

Grade IX

Lesson: 6 LINES AND ANGLES BASIC TERMS AND DEFINITIONS

ANGLE SUM PROPERTY OF TRIANGLE AND EXTERIOR ANGLE PROPERTY

- The sum of the angles of a triangle is 180°
- If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.
- Exterior angle of a triangle is greater than either of its interior opposite angles

Objective Type Questions

I. Multiple choice questions 6.1

- 1. In the given figure, $\angle x$ is
 - a) obtuse angle
- b) acute angle
- c) reflex angle
- d) straight angle

Sol. c

2. In the given figure, a pair of adjacent angles is

- a) $\angle COA$ and $\angle BOA$
- b) $\angle COA$ and $\angle BOC$ c) $\angle AOB$ and $\angle BOC$
 - d) none of these

Sol. c

- 3. In figure if x : y = 1 : 4, then values of x and y are respectively
 - a) 36^0 and 144^0
- b) 18^0 and 72^0
- c) 144⁰ and 36⁰
- d) 72^0 and 18^0

Given, x: y = 1:4Sol.

$$\Rightarrow \frac{x}{y} = \frac{1}{4} = \frac{K}{4K} \implies x = K \text{ and } y = 4K$$

From the figure,

$$x + y = 180^{\circ}$$
 (Linear pair axiom)

$$\Rightarrow \qquad k + 4k = 180^0 \Rightarrow 5k = 180^0 \Rightarrow k = 36^0$$

Hence, $x = k = 36^{\circ}$

And
$$y = 4k = 4 \times 36^0 = 144^0$$

∴ Correct option is (a)

4. In the given figure, POS is a line, then $\angle QOR$ is

- a) 60^{0}
- b) 40^{0}
- c) 80°
- d) 20^{0}

Sol. c

5. If the difference between two complementary angles is 10^0 then the angles are,

- a) 50° , 60°
- b) $50^{\circ}, 40^{\circ}$
- c) 80° , 10°
- d) 35⁰, 45⁰

Let an angle be x. Then other angle = $x-10^{\circ}$.

Since the two angles are complementary, So,

$$x + x - 10^0 = 90^0$$

$$\Rightarrow$$
 2x = 90° + 10° = 100°

$$\Rightarrow \quad x = \frac{100^0}{2} = 50^0$$

So, one angle = 50° , Then, other angle = $x - 10^{\circ} = 50^{\circ} - 10^{\circ} = 40^{\circ}$

 \therefore Correct option is (b)

6. Diagonals of a rhombus ABCD intersect each other at O, then, what are the measurements of vertically opposite angles $\angle AOB$ and $\angle COD$?

- a) $\angle ABO = \angle CDO$ b) $\angle ADO = \angle BCO$
- c) 60° , 60°
- $D) 90^{\circ}, 90^{\circ}$

Sol. d

- 7. In the given figure, if $\angle AOC = 50^{\circ}$, then $(\angle AOD = \angle COB)$ is equal to
 - a) 60^{0}
- b) 140^{0}

- c) 260°
- d) 130^{0}

Sol. c

8. In the given figure, if AOB is a line then find the measure of $\angle BOC, \angle COD, and \angle DOA$

[CBSE 2011]

Sol. We have, $\angle BOC + \angle COD + \angle DOA = 180^{\circ}$

$$\Rightarrow 2y + 3y + 5y = 180^0$$

$$\Rightarrow 10y = 180^{0} \Rightarrow y = 18^{\circ}$$

$$\therefore \angle BOC = 2y = 2 \times 18^0 = 36^0$$

$$\angle COD = 3y = 3 \times 18^0 = 54^0$$

$$\angle DOA = 5y = 5 \times 18^0 = 90^0$$

9. Check whether the following statements are true or not?

(i)
$$a + b = d + c$$

(ii)
$$a + c + e = 180^{\circ}$$
 (iii) $b + f = c + e$

eration School

Sol. From figure, we have

a + b = d + e (Vertically opposite angles)

But e≠c

$$\therefore$$
 $a+b \neq d+c$

$$\Rightarrow$$
 Hence, statement (i) is incorrect.

From the figure, we have

$$a + f + e = 180^{\circ}$$
 [Linear pair axiom](i)

But f = c (Vertically opposite angles)

$$\Rightarrow$$
 a + c + e = 180°

[From (i)]

Hence, statement (ii) is true..

Again b + c = f + e [Vertically opposite angles]

But,
$$c = f$$

[Vertically opposite angles]

$$B+f=c+e$$

[On interchanging c and f]

Hence, statement (iii) is also true.

Therefore, statement (ii) and (iii) are correct.

10. Ray OD stands on line AOB, if ray OC and OE bisects $\angle BOD$ and $\angle AOD$, respectively, Find the $\angle COE$.

$$\angle BOC = \angle COD = \frac{1}{2} \angle BOD$$

(: OC is angle bisector of $\angle BOD$)

And
$$\angle AOE = \angle EOD = \frac{1}{2} \angle AOD$$

(: OE is angle bisector of $\angle AOD$)

Now,
$$\angle AOD + \angle BOD = 180^{\circ}$$

[Linear pair axiom]

$$\Rightarrow \frac{1}{2} \angle AOD + \frac{1}{2} \angle BOD = \frac{1}{2} \times 180^{0} = 90^{0}$$

$$\Rightarrow \angle EOD + \angle COD = 90^{\circ}$$

$$\Rightarrow$$
 $\angle COE = 90^{\circ}$

11. In the given figure, find the value x,

Sol : Ray OC stands on line AOB

$$\therefore \angle AOC + \angle BOC = 180^{\circ}$$
 [Linear pair axiom]

$$\Rightarrow \qquad 4x + 2x = 180^{\circ}$$

$$\Rightarrow 6x = 180^0 \Rightarrow x = \frac{180^0}{6} = 30^0$$

12. In the given figure, find the value of y

Sol: Ray OP and OQ stands on line AOB

$$\therefore \qquad \angle AOQ + \angle QOP + \angle POB = 180^{\circ} [Linear pair axiom]$$

$$\Rightarrow$$
 3y + 40⁰ + 2y = 180⁰

$$\Rightarrow 5y = 180^{0} - 40^{0} = 140^{0}$$

$$\Rightarrow y = \frac{140^{0}}{5} = 28^{0} \Rightarrow y = 28^{0}$$

Next Generation School

13. If ray OC stands on line AB such that $\angle AOC = \angle BOC$, then show that $\angle BOC = 90^{\circ}$

Sol: Ray OC stands on line AOB

$$\therefore \qquad \angle AOC + \angle BOC = 180$$

$$2\angle BOC = 180^{\circ} \ [\because \ \angle BOC = \angle AOC]$$

 \Rightarrow $\angle BOC = 90^{\circ}$ Hence Proved.

II. Multiple choice questions 6.2

1. In the given figure $\angle 4$ and $\angle 5$ are known as

- (a) alternate interior angles
- (b) alternate exterior angles
- (c) corresponding angles
- (d) interior angles on the same side of transversal

Sol : d

Next Generation School

2. In the given figure, the relation between line I and line m is

- (a) I∥ m
- (c) lines I and m, intersect when produced

Sol : a

- (b) I is not parallel to m
- (d) none of these
- 3. Line I is perpendicular to line m and line m is perpendicular to line n, the line I is ____ to line n
 - (a) parallel
- (b) perpendicular
- (d) intersecting
- (d) none of these

Sol: Given, $1 \perp m$ and $m \perp n$

So line I is parallel to line n,

: correct option is (a)

4. In the given figure, $p \mid |q|$, Find the value o \times .

[CBSE2010]

Sol: Since $p \mid\mid q$ and r is transversal,

 \therefore angle which the line r makes with line p is 70° (Corresponding angle)

and

$$2x + 70^0 = 180^0$$
 [Linear pair axiom]

 \Longrightarrow

$$2x + 110^0 \Rightarrow x + 55^0$$

5. In the given figure, if l||m| and $\angle a: \angle b = 2:3$ then find the value of $\angle y$.

Sol: Given $\angle a : \angle b = 2 : 3$

$$\Rightarrow$$

$$\frac{a}{b} = \frac{2}{3} = \frac{2k}{3k}$$

$$\rightarrow$$

$$a = 2k$$
 and $b = 3k$

Now, $\angle a : \angle b = 180^{\circ}$ [Linear pair axiom]

$$\Rightarrow$$

$$2k + 3k = 180^{\circ}$$

$$\Longrightarrow$$

$$5k = 180^0 \implies k = 36^0$$

$$\angle a = 2k = 2 \times 36^{\circ} = 72^{\circ}$$

Now, $\angle a$ and $\angle y$ are the alternate exterior angles,

$$\angle a = \angle y \text{ or } \angle y = \angle a = 72^0$$

6. If a transversal intersects a pair of lines in such a way that a pair of alternate angles are equal, then what conclusion would you like to draw?

Sol: By alternate interior angles theorem, we conclude that a pair of lines are parallel to each other.

7. If a line $l \mid |m,n|$ is a transversal in the given figure, Find the value of x.

 ${\bf Sol}: l \mid\mid m$, and n is transversal. Then sum of pair of interior adjacent angles on the same side of transversal is supplementary.

$$x + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 x = 100°

8. Check whether I is parallel to m or not?

Sol:
$$\angle 1 + 60^{\circ} = 180^{\circ}$$
 [Linear pair axiom]

$$\angle 1 = 180^{\circ} - 60^{\circ}$$

$$= 120^{\circ}$$

So from the figure, the corresponding angles which makes transversal n with I and m are not equal. Hence, I is not parallel to m.

III. Multiple choice questions 6.3

- 1. What is common between the three angles of a triangle and a linear pair axiom?
 - (a) angles are equal
 - (b) in both cases, sum of angles is 180°
 - (c) In triangle, there are three angles and in linear pair, there are two angles
 - (d) None of these

Sol : b

- 2. In the given figure, $\angle 1 = \angle 2$ then the measurements of $\angle 3$ and $\angle 4$ respectively are
 - (a) 58° , 61°
- (b) 61^0 , 61^0
- (c)119⁰,61⁰+
- (d) 119⁰,119⁰

Sol: From the figure, $\angle 1 + \angle 2 + 58 = 180^{\circ}$ (Angle sum property of triangle]

But, given $\angle 1 = \angle 2$

So
$$\angle 1 + \angle 1 + 58^0 = 180^0$$

$$\Rightarrow$$
 $2 \angle 1 = 122^{\circ}$

$$\Rightarrow \qquad \angle 1 = \frac{122^0}{2} = 61^0$$

So,
$$\angle 2 = 61^{\circ}$$

Now,
$$\angle 3 = 58^0 + \angle 2$$

(· Exterior Angle Property)

$$= 58^{\circ} + 61^{\circ} = 119^{\circ}$$

Also,
$$\angle 4 = 58^{\circ} + \angle 1$$
 (: Exterior Angle Property)

 \therefore Correct option is (d)

3. In the given figure, AB||CD, the value of x is

a) 45°

b) 60°

 $c)90^{0}$

d) 105°

Sol: Given

 $AB \mid\mid CD$,

$$\Rightarrow$$
 $\angle BAE + \angle AED = 180^{\circ}$

(since Interior angles on the same side of the transversal are supplementary)

$$\Rightarrow 75^0 + \angle AED = 180^0$$

$$\Rightarrow$$
 $\angle AED = 105^{\circ}$

Also
$$\angle AED = \angle CEF$$

(: Vertically opposite Angles)

$$\Rightarrow$$
 $\angle CEF = 105^{\circ}$

Now in \triangle CEF

$$\Rightarrow$$
 $\angle CEF + \angle EFC + \angle FCE = 180^{\circ}$

(: Angle sum property of a triangle)

$$\Rightarrow 105^0 + 30^0 + x = 180^0$$

$$\Rightarrow 135^0 + x = 180^0 \implies x = 45^0$$

∴ Correct option is (a)

a) 53°

b) 77°

c) 50°

d) 107°

Sol:

Since $PQ \mid\mid RS$, so

$$\Rightarrow$$
 $\angle PAC = \angle ACS$

(: Alternate interior angles)

$$\Rightarrow$$
 $\angle PAB = \angle BAC = 127^{\circ}$

$$\Rightarrow$$
 50° = $\angle BAC = 127°$

$$\Rightarrow$$
 $\angle BAC = 77^{\circ}$

 \therefore Correct option is (b)

5. In the given figure, measure of $\angle QPR$ is

- a) 10.5°
- b) 42⁰
- c)111⁰

d) 50°

Sol: Using exterior angle property, we have

$$\angle TRS = \angle QTR + \angle TQR(In \Delta QTR)$$

And
$$\angle PRS = \angle QPR + \angle PQR(In \Delta QPR)$$

$$\Rightarrow$$
 $2 \angle TRS = \angle QTR + 2 \angle TQR$

$$\Rightarrow \qquad 2(\angle TRS - \angle TQR) = \angle QTR(i)$$

Similarly,
$$2(\angle TRS - \angle TQR) = 2\angle QTR$$
(ii)

Hence, using (i) and (ii), we get

$$\angle QPR = 2\angle QTR$$

$$= 2 \times 21^0 = 42^0$$

- ∴ Correct option is (b)
- 6. Number of triangles which can be drawn with angles 420, 650 and 740 are
 - a) one triangle
- b) two triangles
- c) many triangles
- d) no triangle

- Sol: d) angle sum cannot be more than 180°
- 7. A triangle can have two obtuse angles.
 - a) True
- b) False
- Sol: (b) angle sum cannot be more that 180°
- 8. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is [NCERT Exemplar]
 - a) $37\frac{1}{2}^{0}$
- b) a) $52\frac{1}{2}^{0}$
- c) $72\frac{1}{2}^{0}$
- d) 75⁰

Sol : b

9. In the given figure, find the $\angle x$

Sol: We have $\angle QPR = \angle TPV$

....(Vertically opposite angles)

From exterior angle theorem,

$$\angle QPR + \angle PQR = \angle PRS$$

$$\Rightarrow$$
 30°+ x = 110°

$$\Rightarrow \qquad \qquad \mathsf{x} = 110^0 - 30^0$$

$$= 80^{\circ}$$

10. In the given figure, $\angle EBC = 115^{\circ}$ and $\angle DAB = 100^{\circ}$. Find $\angle ACB$,

Sol: From the figure, $\angle EBC + \angle ABC = 180^{\circ}$

[Linear pair axiom]

$$\Rightarrow 115^0 + \angle ABC = 180^0$$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 115^{\circ} = 65^{\circ}$

Now, in $\angle ABC$, $\angle BAD = \angle ABC + \angle ACB$

[Exterior angle theorem]

$$\Rightarrow 100^{0} = 65^{0} + \angle ACB$$

$$\Rightarrow$$
 $\angle ACB = 100^{\circ} - 65^{\circ} = 35^{\circ}$

Hence,
$$\angle ACB = 35^{\circ}$$

11. The angle of a triangle ABC are in the ratio 2: 3: 4 Find the largest angle of the triangle.

[CBSE 2016]

Sol: Given
$$\angle A: \angle B: \angle C=2:3:4$$

Let
$$\angle A = 2x$$
, $\angle B = 3x$, $\angle C = 4x$

Using angle sum property of a triangle, we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow 2x + 3x + 4x = 180^{\circ}$$

$$\Rightarrow \qquad 9x = 180^{\circ}$$

$$\Rightarrow \qquad x = 20^{0}$$

$$\therefore \qquad \angle A = 2x = 2 \times 20^{0} = 40^{0}$$

$$\angle B = 3x = 3 \times 20^{0} = 60^{0}$$

$$\angle C = 4x = 4 \times 20^0 = 80^0$$

Hence largest angle of the triangle is 80°

12. In the given figure, find the value of x.

Sol : We know that sum of exterior angle of ΔPQR is $360^{\rm o}$

$$\Rightarrow 130^0 + x + 115^0 = 360^0$$

$$\Rightarrow 245^0 + x = 360^0$$

$$\Rightarrow \qquad x = 360^0 - 245^0 = 115^0$$

I. Short Answer Type

1. In the given figure, if x is greater than y by one third of a right angle, find the values of x and y.

Sol:
$$x = \frac{1}{3} x 90^0 + y$$
 (Given)

$$\Rightarrow$$
 $x = 30^0 + y$

Now, $\angle AOC + \angle BOC = 180^{\circ}$ [Linear pair axiom]

$$\Rightarrow$$
 $x + y = 180^{\circ} \Rightarrow 30^{\circ} + y + y = 180^{\circ}$

$$\Rightarrow 2y = 150^0 \Rightarrow y = \frac{150^0}{2} = 75^0$$

So,
$$x = 30^0 + y = 30^0 + 75^0 = 105^0$$

2. Lines I and m intersect at O, if $x = 45^{\circ}$, find y, z and u.

Sol: $\angle x$ and $\angle z$ are vertically opposite angles

$$\therefore \qquad \angle x = \angle z = 45^0 \implies \angle z = 45^0$$

But x and y are linear pair angles

So,
$$\angle x + \angle y = 180^{\circ}$$
 [Linear pair axiom]

$$\Rightarrow$$
 45° + $\angle y = 180^{\circ} \Rightarrow \angle y = 180^{\circ} - 45^{\circ} = 135^{\circ}$

Also, $\angle y$ and $\angle u$ are vertically opposite angles

$$\therefore \qquad \angle u = \angle y = 135^0 \implies \angle u = 135^0$$

Hence,
$$\angle z = 45^{\circ} \angle y = 135^{\circ} \text{ and } \angle u = 135^{\circ}$$

II. Short Answer Type

1. Find the value of x and y in the given figure, if $l \mid\mid m \text{ and } p \mid\mid q$.

Sol: As $l \mid \mid m$ and line p is transversal

So,
$$x = 100^{\circ}$$
 [Corresponding angles]

Now,
$$z = 80^{\circ}$$
 [Vertically opposite angle

But,
$$y = 180^{\circ}-z$$
 [Corresponding angles]

$$\therefore$$
 y = 180° - 80° = 100°

2. In the given figure, $AB \mid\mid CD, \angle 2 = 120^0 + x$ and $\angle 6 = 6x$. Find the measure of $\angle 2$ and $\angle 6$

Sol: Given AB || CD,

$$\Rightarrow$$
 $\angle 2 = \angle 6$ (Corresponding angles)

$$\Rightarrow$$
 120⁰ + $x = 6x$ [$\angle 2 = 120 + x$]

$$\Rightarrow 120^0 = 6x - x = 5x$$

$$\Rightarrow \qquad x = \frac{120^0}{5} = 24^0$$

$$\angle 2 = 120^{0} + x = 120^{0} + 24^{0} = 144^{0}$$

And
$$\angle 6 = 6x = 6 \times 24^0 = 144^0$$

3. In the given figure, if $| \mathbf{l} | \mathbf{n}$, find the value of x

Sol: Draw a line 'n' through O such that $n \mid\mid l$ and $n \mid\mid m$.

As $l \mid\mid n$, OP is transversal.

$$\Rightarrow$$
 $\angle 1 = 35^{\circ}$ (Alternate interior angles)

Also, n | m, OQ is transversal

$$\angle 2 = 40^{\circ}$$
 (Alternate interior angles)

$$\therefore \qquad \angle POQ = \angle 1 + \angle 2 = 35^{0} + 40^{0} = 75^{0}$$

So, $x = \text{reflex } \angle POQ$

$$= 360^{\circ} - \angle POQ = 360^{\circ} - 75^{\circ} = 285^{\circ}$$

III. Short Answer Type

1. Lines $l \mid\mid m$ and $p \mid\mid q$ in the given figure, then find the value of a,b,c, and d.

Sol : Given $l \mid\mid m$ and p is transversal

$$\Rightarrow \qquad \qquad a + 60^0 = 180^0$$

(Co - interior angles on the same side of transversal)

$$\Rightarrow$$
 $a = 120^{\circ}$

But p||q [Given]

$$\Rightarrow$$
 $c = a = 120^{\circ}$ (Corresponding angles)

And
$$c = b$$
 (Alternate interior angles as $l||m$)

$$\Rightarrow$$
 $b = 120^{\circ}$

Also,
$$c + d = 180^{\circ}$$
 [Linear pair axiom]

$$\Rightarrow \qquad d = 180^0 - c = 180^0 - 120^0 = 60^0$$

2. In the given figure, $n \mid \mid m$ and $p \mid \mid q$ of $\angle 1 = 75^0$, prove that $\angle 2 = \angle 1 + \frac{1}{3}$ of a right angle.

tion School

Sol : Given $\angle 1 = 75^{\circ}$

Now, m||n and p is transversal

$$\Rightarrow$$
 $\angle 1 + \angle 3 = 180^{\circ}$ (Co - interior angles)

$$\Rightarrow 75^0 + \angle 3 = 180^0$$

$$\Rightarrow \qquad \angle 3 = 180^0 - 75^0 = 105^0$$

Now p||q and m is transversal

$$\Rightarrow \qquad \angle 2 = \angle 3 = 105^{\circ} \text{ (Corresponding angles)}$$
$$= 75^{\circ} + 30^{\circ} = 75^{\circ} + \frac{1}{3} \times 90^{\circ}$$
$$\angle 2 = \angle 1 + \frac{1}{3} \times right \ angle.$$

Hence, Proved

3. In the given figure, $\angle 1=55^{\circ}$, $\angle 2=20^{\circ}$, $\angle 3=35^{\circ}$ and $\angle 4=145^{\circ}$. Prove that AB||CD|

Sol: We have, $\angle BMN = \angle 2 + \angle 3 = 20^{0} + 35^{0} = 55^{0}$

$$\angle 1 = \angle ABM$$

But these are the alternate angles formed by transversal BM on AB and MN.

So, by converse of alternate interior angles theorem,

Now
$$\angle 3 + \angle 4 = 35^{\circ} + 145^{\circ} = 180^{\circ}$$

This shows that sum of the co-interior angles is 180°

From (i) and (ii), we have $AB \parallel CD$. Hence proved.

IV. Short Answer Type

1. Two angles of triangle are equal and the third angle is greater than each of these angles by 30° Find all the angles of the triangle.

Sol: Let each of the two equal angles be x. According to the question,

third angle =
$$x + 30^{\circ}$$

Now, sum of angles of $\Delta = 180^{\circ}$

[Angle sum property of a triangle]

$$\Rightarrow x + x + x + 30^0 = 180^0$$

$$\Rightarrow 3x = 180^0 - 30^0 = 150^0$$

$$\Rightarrow \qquad \qquad x = \frac{150^{\circ}}{3} = 50^{\circ}$$

Thus, angles of triangle are 50°, 50° and 80° respectively.

2. One of the angles of triangle is 75^0 , find the remaining two angles if their difference is 35^0 .

Sol: Let in \triangle ABC , $\angle A = 75^{\circ}$ and $\angle B - \angle C = 35^{\circ}$

$$\Rightarrow \qquad \angle B = \angle C + 35^{\circ}$$

Now,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

(Angle sum property of a triangle)

$$\Rightarrow 75^0 + \angle C + 35^0 + \angle C = 180^0$$

$$\Rightarrow 110^{0} + 2 \angle C = 180^{0}$$

$$\Rightarrow$$
 2 $\angle C = 180^{\circ} - 110^{\circ} = 70^{\circ}$

$$\Rightarrow \qquad \angle C = \frac{70^{\circ}}{2} = 35^{\circ}$$

And
$$\angle B = \angle C + 35^{\circ}$$

$$= 35^{0} + 35^{0} = 70^{0}$$

3. Prove that if one angle of a triangle is equal to the sum of the other two angles, then the triangle is right angled.

Sol : Given : In
$$\triangle ABC$$
 , $\angle A = \angle B + \angle C$

Now,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

(Angle sum property of a triangle)

$$\Rightarrow$$
 $\angle A + (\angle B + \angle C) = 180^{\circ}$

$$\Rightarrow$$
 $\angle A + \angle A = 180^{\circ}$

$$\Rightarrow \qquad 2 \angle A = 180^{\circ}$$

$$\Rightarrow \qquad \angle A = \frac{180^{\circ}}{2} = 90^{\circ}$$

Hence, with $\angle A = 90^{\circ}$ the given triangle is right angled triangle.

4. The exterior angles obtained on producing the base of a triangle both ways are 100^0 and 120^0 , Find all the angles. [CBSE 2011]

Sol: In
$$\triangle ABC$$
, $\angle ABE + \angle ABC = 180^{\circ}$

[Linear pair axiom]

$$\Rightarrow 100 + \angle ABC = 180^{\circ}$$

$$\Rightarrow \qquad \angle ABC = 180^{0} - 100^{0} = 80^{0}$$

Similarly, $\angle ACB + \angle ACD = 180^{\circ}$

[Linear pair axiom]

$$\Rightarrow \qquad \angle ACB + 120^{\circ} = 180^{\circ}$$

100

$$\Rightarrow$$
 $\angle ACB = 180^{\circ} - 120^{\circ} = 60^{\circ}$

Now, again in $\triangle ABC$,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$
 (Angle sum property of triangle)

$$\Rightarrow$$
 80° + 60° + $\angle BAC = 180°$

$$\Rightarrow \angle BAC = 180^{0} - 140^{0} = 40^{0}$$

Hence,
$$\angle BAC = 40^{\circ}, \angle ABC = 80^{\circ}$$

and
$$\angle ABC = 60^{\circ}$$

5. In the given figure, if $AB \parallel CD \angle APQ = 60^{\circ}$ and $\angle PRD = 137^{\circ}$, then find the value of x and y [CBSE 2010]

Sol: Given $AB \parallel CD$,

PQ is transversal

$$\Rightarrow$$
 $\angle APQ = \angle PQR$ [Alternate interior angles]

$$\Rightarrow$$
 60° = x

Again in △ PQR, exterior angle is ∠PRD

So,
$$\angle PRD = \angle PQR + \angle QPR$$

[: Exterior angle theorem]

$$\Rightarrow 137^0 = x + y$$

$$\Rightarrow 137^0 = 60^0 + y$$

$$\Rightarrow y = 137^0 - 60^0 = 77^0$$

6. In the given figure, side BC of \triangle ABC is produced in both the directions. Prove that the sum of two exterior angles so formed is greater than 180° .

Sol: The exterior angles in the given $\triangle ABC$ are $\angle ABE$ and $\angle ACD$

To prove $\angle ABE + \angle ACD > 180^{\circ}$

Proof: In \(\Delta ABC \)

$$\angle 5 = \angle 1 + \angle 3$$
(i)

(Exterior angle theorem)

and
$$\angle 4 = \angle 1 + \angle 2$$
(ii)

Adding (i) and (ii) we get

$$\angle 4 + \angle 5 = \angle 1 + \angle 3 + \angle 1 + \angle 2$$

$$= \angle 1 + (\angle 1 + \angle 2 + \angle 3)$$

$$= \angle 1 + 180^{0}$$
 [Angle sum property of a triangle]

 $\angle 4 + \angle 5 = 180^{\circ}$ Hence proved.

V. Short Answer Type

1. In \triangle ABC, the bisector of \angle B and \angle C meets at O. Prove that \angle BOC = $90^{\circ} + \frac{\angle A}{2}$

[CBSE 2014]

Sol : Given the bisector of \angle B and \angle C of \triangle ABC meets at O as shown in figure.

OB is bisector of $\angle B$

$$\Rightarrow \qquad \angle 1 = \angle 2 = \frac{1}{2} \angle ABC = \frac{1}{2} \angle B$$

Similarly, OC is bisector of $\angle C$

Now in $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

[Angle sum property of a triangle]

$$\Rightarrow$$
 $\angle B + \angle C = 180^{\circ} - \angle A$

$$\Rightarrow \frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^0 - \frac{\angle A}{2}$$

$$\angle 2 + \angle 3 = 90^{\circ} - \frac{\angle A}{2}$$
(i)

In ∠ BOC

$$\angle$$
 OBC + \angle BOC + \angle BCO = 180°

[Angle sum property of a triangle]

$$\Rightarrow \qquad \angle 2 + \angle BOC + \angle 3 = 180^{\circ}$$

$$\Rightarrow \qquad (\angle 2 + \angle 3) + \angle BOC = 180^{\circ}$$

$$\Rightarrow 90^{0} - \frac{\angle A}{2} + \angle BOC = 180^{0}$$

$$\Rightarrow \qquad \angle BOC = 180^{0} - 90^{0} + \frac{\angle A}{2}$$

$$\Rightarrow \qquad \angle BOC = 90^0 + \frac{\angle A}{2}$$

Hence proved.

2. The sides EF, FD and DE of a triangle DEF are produced in order forming three exterior angles DFP, EDQ and FER respectively. Prove that

$$\angle DFP + \angle EDQ + \angle FER = 360^{\circ}$$

Sol: By using exterior angle theorem, we have

$$\angle 4 = \angle 1 + \angle 2$$

$$\angle 5 = \angle 2 + \angle 3$$

and $\angle 6 = \angle 1 + \angle 3$

.... (iii)

Adding (i), (ii) and (iii), we get

$$\angle 4 + \angle 5 + \angle 6 = (\angle 1 + \angle 2) + (\angle 2 + \angle 3) + (\angle 1 + \angle 3)$$

$$= 2 (\angle 1 + \angle 2 + \angle 3)$$

=
$$2 \times 180^{\circ}$$
 (: $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$)

$$= 360^{0}$$

(Angle sum property of a triangle)

$$\Rightarrow$$
 \angle DFP + \angle EDQ + \angle FER = 360°

Hence Proved.

3. Side QR of \triangle PQR is produced to a point S as shown in the figure. The bisector of \angle P meets QR at T. Prove that \angle PQR + \angle PRS = 2 \angle PTR.

Sol: $\angle PRS$ is the exterior of $\triangle PQR$

$$\therefore \qquad \angle PRS = \angle QPR + \angle PQR$$

[Exterior angle theorem]

Adding ∠ PQR on both sides, we get

[PT is bisector of
$$\angle P$$
 :: $\angle TPQ = \frac{1}{2} \angle QPR$]

$$\angle$$
 PQR + \angle PRS = \angle PQR + $2\angle$ TPQ + \angle PQR

$$= 2 (\angle TPQ + \angle PQR) \dots (i)$$

Now in \triangle PTQ, \angle PTR is exterior angle

$$\angle PTR = \angle TPQ + \angle PQR$$
)(ii)

Thus from (i) and (ii), we get

Hence proved.

4. In the given figure, AB and CD are two parallel lines intersected by a transversal EF. Bisector of interior angles BPQ and DQP intersect at R. Prove that \angle PRQ = 90°

Sol: Given AB || CD and EFis transversal

$$\therefore \qquad \angle BPQ + \angle DQP = 180^{\circ}$$

(Interior angles on the same side of transversal is supplementary)

$$\Rightarrow \frac{1}{2} \angle BPQ + \frac{1}{2} \angle DQP = 180^{0} \times \frac{1}{2} = 90^{0} \dots (i)$$

Now, PR is the bisector $\angle BPQ$

$$\Rightarrow$$
 $\angle RPQ = \frac{1}{2} \angle BPQ$

and QR is the bisector $\angle DQP$

$$\Rightarrow$$
 $\angle P QR = \frac{1}{2} \angle DQP$

From (i), we have $\angle RPQ + \angle PQR = 90^{\circ}$ (ii)

In
$$\triangle PQR$$
, $\angle RPQ + \angle PQR + \angle PRQ = 180^{\circ}$

(Angle Sum property of a triangle)

$$\Rightarrow 90^0 + \angle PRQ = 180^0$$

$$\Rightarrow \qquad \angle PRQ = 180^0 - 90^0 = 90^0$$

Hence Proved.

1. Long Answer Type

1. In the given figure, bisectors of the exterior angles B and C formed by producing sides AB and AC of \triangle ABC intersect each other at the point O.

Prove. That $\angle BOC = 90^0 - \frac{1}{2} \angle A$

Sol : Ray BO is the bisector of ∠CBE

$$\Rightarrow \qquad \angle 4 = \angle 5 = \frac{1}{2} \angle CBE$$

Now, $\angle 2 + \angle 4 + \angle 5 = 180^{\circ}$ [Linear pair axiom]

$$\Rightarrow \qquad \angle 2 + 2 \angle 4 = 180^{\circ}$$

$$(\because \angle 4 = \angle 5)$$

$$\Rightarrow$$

$$\angle 4 = 90^0 - \frac{\angle 2}{2}$$

Similarly, ray OC bisect ∠BCD

$$\angle 6 = \frac{1}{2} \angle BCD = \frac{1}{2} 180^0 - \angle 3$$

$$= 90^{\circ} - \frac{23}{2}$$

Now, in ∠BOC

$$\angle 4 + \angle 6 + \angle 8 = 180^{\circ}$$

(Angle Sum property of a triangle)

$$\Rightarrow \left(90^{0} - \frac{\angle 2}{2}\right) + \left(90^{0} - \frac{\angle 3}{2}\right) + \angle 8 = 180^{0}$$

$$\Rightarrow \angle 8 = \frac{1}{2}(\angle 2 + \angle 3) \qquad \dots (iii)$$

Again in \triangle ABC

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

(Angle Sum property of a triangle)

$$\Rightarrow \qquad \angle 2 + \angle 3 = 180^0 - \angle 1$$

Substituting in (iii) we get

$$\angle 8 = \frac{1}{2}(180^{0} - \angle 1)$$

$$\Rightarrow \angle 8 = 90^0 - \frac{\angle 1}{2}$$

Or
$$\angle BOC = 90^{0} - \frac{\angle BAC}{2}$$
 or $\angle BOC$
= $90^{0} - \frac{1}{2} \angle A$

Hence, proved.

2. Side, BC, CA and BA of triangle \triangle ABC produced to D, Q, P respectively as shown in the figure. If \angle ACD = 100^{0} and \angle QAP = 35^{0} find all the angles of a triangle. [CBSE 2014]

Sol: We have

$$\angle BAC = \angle QAP$$

[Vertically opposite angles]

$$\Rightarrow \angle BAC = 35^{\circ}$$

.... (Given that $\angle QAP = 35^{\circ}$)

Also, $\angle ACB + \angle ACD = 180^{\circ}$

[Linear pair axiom]

$$\Rightarrow$$
 $\angle ACB + 100^{\circ} = 180^{\circ}$

$$\Rightarrow \angle ACB = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

In $\triangle ABC$,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

(Angle Sum property of a triangle)

$$\angle ABC + 80^{\circ} + 35^{\circ} = 180^{\circ}$$

$$\angle ABC + 115^0 = 180^0$$

$$\Rightarrow \angle ACB = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

Hence, $\angle ABC = 65^{\circ} + \angle BAC = 35^{\circ}$ and $\angle ACB = 80^{\circ}$

3. In the given figure, $AB \mid\mid DC$, \angle BDC = 35° and \angle BAD = 80° , Find x, y, z

Sol: Given AB||DC

BD is transversal

$$\Rightarrow$$
 $x = 35^{\circ}$ [Alternate interior angles]

In $\triangle ABD$, $\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$

(Angle Sum property of a triangle)

$$\Rightarrow$$
 $x + y + 35^0 = 180^0$

$$\Rightarrow$$
 35° + y + 80° = 180° (: $x = 35°$)

$$y = 180^{0} - 115^{0} = 65^{0}$$

$$\angle DBC = y - 30^{\circ} = 65^{\circ} - 30^{\circ} = 35^{\circ}$$

Again in ΔBCD

$$\angle DBC + \angle BCD + \angle CDB = 180^{\circ}$$

(Angle Sum property of a triangle)

$$\implies 35^0 + z + 35^0 = 180^0$$

$$\Rightarrow \qquad z = 180^0 - 70^0 = 110^0$$

Hence, $x = 35^{\circ}$, $y = 65^{\circ}$, and $z = 110^{\circ}$

Next Generation School