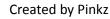


Grade X

Lesson : 2 polynomials **Objective Type Questions** I. Multiple choice questions 1. Sum of zeroes of polynomial $ax^2+bx + c$ is zero then value of 'b' is d) $\frac{c}{a}$ b) 0 a) -1 c) 1 2. If product of zeroes of polynomial $(ax^2+bx + c)$ is zero then value of 'c' is a) 3 b) 2 c) 1 d) 0 3. Find $(\alpha + \beta) + \alpha \beta$ for polynomial $x^2 - 4x + 3$ b) 7 d) 12 a) 3 c) 7 4. For Q No.3 Find value of $\frac{1}{\alpha} + \frac{1}{\beta}$ d) $\frac{4}{3}$ a) 3 b) 4 c) 1 5. Number of real zeroes of polynomial $(x^2 + 1)$ is a) 1 b) 2 c) 3 d) No real zero is possible 6. If one of the zeroes of polynomial $x^2 + kx - 8$ is zero then value of 'k' is a) 0 b) 8 c) -8 d) No real value of 'k' exist 7. Polynomial whose zeroes are 1 and 2 is a) x^2 - 3x + 2 b) x^2 + 3x + 2 c) x^2 + 3x - 2 d) $x^2 - 3x - 2$ 8. For what value of 'k' given polynomial (k-1) $x^2 + x + 6$ is a quadratic polynomial? a) 1 b) -1 c) 0 d) k≠1 9. If zeroes of polynomial are 2 and 3, then polynomial is a) $x^2 - 6$ b) $x^2 + 5x + 6$ c) $x^2 - 5x + 6$ d) None of these

10. Degree of zero polynomial is a) 0 b) 1 c) ∞ d) Not defined 11. If (-4) is the zero of a polynomial $x^2 - x - (2+2k)$ then value of 'k' is b) 2 c) 9 a) 1 d) 12 12. Degree of constant polynomial is a) 0 c) 1 d) None of these b) constant 13. Find value of $(\alpha - \beta)$ for polynomial $x^2 - 7x + 2 = 2$ a) 1 b) -1 c) both (a) and (b) d) None of these 14. If zeroes of polynomial $ax^2+bx + c$ are α and β then zeroes of polynomial k x (ax^2+bx+c) are c) $\frac{\alpha}{k}$ and $\frac{\beta}{k}$ **d)** α + β b) $k\alpha$ and $k\beta$ **a)** 2 α and 2 β 15. Zeroes of polynomial ($\sqrt{3}x^2 - 8x + 4\sqrt{3}$) b) $2\sqrt{3}$ and $\frac{-2}{\sqrt{3}}$ a) $2\sqrt{3}$ and $\frac{2}{\sqrt{3}}$ c) $-2\sqrt{3}$ and $\frac{2}{\sqrt{3}}$ d) $-2\sqrt{3}$ and $\frac{-2}{\sqrt{3}}$ 16. If zeroes of polynomial are $4x^2$ -2 x +(p-4) are reciprocal of each other then value of 'p' is c) 4 b)6 d) 2 a) 8 17. Which of the following cannot be the remainder, if p(x) a polynomial of degree ≥ 2 is divided by (x+1)? b) x+1 **c)** *x* d) All of these a) x-1 18. If one of the zeroes of polynomial $3x^2$ - 8x + (2k-1) is seven times of other then value of 'k' is b) $\frac{7}{2}$ c) $\frac{2}{2}$ a) $\frac{1}{3}$ d) 0 19. If α and β are zeroes of polynomial x^2 - 5x+k such that α - β = 1 then value of 'k' is a) 1 b) 2 c) 3 d) 6



20. If α and β are zeroes of polynomial x^2 -6x+a such that 3α + 2 β =20 then value of 'a' is b) 8 c) -16 a) 0 d) 16 21. α , β and γ are zeroes of polynomial x^3+9 , then value of $\alpha^{-1} + \beta^{-1} + \frac{1}{\gamma}$ is b) $\frac{-2}{3}$ c) $\frac{-4}{2}$ d) None of these a) $\frac{-1}{2}$ 22. If zeroes of polynomial are 1 and -2 then polynomial is c) $x^2 + x - 2$ d) $x^2 + x+2$ b) x^2-4 a) $x^2 - 1$ 23. If one of zeroes of polynomial $x^3 + a x^2 + bx + c$ is (-1) then product of zeroes is a) 1-a+b b)a+b d) 1+a+b c) a-b 24. If zeroes of ax^2+bx+c are reciprocal of each other then b) $\frac{c}{1} = 1$ a) c = 0 c) c-a = 0d) All of these 25. In polynomial $a x^2+bx+c$ if both zeroes are positive then sign of 'b' is a) positive b) negative c) both a and b d) b=0, not positive, not negative 26. If zeroes of polynomial ax^2+bx+c are equal the a) c and a have same sign b) c and a have opposite sign c) one of c and a must be zero d) None of these 27. If one of zeroes of cubic polynomial $a x^3 + bx^2 + cx + d$ is zero the value of their product is c) d a) b b) c d) 0 28. If one of the zeroes of polynomial x^2+x+k is zero then value of their product is b) c c) d a) b d) 0 29. For real zeroes of polynomial $\frac{a}{x^2} + bx + c$ which condition is true a) b^2 -4ac=0 b) $b^2 - 4ac > 0$ c) both (a) and (b) d) None of these 30. If α and β are zeroes of polynomial ax^2+bx+c , which condition is true c) $\frac{7}{12}$ b) -12 d) None of these a) 7

31. If one of zeroes of polynomial ax^2+bx+c is zeroes then value of 'c' is a) 1 b) $\frac{b}{a}$ c) $\frac{b}{a}$ d) 0

32. If α and β are zeroes of polynomial ax^2+bx+c , then polynomial whose zeroes $\frac{\alpha}{k}$ and

$$\frac{\beta}{k}$$
 are

a) k (x^2+bx+c) b) $\frac{1}{k}(ax^2+bx+c)$ c) (ax^2+bx-c) d) (ax^2+bx+c)

33. If α and β are zeroes of polynomial ax^2+bx+c , if zeroes are equal in magnitude and opposite in sign then value of 'b' is

a) 1 b)-1 c) 0 d) ±1

34. If $(x - \alpha)(x - \beta) = (x^2 - 5x - 6)$ then α is the zero and β is negative zero then value of $\frac{\alpha}{\beta}$ is

a) -6 b) +6 c) $\frac{3}{2}$ d) $\frac{2}{3}$ 35. If α and β are zeroes of polynomial x^2 -p(x + 1)-c, then value of (1+ α) (1+ β) is

a) 1 **b) 1-c** c) 1+c d) c

36. Number required to subtract from polynomial x^2 -16x+30, so that one of the zero becomes

a) 5 b) 10 c) 12 d) 15

37. If polynomial x^2+bx+c has no real zero then which is correct?

a) $b^2 = 4c$ b) $b^2 - 4ac$ is negative c) $(b^2 - 4c) < 0$ d) $b^2 - 4ac > 0$

38. Graph of polynomial x^2 -7x-8 but x axis at

a) (8,-1) b) (-8,+1) c) (-8,-1) d) (8, 1)

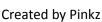
39. If both zeroes of polynomial are equal then its graph meet x- axis at

- a) touch only at one point _____ b) meet at two points
- c) cannot meet x axis d) None of these

40. In a quadratic polynomial ax^2+bx+c , which is always true?

b) b= 0

a) a≠0



d) None of these

c) c =0

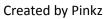
II. Multiple choice questions

- 1. Which of the following is not a polynomial.
- b) $3y^3 4y^3 + 2y$ a) 3x + 5d) $\frac{1}{r+2}$ c) x^2-3 2. If 2 is a zero of polynomial $f(x) = ax^2 - 3(a-1)x - 1$, then the value of a is. c) $\frac{5}{2}$ d) $\frac{1}{2}$ b) 2 a) 0 3. One of the zeroes of the quadratic polynomial (k-1) x^2+3x+k is 2 then the value of k is a) $\frac{4}{2}$ d) $\frac{-2}{2}$ b) $\frac{4}{3}$ c) $\frac{2}{2}$ 4. If one of the zeroes of the quadratic polynomial $x^2 + 3x + k$ is 2 then the value of k is b) -10 c) -7 d) 0 -2 a) 10 5. If 2 and 3 are zeroes of the polynomial $3x^2 - 2kx + 2m$, then the values of k and m are a) m = $\frac{9}{2}$ and k = 15 b) m = $\frac{15}{2}$ and k = 9 c) m = 9 and k = $\frac{15}{2}$ d) m = 15 and k = 9 6. The value of p, for which (-4) is a zero of the polynomial x^2 -2 x - (7 p+3) is _ b) 2 c) 4 d) -2 a) 3 7. If the graph of a polynomial intersects the x - axis at only one point, it can be a a) linear b) quadratic c) cube d) None of these 8. Which of the following is not the graph of a quadratic polynomial? b) d) a) 9. The graph of a guadratic polynomial is _ b) Parabola a) straight the d) None of these c) hyperbola

10. If one zero of polynomial x^2 -kx +1 is 2 + $\sqrt{3}$ then the zero will be _____. b) $-\sqrt{3}$ -2 c) 2 + $\sqrt{3}$ a) -2 + $\sqrt{3}$ d) $\sqrt{3}$ +1 11. The zeros of the quadratic polynomial $(x^2 + 5x + 6)$ are a) -2 and -3 b) 3 and 4 c) 3 and 2 d) 2 and 1 12. Zeroes of P (z) = z^2 - 27 are a) $\pm 3\sqrt{3}$ b) + 3 d) + $\sqrt{3}$ and $-\sqrt{3}$ c) +9 13. The zeroes of the quadratic polynomial $f(x) = abx^2 + b^2 - ac x - bc are$ c) $\frac{-b}{c}$ and $\frac{c}{b}$ d) $\frac{b}{a}$ and $\frac{-c}{b}$ a) $\frac{b}{c}$ and $\frac{c}{b}$ b) $\frac{a}{c}$ and $\frac{a}{b}$ 14. The number of polynomials having zeroes as -2 and 5 is b) 2 d) more than 3 a) 1 c) 3 15. 1 and 2 are the zeroes the polynomial x^2 -3x +2 b) False a) True c) Can't say d) partially True / False 16. Every real number is the zeroes of zero polynomial a) True b) False d) partially True / False c) Can't say 17. p(x) = x - 1 and $g(x) = x^2 - 2x + 1$ p(x) is a factor of g(x)b) False a) True c) Can't say d) partially True / False 18. The value of k for which 3 is a zero of polynomial $2x^2 + x + k$ is _____ a) 21 c) -21 b) 20 d) 18 19. If zeroes \propto and β of a polynomial x^2 -7x + k are such that $\propto -\beta = 1$, then the value of k is c) 9 b) 12 d) 8 a) 21 20. Sum of zeroes of the quadratic polynomial = $\frac{Co\ efficient\ of\ x}{Co\ efficient\ of\ x^2}$ b) false a) true d) partially True / False c) Can't say

21. If \propto and β are zeroes of the quadratic polynomial x^2 -6x + a the value of 'a' if 3 \propto + 2 β =20 is -12

a) true	b) false	c) Can't say	d) partially True / False		
22. If one of the ze	roes of a quadratic	polynomial of the fo	orm x^2 +ax + b is the		
negative of the	other, then it.	blic,			
a) has no linear term and the constant term is negative					
b) has no linear term and the constant term is positive					
c) can have a linear term but the constant term is negative					
d) can have a	linear term but the	constant term is pos	sitive		
23. If p and q are ze	croes of $3x^2 + 2x - 9$	then value of p-q is			
a) -3	b) $\frac{2}{3}$	c) 1	d) 20		
24. The polynomial v	whose zeroes are (v	2+1) and (√2-1) is			
a) $x^2 + 2\sqrt{2}x + 2\sqrt{2}x$	1 b) $x^2 - 2\sqrt{2}x$	+ 1 c) x ² -2√2x - 1	d) $x^2 - 2\sqrt{2}x - 1$		
25. If \propto and β are t	ne zeroes of the po	lynomial 2y ² + 7y +5,	then the value of		
$\propto + \beta + \propto \beta$ is					
a) -1	b) 0	c) 1	d) 2		
26. If \propto and β are the zeroes of the quadratic polynomial $f(x) = 3x^2 - 5x - 2$ then					
\propto^3 + β^3 is equal	to				
a) $\frac{215}{27}$	b) $\frac{357}{21}$	c) $\frac{115}{28}$	d) $\frac{325}{31}$		
27. If \propto and β are the zeroes of $4x^2 + 3x + 7$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is					
a) - $\frac{8}{7}$	b) — 3 7	c) $\frac{2}{7}$	d) $\frac{6}{8}$		
28. If the zeroes of	the quadratic polyr	nomial x^2 +(a + 1) x +	b are 2 and-3 then		
a) a = -7 b = -	1 b) a = 5 <mark>b</mark> =-1	c) a = 2 b <mark>=</mark> -6	d) a=0 b=-6		
29. If the sum and c	lifference of zeroes	s of quadratic polync	omial are -3 and -19		
		of the squares of zer c) 15			



30. If sum and product of zeroes of quadratic polynomial are respectively 8 and 12,

then their zeroes are

31. If m and n are the zeroes of the polynomial $3x^2 + 11x - 4$ then find the

value of
$$\frac{m}{n} + \frac{n}{m}$$

a) $\frac{145}{12}$ b) $-\frac{145}{2}$ c) $\frac{145}{7}$ d) $\frac{-145}{15}$
32. If one zero of the polynomial $3x^2 - 8x + 2k + 1$ is seven times the other, then the value of k is.
a) $\frac{2}{5}$ b) $\frac{2}{3}$ c) $\frac{2}{7}$ d) $\frac{3}{2}$
33. If sum of the squares of zeroes of the quadratic polynomial $f(x) = x^2 - 4x + k$ is 30, then the value of k is
a) -2 b) -3 c) -4 d) 2
34. If α and β are the zeroes of the polynomial x^2 -p(x +1) +c such that
 $(\alpha + 1)$ $(\beta + 1) = 0$, then the value of c is
a) -2 b) 2 c) -1 d) 1
35. The value of k such that the polynomial x^2 -(k+6) $x+2$ (2k-1) has sum of its zeroes
equal to half of their product is
a) -4 b) 4 c) -7 d) 7
36. The sum and the product of zeroes of the polynomial $f(x) = 4x^2 - 27x + 3k^2$ are
equal the value of k is
a) $k=3$ b) $k=-3$ c) $k\pm3$ d) $k=2$
37. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 4x + 3$, then the
value of $\alpha^4 \beta^3 + \alpha^3 \beta^4$ is
a) 104 b) 108 c) 112 d) 5
38. The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6, is
a) $x^2 + 5x + 6$ b) $x^2 - 5x + 6$ c) $x^2 - 5x - 6$ d) $-x^2 + 5x + 6$
39. The quadratic polynomial whose zeroes are $2\sqrt{7}$ and $5\sqrt{7}$ is
a) $x^2 - 3\sqrt{7}x - 70$ b) $x^2 + 3\sqrt{7}x + 70$ c) $x^2 + 3\sqrt{7}x - 70$ d) $x^2 - 3\sqrt{7}x + 70$

40. The quadratic polynomial whose zeroes are $3+\sqrt{2}$ and $3-\sqrt{2}$, is

a)
$$x^2 - 3x + 5$$
 b) $x^2 - 6x + 7$ c) $x^2 - 7x + 6$ d) $-x^2 + 8x + 12$

41. If \propto and β are the zeroes of a quadratic polynomial $f(x) = x^2 + x - 2$, then the quadratic polynomial whose zeroes are $2\alpha + 1$ and $2\beta + 1$ is

a)
$$x^2 + 9$$
 b) $x^2 - 4$ c) $x^2 - 9$ d) $x^2 + 4$

42. If \propto and β are the zeroes of a quadratic polynomial x^2 - 5, then the quadratic polynomial whose zeroes are 1 + \propto and 1 + β is

a) $x^2 + 2x + 24$ b) $x^2 - 2x - 24$ c) $x^2 - 2x + 24$ d) None of these

43. The number of value of k for which the quadratic polynomial whose $kx^2 + x + k$ has equal zeroes is

a) 4 b) 1 c) 2 d) 3

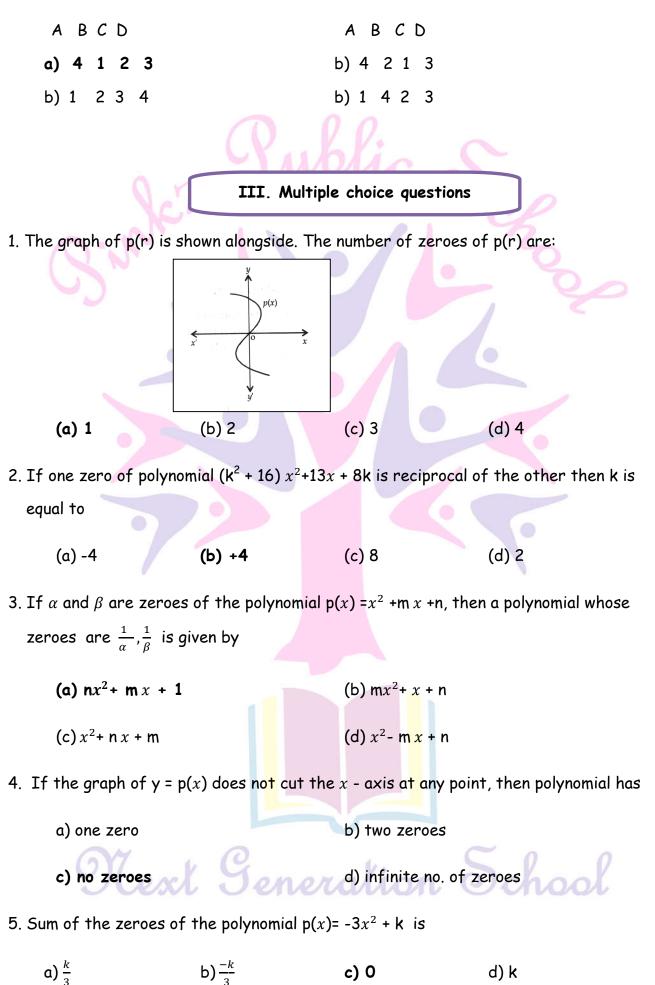
44. $p(x) = 5x^2 + 3x^2 + 7x + 2$ then match the value of Column I with that of Column II

	Column I			Column I
A	p (1)		Р.	2
В.	P (2)		Q.	11
С.	P (5)		R.	-13
D.	P (-1)		S.	-64
E.	P (-2)		Т.	587
Α	BCDE		ABCDE	
a)	OTRPS	b) O R T S F	>
c)	OPTRS	C) T R O S F	

45. If \propto and β are the zeroes of the polynomial $2x^2 - 4x + 5$ then match the value of

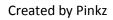
Column I with that of Column II

	Column I		<mark>Co</mark> lumn I	
A	$\frac{1}{\alpha} + \frac{1}{\beta}$	1.	-6	
В.	$(\alpha - \beta)^2$	2.	$\frac{-4}{25}$	(
С.	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	3.	$\frac{-2}{5}$	/
D.	$\frac{\alpha}{\beta} + \frac{\alpha}{\beta}$	4.	<u>4</u> 25	



Created by Pinkz

6. If -1 is a factor of
$$p(x) = kx^{2} + \sqrt{2}x+1$$
, then the value of k is
a) $\sqrt{2}-1$ b) $\sqrt{2}+1$ c) $-1-\sqrt{2}$ d) $1+\sqrt{2}$
7. Number of zeroes of a polynomial of degree n is
a) equal to n b) less than n
c) greater than d) less than or equal to n
8. Zeroes of the polynomial $p(x)=2x^{2}-9-3x$ are
a) $3, \frac{3}{2}$ b) $-\frac{3}{2}, 3$ c) $2, 3$ d) $9, \frac{3}{2}$
9. If $(\alpha - \beta), \alpha (\alpha + \beta)$ are zeroes of the polynomial $p(x)=2x^{2}+16x^{2}+15x-2$
value of α is
a) 8 b) 0 c) $\frac{3}{8}$ d) $\frac{9}{3}$
10. If n represents number of real zeroes for polynomial $ax^{3}+bx^{2}+cx+d$
then which of the following inequality is valid
a) $0 < n < 3$ b) $0 \le n < 3$ c) $0 < n \le 3$ d) $0 \le n \le 3$
11. Number of quadratic polynomials having -2 and -5 as their two zeroes is:
a) One b) Two c) Three d) Infinite
12. If α, β, γ are zeroes of the polynomial $p(x)$ such that $\alpha + \beta + \gamma = 2$,
then $\alpha\beta + \beta\gamma + \gamma \alpha = 5, \ \alpha\beta\gamma = -7$ then $P(x)$ is :
(a) $x^{3} - 2x^{2} - 5x - 7$ (d) $x^{3} - 2x^{2} - 5x + 7$
(c) $x^{3} - 2x^{2} - 5x - 7$ (d) $x^{3} - 2x^{2} + 5x + 7$
13. If the sum of products of zeroes taken two at a time of polynomial $p(x) = x^{3} - 5x^{2} + cx + 8$ is 2 then the value of c is
(a) 2 (b) -2 (c) 8 (d) -5



Ť

- 14. The division algorithm states that given any polynomial p(x) and any non-zero polynomial
 - g(x) there are polynomial q(x) and r(x) such that p(x) = g(x) + q(x), r(x), where
 - (a) either = 0 or deg. $r(x) \le \deg g(x)$
 - (b) either = 0 or deg. r(x) > deg. g(x)
 - (c) a linear polynomial or deg. r(x) = deg g(x)
 - (d) either =0 or deg. r(x) < deg. g(x)
- 15. If divisor, quotient and remainder are x + 1, 3x 2 and 1 respectively, then dividend is

(a)
$$3x^2 + x + 1$$
 (b) $3x^2 - x - 1$ c) $3x^2 + x - 1$ d) $3x^2 - x + 1$

Fill in the blanks

1. The zeroes of the polynomial x^2 - 49 are

±7

2. The quadratic polynomial, whose sum and product of zeroes are 4 and -5 respectively is .

 $k(x)^2 - 4x - 5$

- 3. The value of the polynomial $p(x) = 4x^2 7$ at x = -2 is _____.
 - 9
- 4. Product of zeroes of a polynomial $p(x) = 6x^2 7x 3$ is _____.
 - $-\frac{1}{2}$
- 5. If one zero of $3x^2$ 8 x + 2k + 1 is seven times the other, then k is _____.

12

- $\frac{2}{3}$
- 6. The degree of the constant polynomial is .
- 7. A real number k is a zero of the polynomial p(x) if and only if _____

p(*k***)** =0

Zero

8. The shape of the graph of a cubic polynomial is _____.

Not fixed

9. If α , β , and γ are the zeroes of the cubic polynomial is $px^3 + qx^2 + rx + s$; $a \neq 0$, then

Ans: zero of p(z = x)Let p(x) = ax + b

Put
$$x = \mathbf{k}$$

is zero of p(x)

2. If one of the zeroes of the quadratic polynomial (k-1) x^2 +kx +1 is -3then the value of k is

a)
$$\frac{4}{3}$$

:.

b)
$$\frac{-4}{3}$$
 c) $\frac{2}{3}$

3. If the zeroes of the quadratic polynomial x^2 + (a+1) x + b are 2 and -3 then

a) a = -7, b = -1 b) a = 5, b = -1 c) a = 2 d) a = 0 b = -6Ans: $x^2 + (a+1)x+b$ $\therefore x = 2$ is a zero and x = -3 is another zero

: $(2)^2 + (a+1)^2 + b = 0$

13

d) $\frac{-2}{3}$

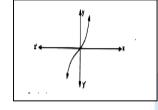
and
$$(-3)^2 + (a+1)(-3) + b = 0$$

 $\Rightarrow 4 + 2a + 2 + b = 0$ and $9 - 3a - 3 + b = 0$
 $\Rightarrow 2a + b = -6 \dots 910$ and $-3a + b = -6$ (ii)
Solving (i) and (iii) we get $5a = 0$
 $\Rightarrow a = 0$ and $b = -6$
4. Zeroes of $p(z) = z^2 - 27$ are _____ and ____
Ans : \because For zeroes $z^2 - 27 = 0$
 $\Rightarrow z^2 - 27 \Rightarrow z = \pm \sqrt{27}$
 $\Rightarrow z = \pm 3\sqrt{3}$
5. Verify that $x = 3$ is a zero of the Polynomial $p(x) = 2x^2 - 5x^2 - 4x + 3$

Ans: Here $p(x) = 2x^2 - 5x^2 - 4x + 3$

$$p(3) = 2(3)^3 - 5x - (-3)^2 - 4x 3 + 3$$
$$= 54 - 45 - 12 + 3 = 0$$

6. The graph of y = f(x) is given below. How many zeroes are there of f(x)?



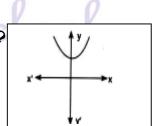
Ans : Graph of y= f(x) intersect x -axis in one point only.

Therefore number of zeroes of f(x) is one.

7. The graph of y = f(x) is given how many zeroes are there of f(x)?

Ans: \therefore Graph y = f(x) does not intersect x -axis

 \therefore f(x) has no zeroes



Created by Pinkz

8. The graph of y= f(x) is given below, for some polynomial f(x).

Ans: Find the number of zeroes of f(x)

- : Graph f(x) intersects x -axis at three different points.
- \therefore Number of zeroes f(x) = 3
- 9. The graph of x = p(y) is given below, for some polynomial p(y).

Ans: Find the number of zeroes of p(y)

- Graph p(y) intersects y axis at four different points.
- \therefore Number of zeroes = 4
- 10. If one zero of $p(x) = ax^2 + bx + c$ is zero, find the value of c.

Ans:

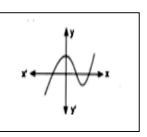
$$x = 0$$
 is a zero of $p(x)$

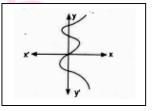
 $p(0) = 0 \Rightarrow a \times (0)^2 + b(0) + c = 0 \Rightarrow c = 0$

11.

Graph of the polynomial $p(x) = px^2 + 4x - 4$ is given as above. Find the value of p. Ans: Graph of p(x) touches the x -axis at (2,0)

 $\therefore \qquad x = 2 \text{ is a zero of the } p(x)$ $\Rightarrow \qquad p(2) = 0$ $\Rightarrow \qquad p(2)^2 + 4 \times 2 - 4 = 0$ 4p + 4 = 0 $\Rightarrow \qquad p = -1$ 12. If $p(x) = ax^2 + bx + c$ then $-\frac{b}{a}$ is equal to $a) 0 \qquad b) 1$ $c) \text{ product of zeroes} \qquad d) \text{ sum of zeroes}$ $15 \qquad Created by Pinkz$





13. If $p(x) = ax^2 + bx + c$ and a+b+c = 0 then one zero is

a)
$$\frac{-b}{a}$$
 b) $\frac{c}{a}$ c) $\frac{b}{c}$ d) none of these
Ans: $p(1) = 0$; $a(1)^2 + b(1) + c = 0 \Rightarrow and a + b + c = 0$
 \therefore one zero (α) = 1
14. If $p(x) = ax^2 + bx + c$ and $a + c = b$ then one of the zeroes is
a) $\frac{b}{a}$ b) $\frac{c}{a}$ c) $\frac{-c}{a}$ d) $\frac{-b}{a}$
Ans: c) $p(-1) = 0$ $a(-1)^{2+}b(-1)+c = 0$
 \Rightarrow $a - b + c = 0$ \therefore one zero (α) = -1
 $\propto \beta = \text{ product of zeroes } = \frac{c}{a} \Rightarrow (-1)\beta = \frac{c}{a}$
 \Rightarrow $\beta = \frac{-c}{a}$
15. The number of polynomials having zeroes as -2 and 5 are
a) 1 b) 2 c) 3 d) more than 3
d) $\therefore x^2 - 3x - 10 2x^2 - 6x - 20$
 $\frac{1}{2}x^2 - \frac{3}{2}x - 5 3x^2 - 9x - 30 \text{ etc}$
have zeroes -2 and 5
16. The quadratic polynomials the sum of whose zeroes is -5 and their product is 6 is
a) $x^2 + 5x + 6$ b) $x^2 - 5x + 6$ c) $x^2 - 5x - 6$ d) $-x^2 + 5x + 6$
Ans: sum of zeroes = -5 product 6
Polynomial is
 $x^2 - (sum of zeroes) x + product of zeroes
 $\Rightarrow x^2(-5) x + 6 = x^2 + 5x + 6$$

17. Given that one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero the product of the other two zeroes is

a)
$$-\frac{c}{a}$$
 b) $\frac{c}{a}$ c) 0 d) $\frac{b}{a}$
Ans: $\therefore \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$
Let $\alpha = 0$
So, $0 + \beta\gamma + 0 = \frac{c}{a} \implies = \frac{c}{a}$

18. If the product of the zeroes of $x^2 - 3kx + 2k^2$ -1 is 7, then value of k are _____ and _____.

7

Ans:

$$\Rightarrow 2k^2 - 8 = k^2 - 4 \Rightarrow k = \pm 2$$

19. Find the product of the zeroes of $-2x^2 - kx + 6$

Product of zeroes = $\frac{c}{a}$

i.e $\alpha \times \beta = \frac{6}{-2} = -3$

20. Find the sum of the zeroes of the given quadratic polynomial -3 $x^2 - kx$ +6

and sum of zeroes = $\frac{-b}{a}$

i.e.
$$\alpha + \beta = \frac{-b}{a} \implies \alpha + \beta = \frac{0}{-3} = 0$$

21. If one zero of the polynomial $x^2 - 4x + 1$ is $2 + \sqrt{3}$ write the other zero

Ans: Let other zero be α ,

$$\therefore \qquad 2 + \sqrt{3} + \alpha = \frac{b}{a} = -\left(\frac{-4}{1}\right)$$
$$\Rightarrow \alpha = 4 - 2 - \sqrt{3} - 2 - \sqrt{3} = 2 - \sqrt{3}$$

22. Find the zeroes of the polynomial $(x-2)^2 + 4$

 $(x-2)^2 + 2^2 = 0$

Ans: For zeroes $(x - 2)^2 + 4 = 0$

Sum of two perfect squares is zero if each of them is zero

∴ No zero

23. The graph of a quadratic polynomial x^2 -3 x -4 is a parabola. Determine the opening of parabola.

Ans: \therefore In x^2 - 3 x - 4, the Coefficient of x^2 is 1 and 1>0

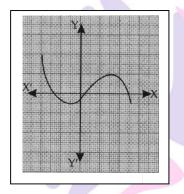
- ... The parabola opens upwards.
- 24. If $p(x) = x^2 + 5x + 2$ then find p(3) + p(2) + p(0)

Ans: $P(3) = 3^2 + 5(3) + 2 = 26$

P(2)= 2² + 5(2) + 2 = 16

$$\Rightarrow P(3) + p(2) + p(0) = 26 + 16 + 2 + 44$$

25. The graph of y = p(x) is shown in the figure below. How many zeroes does p(x) have.



Ans: Since, the curve (graph) of p(x) is intersecting the x -axis at three points \therefore y = p(x) has 3 zeroes.

- 26. The coefficient of x and the constant term in a linear polynomial are 5 and -3 respectively. find its zero.
- Ans: : The zero of the a linear polynomial

$$= \frac{\text{Constant term}}{\text{Coefficient of } x}$$

∴ The zero of the given linear polynomial

$$=-\frac{(-3)}{5}=\frac{3}{5}$$

27. What is the value of $p(x) = x^2 - 3x - 4$ at x = -1?

Ans:

We have $p(x) = x^2 - 3x - 4$

:.

P(-1)= (-1)² - (3(-1)) - 4=1+3-4 =0

28. If the polynomial p(x) is divisible by (x - 4) and 2 is a zero of p(x), then write the corresponding polynomial.

Ans: Here, p(x) is divisible by (x - 4) and also 2 is a Zero of p(x), therefore p(x) is divisible by (x - 4) and (x - 2)

Thus, the required polynomial p(x) = (x - 4) and $(x - 2) = x^2 - 6x + 8$

29. What is the zero of 2x + 3?

Ans: .. The zero of a linear polynomial

$= \frac{\text{Constant term}}{\text{Coefficient of } x}$

- : The zero of $2x+3 = \frac{3}{2}$
- 30. Find the value of p for which the polynomial $x^3 + 4x^2 px + 8$ is exactly divisible by (x 2)

Ans : Here $p(x) = x^3 + 4x^2 - px + 8$

p(2) =0

$$\therefore$$
 (x - 2) divides p(x), exactly

$$\Rightarrow$$

$$\Rightarrow (2)^3 + 4(2)^2 - p(2) + 8 = 0$$

31. If α β are zeroes of the polynomial $2x^2 - 5x + 7$, then find the value of $\alpha^{-1} + \beta^{-1}$

Ans: Here
$$p(x) = 2x^2 - 5x + 7$$

 α β are zeroes of p(x)

$$\Rightarrow \alpha + \beta = \frac{-(-5)}{2} = \frac{5}{2} \text{ and } \alpha \beta = \frac{7}{2}$$
$$\therefore \alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{2\alpha\beta} = \frac{\frac{5}{2}}{\frac{7}{2}} = \frac{5}{7}$$

32. If p and q are the roots of $ax^2 - bx + c = 0$, $a \neq 0$ then find the value of p+q.

Ans: Here p and q are the roots of $ax^2 - bx + c = 0$

Sum of roots
$$=\frac{-b}{a}$$

p + q = $\frac{-b}{a}$

33. If -1 is a zero of quadratic polynomial $p(x) = kx^2 - 5x - 4$ then find the value of k

Ans: Here
$$p(x) = kx^2 - 5x - 4$$

Since -1 is a zero of p(x)

$$\Rightarrow \qquad k(-1)^2 - 5(-1) - 4 = 0$$

$$\Rightarrow \qquad k + 5 - 4 = 0$$

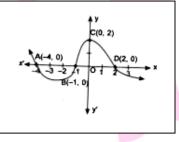
÷

 \Rightarrow

k =-1

I Short Answer Type Questions

1. Graph of y = f(x) is given below. Find the zeroes of f(x)



Here graph of y=f(x) intersect the x- axis in A (-4, 0) B(-1, 0) and D (2,0)

- \therefore Zeroes of f(x) are x -coordinates of these points
- \therefore Zeroes of f(x) are -4,-1 and 2
- 2. For what value of k, is 3 a zero of the polynomial $2x^2 + x + k$

Since 3 is a zero of the polynomial $2x^2 + x + k$

$$\therefore \quad \mathsf{p(3)} = \mathbf{0} \Longrightarrow \mathsf{p(x)} = 2x^2 + x + \mathsf{k}$$

$$\Rightarrow$$
 p(3) = 2(3)² + 3 + k

 \Rightarrow 0 = 18 + 3 + k \Rightarrow k = -21

3. Find the zeroes of $\sqrt{3}x^2$ + 10x +7 $\sqrt{3}$

$$\sqrt{3}x^{2} + 10x + 7\sqrt{3}$$

= $\sqrt{3}x^{2} + 3x + 7x + 7\sqrt{3}$
= $\sqrt{3}x (x + \sqrt{3}) + 7 (x + \sqrt{3})$
= $(\sqrt{3}x + 7) (x + \sqrt{3})$

For zeroes of the polynomial

- $=(\sqrt{3}x+7)(x+\sqrt{3})=0$
- $\Rightarrow \sqrt{3}x + 7 = 0 \text{ or } x + \sqrt{3} = 0$

$$\Rightarrow \sqrt{3}x = -7 \text{ or } x = -\sqrt{3}$$

- \Rightarrow $x = \frac{7}{\sqrt{3}}, -\sqrt{3}$
- 4. Find a quadratic polynomial whose zeroes are -9 and $-\frac{1}{9}$

Sum of zeroes = -9 and $\left(-\frac{1}{9}\right) = \frac{-81-1}{9} = \left(\frac{-82}{9}\right)$

Product of zeroes= (-9) x $\left(-\frac{1}{9}\right) = 1$

Quadratic polynomial = x^2 - (sum of zeroes) x + product of zeroes

$$= x^2 - \left(\frac{-82}{9}\right)x + 1 = 9x^2 + 82x + 9$$

5. If the sum of zeroes of the quadratic polynomial ky^2 + 2y-3k is equal to twice their product find the value of k.

 $P(y) = ky^2 + 2y - 3k$

a=k, b=2 c=-3K A.T.O Sum of zeroes = 2 x product of zeroes

 $\Rightarrow \qquad \frac{-b}{a} = 2 \ge \frac{c}{a} \Rightarrow \frac{-2}{k} = 2 \ge \frac{-3k}{k}$ $\Rightarrow \qquad \frac{2}{k} = 6 \Rightarrow \qquad k = \frac{1}{3}$

:

6. If zeroes of $p(x) = ax^2 + bx + c$ are negative reciprocal of each other, find the relationship between a and c

 $p(x) = ax^{2}+bx+c$ Let one zero = \propto Other zero = $-\frac{1}{\alpha}$ Now product of zeroes = $\frac{c}{a}$ $\Rightarrow \qquad \propto x - \frac{1}{\alpha} = \frac{c}{a} \Rightarrow \frac{c}{a} = -1$ $\Rightarrow \qquad c = -a \text{ or } a + c = 0$

Find the quadratic polynomial whose sum of zeroes is 8 and their product is 12.
 Hence find zeroes of polynomial.

```
Let \alpha, \beta be zeroes of polynomial
```

Now here $\alpha + \beta = 8$ $\alpha\beta = 12$

Required polynomial

$$p(x) = k[x^2 - (\alpha + \beta) x + \alpha\beta]$$

k is a constant

⇒

$$p(x) = k[x^2 - 8x + 12]$$

In particular taking k = 1

Reqd. polynomial =
$$x^2 - 8x + 12$$

Now $p(x) = x^2 - 6x - 2x + 12$
 $= x(x - 6) - 2(x - 6)$
 $= (x-6)(x-2)$
 \therefore $p(x-6) = 0$ and $p(x-2) = 0$
 \Rightarrow $x = 6, 2$ thus zeroes of polynomial are 6 and 12

8. Check whether $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$

Using division algorithm

$$3x^4 + 5x^3 - 7x^2 + 2x + 2(x^2 + 3x + 1)(3x^2 - 4x + 2) + 0 = (x^2 + 3x + 1)$$

 $(3x^2 - 4x + 2)$

Clearly as remainder is 0 so the divisor $x^2 + 3x + 1$ appear on R.H.S. as factor of

$$3x^4 + 5x^3 - 7x^2 + 2x + 2$$

9. If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is reciprocal of the other, find the value of a.

Let α , $\frac{1}{\alpha}$ be the zeroes of $(a^2 + 9)x^2 + 13x + 6a$

a = 3

 $\alpha \times \frac{1}{\alpha} = \frac{6a}{a^2 + 9} \Rightarrow a^2 + 9 - 6a = 0$

Product of zeroes = $\frac{6a}{a^2 + 9}$

 \Rightarrow

 \Rightarrow

$$(a-3)^2 = 0$$

a = 3

10. If α and β are zeroes of x^2 + 7x + 12 then find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ - 2 $\alpha \beta$ Here $\alpha + \beta = -7$ $\alpha \beta = 12$ $\frac{1}{\alpha} + \frac{1}{\beta} - 2 \alpha \beta = \left[\frac{\beta + \alpha}{\alpha \beta}\right] - 2 \alpha \beta$ ration School $=\frac{-7}{12}$ -2(12) $=\frac{-7}{12}$ -24 $=\frac{-7-288}{12}$ $=\frac{-295}{12}$

11. Find $\alpha^{-1} + \beta^{-1}$ if α and β are zeroes of the polynomial $9x^2 - 3x - 2$ Ans: Since α and β are zeroes of $p(x) = 9x^2 - 3x - 2$

$$\therefore \qquad \alpha + \beta = \frac{-(-3)}{9} = \frac{1}{3}, \ \alpha\beta = \frac{-2}{9}$$
$$\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{\frac{1}{3}}{\frac{-2}{9}} = \frac{-3}{2}$$

12. Find whether $2x^3$ -1 is a factor of $2x^5 + 10x^4 + 2x^2 + 5x + 1$ or not

 \therefore 2x³ -1 is not a factor of given polynomial

13. If α , β , γ are zeroes of the polynomial $f(x) = x^3 - 3x^2 + 7x - 12$ then find

the value of $((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1})$ Here $\alpha + \beta + \gamma = \frac{-(-3)}{1} = 3$ and $\alpha \beta \gamma = \frac{-(-12)}{1} = 12$ Now $((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}) = \frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$ $= \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{3}{12} = \frac{1}{4}$

14. For what value of k is the polynomial $x^3 - kx^2 + 3x - 18$ is exactly divisible by

If
$$p(x) = x^3 + kx^2 + 3x - 18$$
 is exactly divisible by $(x-3)$

$$\Rightarrow \qquad p(3) = 0 \quad \Rightarrow (3)^3 + k(3)^2 + 3(3)^{-1} = 0$$

 \Rightarrow

9k

$$= -18 \implies k = -2$$

II Short Answer Type Questions

1. Find the value of k such that the polynomial x^2 +(k +6)x +2 (2k-1) has sum of its zeroes equal to half of their product.

The given polynomial is x^2 + (k +6) x + 2 (2k-1)

Let α and β be the zeroes of polynomial

$$\alpha + \beta = \left[\frac{-(k+6)}{1}\right] = k + 6$$
$$\alpha \beta = \frac{2(2k-1)}{1} = 4k - 2$$
$$\therefore \alpha + \beta = \frac{1}{2} \alpha \beta$$

$$\Rightarrow k+6 = \frac{1}{2}(4k-2)$$

$$\Rightarrow$$
 2k +12 = (4k-2)

⇒ 2k = 14 ⇒k=7

2. If one root of the quadratic polynomial 2 x^2 -3x +p is 3, find the other root. Also find the value of p.

$$\therefore 3 \text{ is a root (zero) of } p(x)$$

⇒ $2(3)^2 - 3x 3 + p = 0$

⇒ $18 - 9 + p = 0 \Rightarrow p = -9$

Now $p(x) = 2x^2 - 3x - 9 = 2x^2 - 6x + 3x - 9$

 $= 2x(x - 3) + 3(x - 3)$

 $= (x - 3) (2x + 3)$

For roots of polynomial $p(x) = 0$

⇒ $(x - 3) (2x + 3) = 0$

⇒ $(x - 3) \text{ or } x = \frac{3}{2} \text{ other root } = -\frac{3}{2}$

3. If α and β are zeroes of the quadratic polynomial 4 x^2 +4 x +1 then form a quadratic polynomial whose zeroes are 2α and 2β

P(x) =4
$$x^2$$
+4 x +1
 $\therefore \alpha, \beta$ are zeroes of p(x)
 $\therefore \alpha + \beta$ = sum of zeroes $= \frac{-b}{a}$
 $\Rightarrow \qquad \alpha + \beta = \frac{-4}{4} = -1$ (i)
Also α, β product of zeroes of $= \frac{c}{a}$
 $\Rightarrow \qquad \alpha, \beta = \frac{1}{4}$ (ii)

Now a quadratic polynomial whose zeroes are 2α and 2β

$$= x^{2} - (2\alpha + 2\beta) x + 2\alpha \times 2\beta$$

= x² - 2(\alpha + \beta) x + 2\alpha + 4(\alpha\beta)
= x² - 2 \times (-1)x + 4 \times \frac{1}{4} [Using eq.(1) and (ii)]
= x² + 2x + 1

4. Find the zeroes of the quadratic polynomial $7y^2 - \frac{11}{3}y - \frac{2}{3}$ and verify the relationship between the zeroes and the coefficients.

Here
$$p(y) = 7y^2 - \frac{11}{3}y - \frac{2}{3}$$

For zeroes of $p(y)$, $p(y) = 0$
 $\Rightarrow \qquad 7y^2 - \frac{11}{3}y - \frac{2}{3} = 0$
 $\Rightarrow \qquad 21y^2 - 11y - 2 = 0$
 $\Rightarrow \qquad 21y^2 - 14y + 3y - 2 = 0$
 $\Rightarrow \qquad 7y(3y-2) + 1(3y - 2) = 0$

and (7y+1) (3y-2) = 0

$$\Rightarrow \qquad y = \frac{-1}{7}, \frac{2}{3}$$

$$\therefore \text{ zeroes are } \frac{-1}{7} \text{ and } \frac{2}{3}$$

$$A \text{ lso } a = 7 \text{ b} = \frac{-11}{3}, c = \frac{2}{3}$$

$$\Rightarrow \qquad \text{ Sum of zeroes } = \frac{-1}{7} + \frac{2}{3} = \frac{-3+14}{21} = \frac{11}{21}$$

$$A \text{ lso } \qquad \frac{-b}{a} = \frac{-(-11/3)}{7} = \frac{11}{21}$$

$$\Rightarrow \qquad \text{ Sum of zeroes } = \frac{-b}{a}$$

and product of zeroes $= \frac{-b}{a}$

$$A \text{ lso } \qquad \frac{c}{a} = \frac{-2}{3} = \frac{-2}{21}$$

$$\Rightarrow \qquad \text{ Product of zeroes } \frac{c}{a} = \frac{-2}{21}$$

$$\Rightarrow \qquad \text{ Product of zeroes } \frac{c}{a} = \frac{-2}{21}$$

$$\Rightarrow \qquad \text{ Product of zeroes } \frac{c}{a} = \frac{-2}{21}$$

$$\Rightarrow \qquad \text{ Product of zeroes } \frac{c}{a} = \frac{-b}{a}$$

$$\Rightarrow \qquad 2m + 3m = \frac{-(-p)}{1}$$

$$\Rightarrow \qquad 5m = p \qquad \dots (i)$$

$$\text{ Product of zeroes } \frac{c}{a} = \frac{-b}{a}$$

$$\Rightarrow \qquad 2m \times 3m = \frac{b}{1}$$

$$\Rightarrow \qquad 6m^{2} = 6$$

$$\Rightarrow \qquad m^{2} = 1$$

\Rightarrow	$m = \pm 1$	When m = 1, e	q (i) becomes	
	5×1 = p			
⇒	p = 5			
When m	n = -1, eq (i) becom	es		
	5x -1 = p	y u		
⇒	p= -5			
	p= ±5			
6. If α,	β are the zeroes	of polynomial	$\mathbf{p}(x) = x^2 - \mathbf{k}(x)$	r +1)-p such that
$(\alpha + 1)$	$(m{eta}+1)=0$ find	P		
	$p(x) = x^2 - kx$	– <i>k – p</i> =0		
α-	:1, b = -k, c = -k-p			
÷	α, β are zeroes	of p(x)		
: .	$\alpha + \beta = -\frac{b}{a} \Rightarrow a$	$\alpha + \beta = \mathbf{k}$		
and	d $\alpha\beta = \frac{c}{a} \Rightarrow$	<i>αβ</i> = - k -p		
Al	so $(\alpha + 1)$ (β + 1) = 0		
⇒	$\alpha\beta + \alpha$	$+\beta+1 = 0$		
⇒	(-k-p)	+ k + 1 = 0		
		-p + 1 = 0		
\Rightarrow		<i>p</i> = 1		

7. a, b, c are co-prime $a \neq 1$ such that 2b = a + c. If $ax^2 - 2bx + c$ and $2x^2 - c$ $5x^2 + kx + 4$ has one integral root common, then find the value of k.

$$p(x) = ax^{2} - 2bx + c$$

$$P(1) = a(1)^{2} - 2b \times 1 + c$$

$$g = a-2b+c$$

$$= a+c-2b$$

Given a +c =2b

 \therefore p(1) = 2b - 2b = 0

 \Rightarrow x = 1 is a zero of p(x)

Now product of zeroes of $p(x) = \frac{c}{a}$

Other root $\frac{\frac{c}{a}}{1} = \frac{c}{a}$

Roots are 1 and $\frac{c}{a}$

 $\therefore \frac{c}{a}$ are co-prime

 \therefore integral root of p(x) =1

A.T.O. 1 is a root of
$$f(x) = 2x^3 - 5x^2 + kx + 4$$

f(1) =0

⇒

$$\Rightarrow 2(1)^3 - 5(1)^2 + k \times 1 + 4 = 0$$

K = -1

8. Find all the zeroes of $2x^4$ -13 x^3 +19 x^2 +7x-3, if you know that two of its zeroes are 2+ $\sqrt{3}$ and 2- $\sqrt{3}$

Given, $x = (2 + \sqrt{3})$ and $x = (2 - \sqrt{3})$ are zeroes of $p(x) = 2x^4 - 13x^3 + 19x^2 + 7x - 3$

$$\therefore (x - (2 + \sqrt{3})) (x - (2 - \sqrt{3})) \text{ is factor of } p(x)$$

$$\Rightarrow (x - 2 - \sqrt{3}) (x - 2 + \sqrt{3}) \text{ is a factor of } p(x)$$

$$= (x - 2)^2 - (\sqrt{3})^2$$

$$= x^2 - 4x + 4 - 3$$

$$= x^2 - 4x + 1$$

Next Generation School

Now we divide $p(x)$ by x^2-4x+1
$x^{2}-4x+1$ 2 x^{4} -13 x^{3} +19 $x^{2}+7x-3$ 2 $x^{2}-5x-3$
$2 x^4 - 8x^3 + 2 x^2$
<u> </u>
$-5x^3 + 17x^2 + 7x - 3$
$-5x^3 + 20x^2 - 5x$
+ - +
$-3x^2+12x-3$
$-3x^2+12x-3$
+ - +
Now $p(x) = (x^2 - 4x + 1) (2x^2 - 5x - 3)$
∴ Other zeroes are given by
$2x^2-5x-3 = 0$
$\Rightarrow \qquad 2x^2-6x+x-3=0$
$\Rightarrow 2x(x-3)+1(x-3) = 0$
$\Rightarrow (2x+1)(x-3) = 0$
\Rightarrow 2x+1=0 or x-3 = 0
$x = -\frac{1}{2}, 3$
\therefore Zeroes of given polynomial are $-rac{1}{2}$, 3 (2+ $\sqrt{3}$) (2- $\sqrt{3}$)
9. Find all the zeroes of $2x^4-3x^3-3x^2+6x-2$, if it is given that two of its
zeroes are 1 and $\frac{1}{2}$
Given x=1 x = $\frac{1}{2}$ are zeros of p(x)= 2 x ⁴ - 3x ³ - 3 x ² + 6x - 2

 $(x - 1)(x - \frac{1}{2})$ or (2x - 1) are factor of p(x):.

 $(x-1)(2x-1) = 2x^2-3x+1$ Severation School \Rightarrow

$$\Rightarrow \qquad (x+4)(3x+1)(x-1) = 0$$

$$\Rightarrow \qquad (x+4) = 0 \Rightarrow x = -4$$

Or $3x+1 = 0$ Or $x-1 = 0 \Rightarrow x = 1$
 $x = -\frac{1}{3}$
Zeroes of $p(x)$ are $x = -4, -\frac{1}{3}, 1$

11. Divide the polynomial $3x^3 - 6x^2 - 20x + 14$ by the polynomial $x^2 - 5x + 6$ and verify the division algorithm.

$$x^{2} - 5x + 6 \overline{\smash{\big)}} 3x^{3} - 6x^{2} - 20x + 14(3x + 9) \\ 3x^{3} - 15x^{2} + 18x \\ - + - \\ 9x^{2} - 38x + 14 \\ 9x^{2} - 45x + 14 \\ - + - \\ \hline 7x - 40$$

By Division Algorithm

$$3x^3 - 6x^2 - 20x + 14 = (x^2 - 5x + 6)(3x + 9) + (7x - 40)$$
 or

$$p(x) = q(x) g(x) + r(x)$$

:.

12. If α and β are the zeroes of a quadratic polynomial $(x^2 - x - 2)$ then find the value of $(\frac{1}{\alpha} - \frac{1}{\beta})$ Comparing $(x^2 - x - 2)$ with $ax^2 + bx + c$ we have a=1, b = -1 c=-2 $\therefore \quad \alpha + \beta = \frac{-b}{a} = \frac{-(-1)}{1} = 1$ and $\alpha\beta = \frac{c}{a} = \frac{(-2)}{1} = -2$ Now $\frac{1}{\alpha} - \frac{1}{\beta} = \frac{\beta - \alpha}{\alpha\beta} = \frac{-[\alpha - \beta]}{\alpha\beta}$ [$\therefore \quad (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha\beta$ $(1)^2 - 4(-2) = 1 + 8 = 9$ $\therefore \quad (1)^2 - 4(-2) = 1 + 8 = 9$

- $\therefore \quad \alpha \beta = \sqrt{9}$
- $\Rightarrow \alpha \beta = \pm 3$]

$$=\frac{-(\pm 3)}{-2}=\frac{-3}{2}$$
 and $\frac{3}{2}$

Thus,
$$\frac{1}{\alpha} - \frac{1}{\beta} = \frac{3}{2}$$
 or $\frac{-3}{2}$

13. On dividing p(x) by a polynomial x - 1- x², the quotient and remainder were (x - 2) and 3 respectively. Find p(x)
Here

Sublic

dividend = p(x)

Divisor, $g(x) = (x - 1 - x^2)$

Quotient q(x) = (x - 2)

Remainder r(x) = 3

.. Dividend = [Divisor x Quotient] + Remainder

$$\therefore \quad p(x) = [g(x) \times q(x) + r(x)]$$

= $[(x - 1 - x^2) (x - 2) + 3$
= $[(x^2 - x - x^3 - 2x + 2 + 2x^2] + 3$
= $3x^2 - 3x - x^3 + 2 + 3$
= $-x^3 + 3x^2 - 3x + 5$

14. Find the zeroes of the quadratic polynomial $5x^2-4-8x$ and verify the relationship between the zeroes and the coefficients of the polynomial.

$$p(x) = 5 x^{2} - 4 - 8 x = 5 x^{2} - 8 x - 4$$

$$= 5 x^{2} - 10x + 2x - 4$$

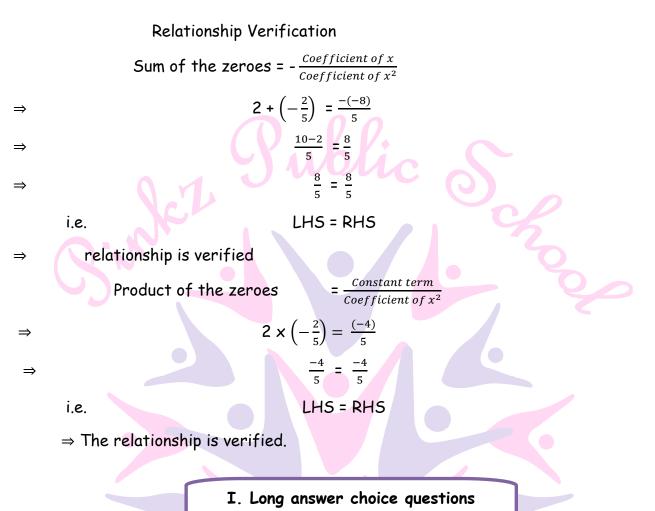
$$= 5 x (x - 2) + 2 (x - 2)$$

$$= (x - 2) (5 x + 2)$$

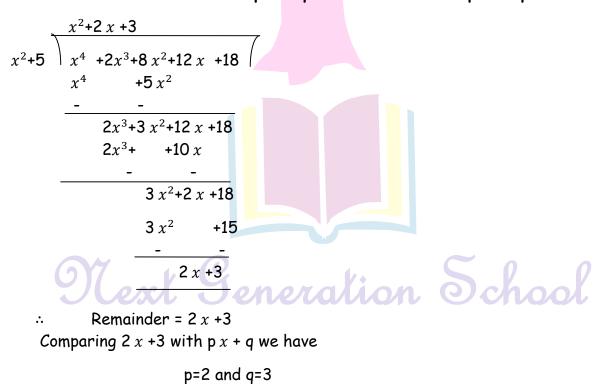
$$= 5 (x - 2) (x + \frac{2}{5})$$

$$\therefore \text{ Zeroes of } p(x) \text{ are } 2 \text{ and } -\frac{2}{5}$$

$$33 \qquad \text{Created by Pinkz}$$



1. If the polynomial $x^4+2x^3+8x^2+12x+18$ is divided by another polynomial x^2+5 the remainder comes out to be px + q. find the values of p and q



2. If α, β , γ are the zeroes of x^3 -7 x^2 +11 x -7 find the value of

(i) $\alpha^2 + \beta^2 + \gamma^2$ (ii) $\alpha^3 + \beta^3 + \gamma^3$

Comparing $p(x) = x^3 + bx^2 + 11x - 7$ with standard cubic polynomial $ax^3 - bx^2 + cx + d$.

we have

:.

a=1 b-7, c =11, d =-7 $\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(-7)}{1} = 7$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{11}{1} = 11$$
$$\alpha, \beta, \gamma = \frac{-d}{a} = \frac{-(-7)}{1} = 7$$

i) Now since $(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha)$

$$\Rightarrow \qquad \alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} = 2(\alpha\beta + \beta\gamma + \gamma\alpha) = (7)^{2} - 2(11) = 49 - 22 = 27$$

ii) Since

$$\alpha^{2} + \beta^{2} + \gamma^{2} - 3 \alpha \beta \gamma = (\alpha^{2} + \beta^{2} + \gamma^{2} - \alpha\beta - \beta \gamma - \gamma\alpha) (\alpha + \beta + \gamma)$$

$$= \left[(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) - (\alpha\beta + \beta\gamma + \gamma\alpha) \right] (\alpha + \beta + \gamma)$$

$$\Rightarrow \qquad \alpha^3 + \beta^3 + \gamma^3 = [(\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)(\alpha + \beta + \gamma) + 3\alpha\beta\gamma$$

- = [7² 3(11)] 7+ 3 ×7
- = (49-33) 7 + 21
- = 16 x 7 + 21= 133

3. Find the quadratic polynomial whose zeroes are 1 and -3. Verify the relation between the coefficients and the zeroes of the polynomial

- The given zeroes are 1 and -3
- \therefore Sum of the zeroes =1+ (-3) = -2
 - Product of the zeroes $1 \times (-3) = -3$
- A quadratic polynomial p(x) is given by
- x^2 (sum of the zeroes) x + (product of the zeroes)
- \therefore The required polynomial is

 x^{2} -(-2) x +(-3)

$$\Rightarrow r^2 + 2r - 3$$

Verification of relationship

ion School

: Sum of the zeroes = $\frac{[Coefficient of x]}{Coefficient of x^2}$ $1 + (-3) = \frac{-[2]}{1}$:. -2 =- 2 ⇒ LHS = RHS i.e. The sum of the zeroes is verified \Rightarrow Product of the zeroes = $\frac{[Constant term]}{Coefficient of x^2}$ \vdots $1x (-3) = \frac{[-3]}{1}$ -3 = -3... ⇒ L.H.S. = R.H.S. i.e. \Rightarrow The product of zeroes is verified

4. What must be added to $6x^5 + 5x^4 + 11x^3 - 3x^2 + x + 1$, so that the polynomial so obtained is exactly divisible by $3x^2 - 2x + 4$?

$$3x^{2} - 2x + 4 \overline{\smash{\big)}} 6x^{5} + 5x^{4} + 11x^{3} - 3x^{2} + x + 1} \\ 6x^{5} - 4x^{4} + 8x^{3} \\ - + - \\ 9x^{4} + 3x^{3} - 3x^{2} + x + 1 \\ 9x^{4} - 6x^{3} + 12x^{2} \\ - + + \\ 9x^{3} - 15x^{2} + x + 1 \\ 9x^{3} - 6x^{2} + 12x \\ - + \\ - 9x^{2} - 11x + 1 \\ - 9x^{2} + 6x - 12 \\ + \\ - + \\ - \\ - 17x + 13 \\ \hline$$
Therefore, we must add $-(-17x + 13)$
i.e. $17x - 13$

5. Find the value of b for which the polynomial $2x^3+9x^2-x-b$ is divisible by 2x+3

$$\begin{array}{r} x^{2} + 3x - 5 \\ 2x + 3 \overline{\smash{\big)}} 2x^{3} + 9x^{2} - x - b \\ \hline 2x^{3} + 3x^{2} \\ \hline - - \\ 6x^{2} - x - b \\ 6x^{2} + 9x \\ \hline - - \\ -10x - b \\ -10x - 15 \\ \hline + + \\ 15 - b \end{array}$$

Polynomial $2x^3+9x^2-x-b$ divisible by 2x+3 then the remainder must be zero So, 15-b =0

- ⇒ b=15
- 6. Find the zeroes of a cubic polynomial $p(x) = 3x^3 5x^2 11x 3$ when it is given that product of two of its zeroes is -1

Here, $p(x) = 3x^3 - 5x^2 - 11x - 3$ On comparing p(x) with $ax^3 + bx^2 + cx + d$, we have

a =3, b =- 5, c =-11, d = -3

Let α , β , γ be the zeroes of the given polynomial

$$\therefore \qquad \alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(-5)}{3} = \frac{5}{3} \dots (i)$$

$$\Rightarrow \qquad \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{-11}{1} \dots (ii)$$

$$\alpha, \beta, \gamma = \frac{-d}{a} = \frac{-(-3)}{3} = 1 \dots (iii)$$
Let product of α and β be given as -1
i.e. $\alpha \beta = -1 \dots (iv)$
(iii) $\Rightarrow \qquad (-1) \quad \gamma = 1 \quad \Rightarrow \gamma = -1 \dots (v)$
From (i) $\alpha + \beta + (-1) = \frac{5}{3}$

$$\alpha + \beta = \frac{5}{3} + 1 = \frac{8}{3} \dots (vi)$$
From (iv) $\beta = \frac{-1}{\alpha}$

Putting $\beta = \frac{-1}{\alpha}$ in (vi) we get $\alpha - \frac{1}{\alpha} = \frac{8}{3}$ $Or \frac{\alpha^2 - 1}{\alpha} = \frac{8}{3}$ $\Rightarrow \quad 3\alpha^2 - 3 = 8\alpha$ $\Rightarrow \quad 3\alpha^2 - 8\alpha - 3 = 0$ $\Rightarrow \quad 3\alpha^2 - 9\alpha + \alpha - 3 = 0$ $3\alpha (\alpha - 3) (3\alpha + 1) = 0$ $\Rightarrow \qquad \alpha = 3, \frac{-1}{3}$ When $\alpha = 3 \beta = \frac{-1}{\alpha} = \frac{-1}{3}$ and when $\alpha = 3 \beta = \frac{-1}{\alpha} = \frac{-1}{\frac{-1}{3}} = 3$ Hence zeroes of the polynomial are -1, 3, $\frac{-1}{3}$

Same pair is obtained in each case

Next Generation School

