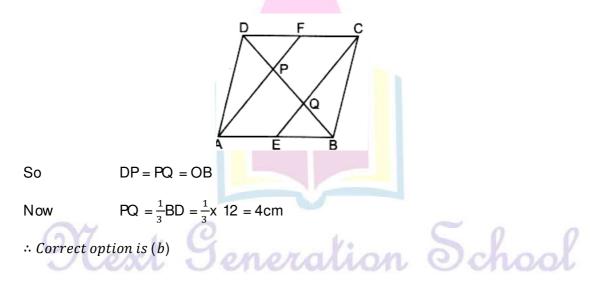


Sol : a) by the converse of the Mid-point theorem.

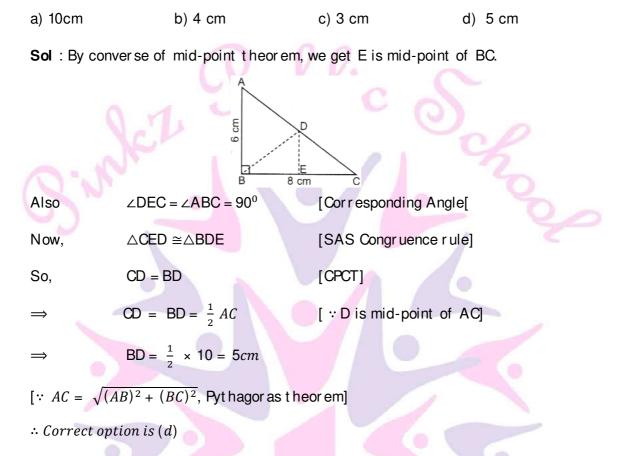
2. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively. AF and CE meet the diagonal BD of length 12cm at P and Q, then length of PQ is

a) 6cm 🚽	b) 4 cm	c) 3 cm	d) 5 cm

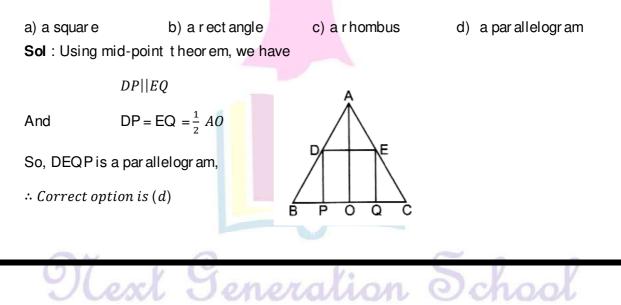
Sol. In a parallelogram ABCD, we know that if E and F are the mid-points of sides AB and CD respectively, then the line segments AF and ECtrisect the diagonal BD.



3. A I n \triangle ABC, right angled at B, Side AB =6cm and side BC = 8cm. D is mid-point of AC. Then length of BD is



4. D and E are the mid-points of the sides AB and AC of ΔABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is [NCRT Examplar]



1. If one angle of a parallelogram is 36⁰ less than twice its adjacent angle, then find the angles of parallelogram [CBSE 2016]

Sol: Let one angle of parallelogram be x.

Its adjacent angle is $(180^0 - x)$

As per question,

=

$$x = 2 (180^{\circ} - x) - 36^{\circ}$$

 $x = 360^{\circ} - 2x = 36^{\circ}$

$$3x = 324^{\circ}$$

$$\Rightarrow \qquad x = \frac{324^0}{2} = 108^0$$

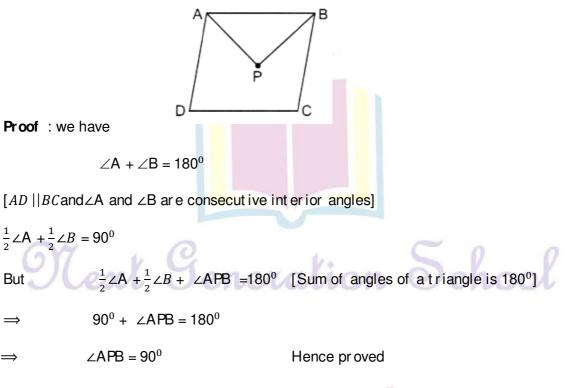
 \Rightarrow Adjacent angle = $180^{\circ} - 108^{\circ} = 72^{\circ}$

Hence, the angles of parallelogram are 108°, 72°, 108°, 72°.

2. In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles.

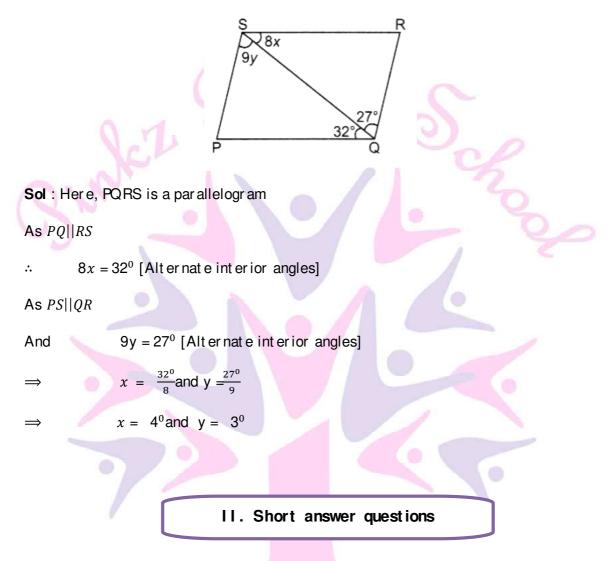
Sol: Given: ABCD is a parallelogram such that angle bisectors of adjacent angles A and B intersect at point P.

To prove: $\angle APB = 90^{\circ}$

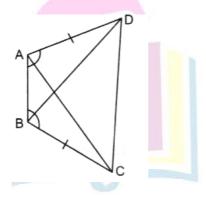


Created by Pinkz

3. In the given figure, PQRS is a parallelogram. Find the values of x and y.



1. In the given figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$

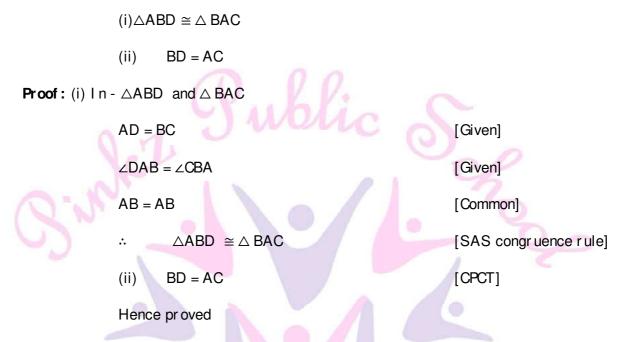


Prove that : (i) $\triangle ABD \cong \triangle BAC$

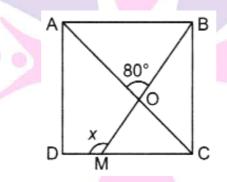
(ii) BD = AC

Sol : Given : ABCD is a quadrilater al in which AD = BC and $\angle DAB = \angle CBA$

To prove:



2. In the given figure, ABCD is a square, A line BM intersects CD at M and diagonal AC at O such that $\angle AOB = 80^{\circ}$. Find the value of x.



Sol. As diagonal of a square bisect s the opposite angles,

$$\angle BAO = \frac{1}{2} \angle BAD = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

 $\angle BAC = \angle ACD$ [Alternate interior angles]

$$\therefore \qquad \angle ACD = \angle BAC = 45^0 \dots (i)$$

Also $\angle AOB = \angle MOC = 80^{\circ}$ (ii) [Vertically opposite angles]

Now, $x = \angle MOC + \angle OCM$

[Exterior angle is equal to sum of two interior opposit eangles]

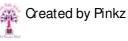
 $\therefore x = 80^{\circ} + 45^{\circ} = 125^{\circ}$

III. Short answer questions

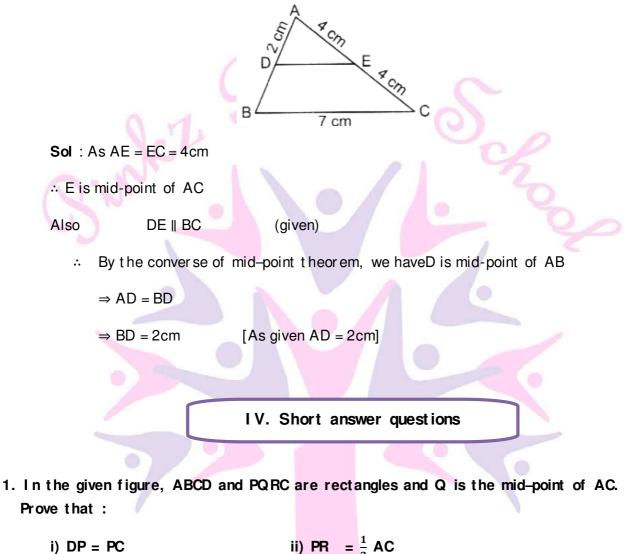
- 1. ABCD is a parallelogram. AB is produced to E so that BE = AB. Prove the ED bisects BC.
 - Sol: Given: ABCD is a parallelogram. AB is produced to E such that BE = AB

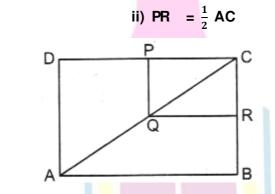
To prove : ED bisect s BC. B С BF = FCi.e. Construction: Join D to E which intersects BC at F. Proof: We have AB = DC[Opposit e sides of parallelogram] But AB = BE[Given] BE = DC:. In \triangle BEF and \triangle CDF. BE = DC[Proved above] $\angle BEF = \angle CDF$ [Alt er native interior angles] $\angle BEF = \angle CFD$ [Vertically opposite angles] $\Delta BEF \cong \Delta CDF$, [AAS congruence rule] :. BF = FC[CPCT] :. \therefore ED bisects BC. Hence proved.

Next Generation School

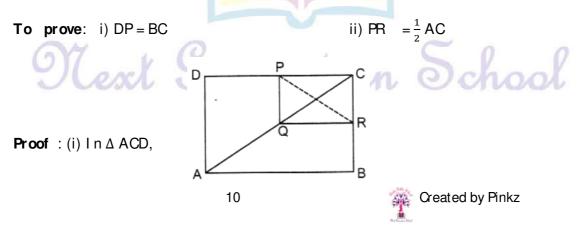


2. In the given figure, DE||BC Find BD.





Given : ABCD and PQRC are two rectangle and Q is the mid-point of AC



Q is the mid-point of AC

 $\angle ADC = \angle QPC = 90^{\circ}$

(Each angle of rectangle is right angle)

But these are corresponding angles.

⇒PQ ∥ DA

∴ Pisthe mid-point of CD

i.e.
$$DP = PC$$

ii) We have $QC = PR$
and $QC = = \frac{1}{2}AC$
 $\therefore PR = \frac{1}{2}AC$

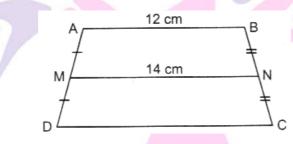
(Diagonals of rectangle are equal)

(Given)

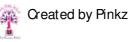
Hence pr oved

2. ABCD is a trapezium in which AB||DC. M and N are the mid-points of AD and BC respectively. If AB =12cm and MN =14cm, find CD. [HOTS]

Sol: Here, ABCD is a trapezium in which, AB || DC and M and N are the mid - point of AD and BC respectively.

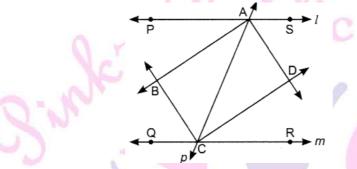


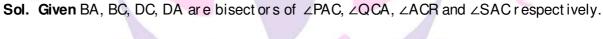
Since the line segment joining the mid-points of non-parallel sides of trapezium is half of the sum of the lengths of its parallel sides,



I. Long answer questions

1. Two parallel lines I and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.





To prove : ABCD is a rect angle.

Proof: We have

[Alternate interior angles as $l \mid m$ and p is transversal]

$$\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$$

$$\Rightarrow \angle BAC = \angle ACD$$

[As BA and DC are bisect or s of $\angle PAC$ and $\angle ACR$ respectively]

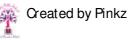
But these are alternate angles. This shows that AB||CD

Similarly, **BC**||AD

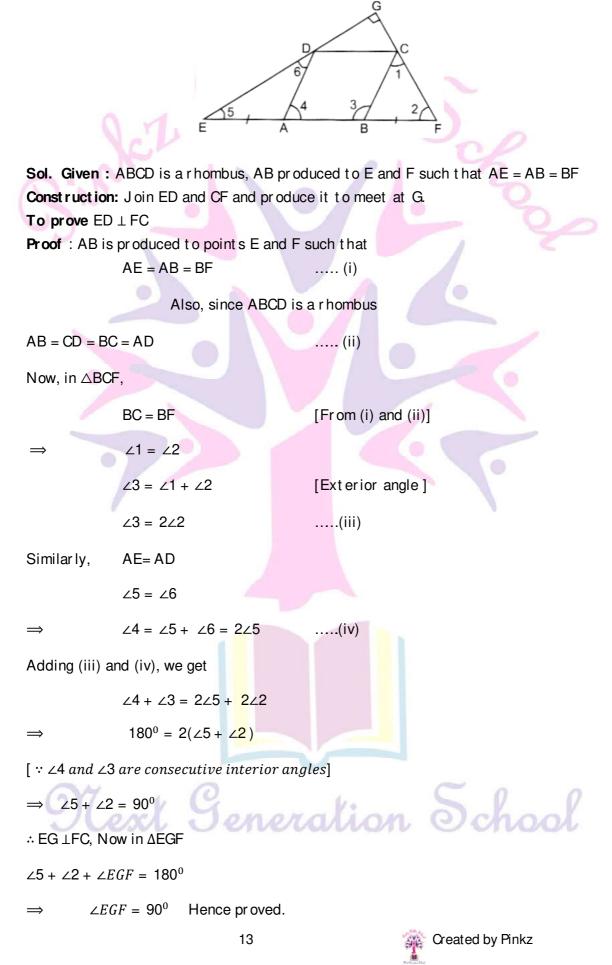
 \Rightarrow Quadrilateral ABCD is a parallelogram(i)

Now	r, ∠PAC + ∠CAS = 180 ⁰	[Linear p <mark>ar</mark> i axiom]
\Rightarrow	$\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = 90^{\circ}$	
\Rightarrow	$\angle BAC + \angle CAD = 90^{\circ}$	
\Rightarrow	∠BAD = 90 ⁰ (ii)	
Fror	n (i) and (ii) we can say that ABCD is a	a rectangle

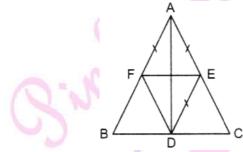
Hence proved.



2. ABCD is a rhombus and AB is produced to E and F such that AE = AB = BF. Prove that ED and FC are perpendicular to each other.



 In ∆ABC is isosceles with AB = AC, D, E and F are the mid-point of sides BC, CA and AB respectively. Show that the line segment AD is perpendicular to the line segment EF and is bisected by it.



Sol : Given \triangle ABC is isosceles with AB = AC, D, E and F are the mid-point of BC, CA and AB respectively.

To Prove : AD \perp EF and is bisected by it.

Construction: Join D, E and F and AD

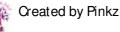
Proof : we have

DE || AB and DE = $\frac{1}{2}AB$

And DF|| AC and DF = $\frac{1}{2}AC$

(Line segment joining mid-points of two sides of a triangle is parallel to the third side and is half of it.)

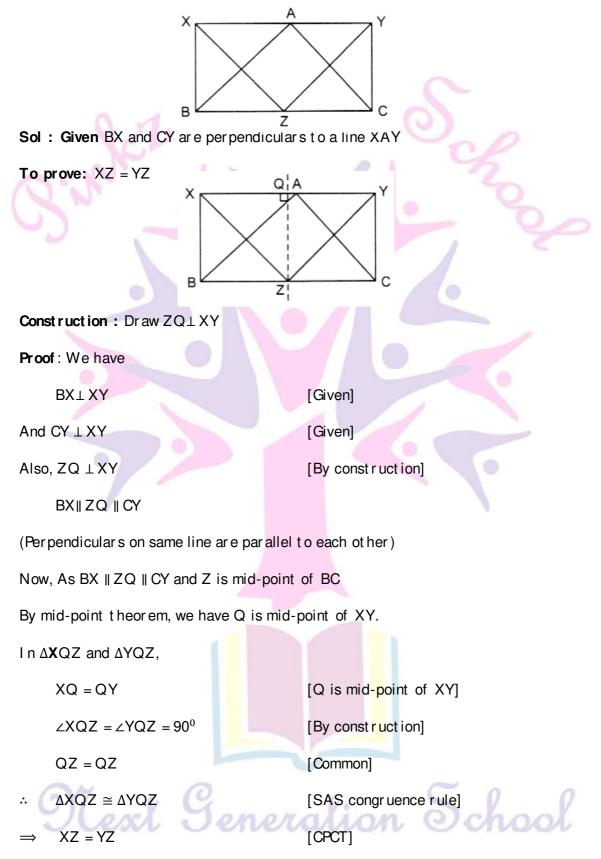
	AB = AC		(iii)
.	$AF = \frac{1}{2}AB, AE = \frac{1}{2}AC$		(iv)
Fro	m (i), (ii), (iii), and (iv), we get		
	DE = DF = AF = AE		
And	also, DF AE and DE AF		
\Rightarrow	DEAF is a r hombus.		~ ~ ~
Sin	ce diagonals of a rhombus bised	ct each other at righ	t angles,
A	$D \perp EF$ and is bisected by it.		



.....(i)

.....(ii)

2. In the given figure, BX and CY are perpendicular to a line through the vertex A of \triangle ABC and Z is the mid-point of BC. Prove that XZ = YZ [HOTS, CBSE 2015]



Hence proved.

