Grade X

Lesson : 7 Coordinate Geometry

1. In the given figure, 0 is the intersecting point of OA and OC and OABC is a square of side 4 units, then the position of A, B and C is

2. In the given figure, the ordinates of the points P, Q, R and S is

3. The coordinates of the point P as shown in the diagram will be

4. The coordinate of the vertices of a rectangle whose length and breadth are
6 and 4 units, respectively. Its one vertex is at the origin. The longer side is on the x - axis and one of the vertices lies in second quadrant is

	a) (0, 0) (6, 4) (6, 0) (0, 4)		b) (0, 0) (0, 4) (6, 0) (6, 4)			
	c) (0, 0) (6, 4) (-6, 0) (6, 4)		d) (0, 0) (6, 4) (-6, 4) (-6, 0)			
	5. The point P (-4, 2) lies on the line segment joining he points A (-4, 6) and B (-4, -6)					
	a) True		b) False			
	c) Can't say		d) Partially True /	/ False		
6. Tł	ne distance of the p	point P (2, 3) from t	he x axis is			
	a) 2 units	b) 3 units	c) 1 units	d) 5 units		
7. Tł	ne distance betwee	n the points P (-6, 7) and Q (-1, -5) is			
	a) - 6 units	b) 13 unit <i>s</i>	c) 1 units	d) 5 units		
8. Tł	ne distance betwee	n the points (a cos $ heta$	+ b sin θ , 0) and			
(0	, a sin $\theta - b \cos \theta$),	, is				
	a) $a^2 + b^2$	b) <i>a</i> ² - <i>b</i> ²	c) $\sqrt{a^2 + b^2}$	d) $\sqrt{a^2 - b^2}$		
9. T	he value of y, if the	e distance between	the points (2, y) and	l (-4, 3) is 10 is		
	a) 6	b) -11	c) 5	d) 11		
10. Point P (0, 2) is the point of intersection of y - axis and perpendicular						
bisector of line segment joining the points $A(1, 1)$ and $B(3, 3)$						
	a) True		b) False			
	c) Can't say		d) Partially True /	/ False		
		veen the points (4, $ $	p) and (1, 0) is 5, th	en the value of p		
is	s. a) 4	b) -4	c) Both a and b	d) 0		
12. A	•	•	•			
12. A circle has its centre at the origin and a point P (5, 0) lies on it. The point Q (6, 8) lies outside the circle.						
_	a) True		b) False			
	c) Can't say		d) Partially True /	/ False		
13. The radius of the circles whose centre is at (0,0) and which passes through						
the points (-6, 8) is						
	a) 10 units		c)9 units	d) 8 units		
	.,	-,	-,			

14. Is the points (1, -1), (5, 2) and (9, 5) are collinear?

- a) Yes b) No
- c) Can't find d) None of the above

15. If the point P (2, 1) lies on the line segment joining points A(4, 2) and

B (8, 4), then _____. a) AP = $\frac{1}{3}$ AB b) AP = PB c) PB = $\frac{1}{3}$ AB d) AP = $\frac{1}{2}$ AB

16. If the point P (x, y) is equidistant from the points A (5, 1) and B (1, 5), then The points A(5, 1) and B (1, 5) then

a)
$$y = 3x$$
 b) $x = y$ c) $x = -8y$ d) $-8x = y$

17. A point on x - axis which is equidistant from the points (1, 3) and (-1, 2)

a)
$$\left(\frac{5}{2}, 0\right)$$
 b) (5, 0) c) (4, 0) d) $\left(\frac{5}{4}, 0\right)$

18. The point on x- axis which is equidistant from the point (7, 6) and (-3, 4) is

a) (0, 3) b) (4, 3) c) (3, 0) d. None of these

19. The coordinates of the point which is equidistant from the three vertices of the \triangle AOB as shown in the figure is

20. The coordinate of a point on y - axis which is equidistant from the point A (6, 5) and B (-4, 3) will be

a) (0, 9) b) (0, -9) c) (0, 5) d) (0, 3)

21. The radius of the	21. The radius of the circle whose and points of diameter are (24, 1) and				
(2, 23) is	(2, 23) is				
a) 22 $\sqrt{2}$ units	a) 22 $\sqrt{2}$ units				
c) 11 $\sqrt{2}$ units		d) None of thes	se		
22. If the points A (4, then the value of		on the circle with c	the circle with centre O (2, 3),		
a) 0	b) 1	c) 2	d) 3		
23. The perimeter of a	a triangle with vert	ices (0, 4) (0, 0) an	ıd (3, 0) is		
a) 5 units	b) 12 units	c) 11 units	d) (7+ √5 units)		
24. If three points (0, then - λ equals.	0), (3, $\sqrt{3}$) and (3	, λ) from an equilate	eral triangle		
a) 2		b) -3			
c) -4		d) None of thes	d) None of these		
25. If AOBC is a recto	ingle whose three v	vertices are A (0, 3)), O(0, 0) and		
B (5, 0), then the	B (5, 0), then the length of its diagonal is				
a) 5 units	b) 3 units	c) $\sqrt{34}$ units	d) 4 units		
26. The points (3, 2), (-2, -3) and (2, 3) form a triangle name the type of					
triangle formed.					
a) equilateral	a) equilateral		b) isosceles		
c) right angle		d) None of thes	d) None of these		
27. (5, -2) (6, 4) and (7	7, -2) are the vertic	ces of an	_triangle.		
a) equilateral		b) right angle	b) right angle		
c) isosceles		d) None of thes	d) None of these		
28. The points (-4, 0), (4, 0) and (0, 3) are the vertices of a					
a) right angled triangle		b) isosceles tric	b) isosceles triangle		
c) isosceles d) None of these			se		
29. The points (2, 3), (3, 4), (5, 6) and (4, 5) are the vertices of a					
a) Parallelogram		b) Triangle	b) Triangle		
c) Square		d) None of thes	d) None of these		

- 30. The coordinates of the point which divides the line segment joining the points (4, -3) and (9, 7) internally in the ration 3:2 is. d) (27, 21) a) (7, 3)b) (3, 7) c) (35, 15) 31. The point which divides the line segment joining the points (7, -6) and (3, 4)in the ratio 1:2 internally lies on the a) i quadrant b) ii quadrant c. iii guadrant d) iv guadrant 32. If P (9a - 2 - b) divides line segment joining A (3a + 1, -3) and B (8a, 5) in the ratio 3:1, then the values of a and b is a) a = -1, b = 3 b) a = -1, b = -3 c) a = 0, b = 0 d) a = 1, b = -333. The point (-4, 6) divides the line segment joining the points A (-6, 10) and B (3, -8) The points A (-6, 10) and B (3, 8) The ratio is a) 1 : 2 b) 7 : 2 c) 2 : 7 d) 4 : 1 34. If $P\left(\frac{a}{3},4\right)$ is the mid-point of the line segment joining the points Q (-6, 5) and R(-2, 3) then the value of a is. a) -4 d) -8 b) -12 c) 12 35. The fourth vertex D of a parallelogram ABCD whose three vertices are A (-2, 3), B (6, 7) and C (8, 3) is b) (0, -1) c) (-1, 0) a) (0, 1)d) (1, 0) 36. If x - 2y + k = 0 is a median of the triangle whose vertices are at points A = (-1, 3), B (0, 4) and C (-5, 2), then the value of k is b) 4 c)6 a) 2 d) 8 37. The perpendicular bisector of the line segment joining the points A(1, 5) and B (4, 6) cuts the y - axis at c) (0, 12) a) (0, 13) b) (0, -13) d) (13, 0) 38. The point _____ lies on the perpendicular bisector of the line segment joining the points A(-2, -5) and B (2, 5) a) (0, 0) b) (0, 2) c) (2, 0) d) (-2, 0)
 - 5

39. A line intersects the y axis and x axis at the points P and Q respectively.
If (2, -5) is the midpoint of PQ then the coordinated of P and Q are respectively.
a) (0, 5) and (2, 0)
b) (0, 10) and (-4, 0)
c) (0, 4) and (-10, 0)
d) (0, -10) and (4, 0)
40. Δ ABC with vertices A (-2, 0) B (-2, 0) and C (0, 2) is similar to Δ DEF with vertices D (-4, 0), E (4, 0) and F (0, 4)

a) True b) False c) Can't say d) Partially True / False

41. If (a, b) is the mid-point of the line segment joining the points A(10, -6) and

B (k, 4) and a - 2b = 1, then the value of k is

a) 30 b) 22 c) 4 d) 40

42. Using section formula, check that the points A(-3, -1), B (1, 3) and C(-1, 1) are collinear
a) Yes
b) No

c) Can't say	d) None of these

43. The ratio, in which the Y axis divides the line segment joining the point

(5, -6) and (-1, -4) is	
a) 1 : 5	b) 5 : 1
c) 2 : 4	d) None of these

44. Find the coordinates of the point which divides the join of (-1, 7) and (4, -3) in the ratio 2:3

a) (1, 3) b) (2, 6) c) (3, 4) d) (4, 6)

45. The ratio in which the point P (m, 6) divides the join A (-4, 3) and B (2, 8) is

a) 2: 3 b) 1: 2	2 c) 3: 2	d) 2: 1
-----------------	-----------	---------

46. If the points A (6, 1), B (8, 2) C (9, 4) and D (p, 3) are the vertices of a parallelogram, taken in order, then the value of p is.
a) 5 b) 6 c) 8 d) 7

47. The coordinates of point A, where AB is the diameter of a circle whose centre is (3, -4) and B is (1, 4) is '

a) (2, 0) b) (12, -5) c) 5, -12) d) None of the above

48. The coordinates of the point of trisection of the line segment joining (2, -3) and (4, -1) (when the point is near the point (2, -3) is

- a) (10/3, -5/3) b) (8/3, -7/3)
- c) (3, -2) d) None of the above
- 49. List II gives the coordinates of the point P that divides the line segment joining the points in the given ratio given in List-I, match them correctly.

	List I	List II		
Р.	A (-1, 3) and B (-5, 6) internally in the ratio 1:2	1.	(7, 3)	
Q.	A(-2, 1) and B (1 ,4) internally in the ratio 2: 1	2.	(0, 3)	
R.	A(1, 7) and B (1, 4) internally in the ratio 2: 1	3.	$\left(\frac{11}{3}, \frac{26}{3}\right)$	
S.	A(4, -3) and B (8, 5) internally in the ratio 3: 1	4.	$\left(\frac{7}{3}, 4\right)$	

Codes

PQRS	PQRS
a) 4 2 3 1	b) 3241
c) 4 2 3 1	d) 3124

50. Match the following

List I					List II
Ρ.	Distance betw	een (-6, 7) and (-1, -5	ō) is	1.	-3, 7
Q.	Q. The value of k for which the distance between A (k, -5) and B (2, 7) is 13 units			2.	x + y = 5
R.	(x, y) is equidistant from (5, 1) and (-1, 5) if			3.	3x = 2y
S.	. $x, y (2, 3)$ and $(8, 5)$ internally in the ratio 3: 1		4.	$\left(\frac{7}{3}, 4\right)$	
a	P Q R S) 3 4 2 1	P Q R S b) 1 2 4 3	PQRS c)4132		P Q R S d) 3 2 4 1

II. Multiple choice questions

1. The ratio of the distances of point P (3, 4) from origin to that from y - axis				
is.				
	a) 3 : 5	b) 5 : 3	c) 5:4	d) 3 : 4
2. A(OBC is a rectangle v	whose three vertice	s are A(0, 4) , O (0	, 0) and B (3, 0).
Tł	ne length of its diag	gonal is.		
	a) 25 units	b) 5 units	c) 3 units	d) 4 units
3. Tł	ne distance betweer	n A (10 cos $ heta$, 0) an	d B (10 sin θ , 0) is.	
	a) $\sqrt{10}$		ь) 10	
	c) 5		d) 10 sin θ , cos θ	
4. Pe	rimeter of the tria	ngle formed by the	points 0 (0, 0), A(a	1, 0) and B (0, b) is
	a) a + b		b) ab	
	c) a + b +2 \sqrt{ab}		d) a + b + $\sqrt{a^2}$ -	b^2
5. The points (-8, 0) , (8, 0), (0, 5) are the vertices of a				
	a) right triangle		b) isosceles triar	ngle
	c) equilateral trio	ingle	d) scalene triangl	e

6. The points (-2, 2) (8, -2) and (-4, -3) are the verticies of a				
a) equilateral triangle		b) isosceles tri	b) isosceles triangle	
c) right triangle		d) scalene tria	ngle	
7. The points (1, 7) (4	, 2) (8, -2) and (-4, -	-3) are the verticie	es of a	
a) parallelogram	١	b) rhombus		
c) rectangle		d) square		
8. The line segment jo	ining the points (2,	-3) and (5, 6) is div	vided by x-axis in	
the ratio.				
a) 2 : 1	b) 3 :1	c) 1: 2	d) 1 : 3	
9. The line segment jo	ining the points (3,	5) and (-4, 2) is di	vided by y-axis in	
the ratio.				
a) 5 : 3	b) 3 : 5	c) 4 : 3	d) 3:4	
10. If (3, 2), (4, k) an	d (5, 3) are collinea	r then k is equal to		
a) $\frac{3}{2}$	b) $\frac{2}{5}$	c) $\frac{5}{2}$	d) $\frac{3}{5}$	
11. If the points (p, 0)), (0, q) and (1, 1) ar	re collinear then $\frac{1}{p}$ +	$\frac{1}{q}$	
a) -1	ь) 1	c) 2	d) 0	
12. The coordinates of	f reflection of Q (-	1, -3) in <i>x</i> -axis are		
a) (1, 3)		b) (-1, 3)		
c) (1, -3)		d) none of thes	se	
13. The distance between the points (-3, 0) and (3, 0) is				
a) 3 units	b) $3\sqrt{2}$ units	c) $2\sqrt{3}$ units	d) 6 units	
14. If P $\left(\frac{a}{3}, 4\right)$ is the mid point of the line segment joining the points A (-6, 5)				
and B (-2, 3) ther	n value of a is.			
a) -4	b) -12	c) 12	d) -6	
15. The fourth vertex D of a parallelogram ABCD whose three vertices are				
A (- 2, 3), B (6, 7) and C (8, 3) is				
a) (0, 1)	b) (0, -1)	c) (1, 0)	d) (-1, 0)	

Fill in the blanks

1. Distance of point P (a, b) from origin is _____

 $\sqrt{a^2+b^2}$

2. Coordinates of mid point joining P (α , β) and Q (γ , δ) are _____

 $\left(\frac{\alpha+\gamma}{2}, \frac{\beta+\delta}{2}\right)$

- 3. For given three points A,B, C if out of three possible distances A, B, C if out of three possible distance AB, BC and CA the length of the greatest distance is equal to sum of other two distances than the points A, B, C are said to be **Collinear**
- 4. For given four points A, B, C, D if lengths, AB, BC, CD and DA are all equal then ABCD is necessarily a **rhombus**
- 5. For given four points A, B, C, D if length AB = BC = CD = DA and AC ≠ BD then ABCD is a rhombus but not square
- 6. For given four points ABCD to be a **Parallelogram** It is sufficient to show that opposite sides are equal.
- 7. For given four points A, B, C, D if AB = CD BC = DA and AC \neq BD then ABCD is
 - a Parallelogram but not rectangle.
- 8. If area of a triangle is zero square units then its verticies are collinear
- 9. The distance between (α, β) and $(-\alpha \beta)$ is $2\sqrt{\alpha^2 + \beta^2}$.
- 10. If the point P (x, y) divides the line segment joining A (x_1, y_1) and B (x_2, y_2)

In the ratio m : n the value of y - x = $\frac{m(y_2 - x_2) + n(y_1 - x_1)}{m + n}$

I. Very short answer question

- 1. A triangle with verticies (4, 0), (-1, -1) and (3, 5) is a / an
 - a) equilateral triangle b) right- angled triangle
 - c) isosceles right angled triangle d) none of these

Let A (4, 0), B (-1, -1), C (3, 5)

$$AB = \sqrt{(-1-4)^2 + (-1-0)^2} = \sqrt{26}$$
$$BC = \sqrt{(3+1)^2 + (5+1)^2} = \sqrt{52}$$
$$AC = \sqrt{(3-4)^2 + (5-0)^2} = \sqrt{26}$$
$$\Rightarrow AB^2 + AC^2 - BC^2 \text{ and } AB = AC$$

Hence, triangle is an isosceles right angled triangle

2. A circle drawn with origin as the centre passes through $\left(\frac{13}{2},0\right)$. The

point which does not lie in the interior of the circle is

1

a)
$$\left(\frac{3}{4}, 1\right)$$
 b) $\left(2, \frac{7}{3}\right)$ c) $\left(5, \frac{1}{2}\right)$ d) $\left(-6, \frac{5}{2}\right)$
Distance of $\left(-6, \frac{5}{2}\right)$ from centre of the circle i.e. $(0, 0)$
 $= \sqrt{\left(0+6\right)^2 + \left(0-\frac{5}{2}\right)^2} = \sqrt{36+\frac{25}{4}}$
 $= \sqrt{\frac{144+25}{4}} = \frac{13}{2}$ = radius circle

3. If the distance between the points (4, p) and (1, 0) is 5 units, then

the value of p is

- **b)** ± **4** c) -4 only a) 4 only d) 0 b) $\sqrt{(4-1)^2 + (p-0)^2} = 5$ \Rightarrow 3² + p² = 5² \Rightarrow p² = 25 - 9 = 16 \Rightarrow p = ±4
- 4. Find the distance of a point P (x, y) from the origin

Let the coordinates of the origin be O(0, 0)

By using distance formula

Distance PO =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance PO = $\sqrt{(0 - x)^2 + (0 - y)^2}$
= $\sqrt{(-x)^2 + (-y)^2} = \sqrt{(x)^2 + (y)^2}$ units

5. If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?

Using distance formula

$$AB = \sqrt{(1-4)^2 + (0-k)^2}$$

⇒ 5 = √(-3)^2 + (-k)^2
⇒ 5 = √9 + k^2

On squaring, we get

$$(5)^{2} = \left(\sqrt{9 + k^{2}}^{2}\right) = 9 + k^{2}$$

$$\Rightarrow \quad 25 - 9 = k^{2} \Rightarrow \quad k^{2} = 16$$

$$\therefore \qquad \mathbf{k} = \pm \sqrt{16} = \pm 4$$

- 6. Show that (1,-1) is the centre of the circle circumscribing the triangle whose angular points are (4, 3), (-2, 3) and (6, -1)
- P (1, -1) will be the centre of the circle circumscribing the triangle whose angular points are A (4, 3) B (-2, 3) and C (6, -1) if PA = PB = PC Now PA= $\sqrt{(4-1)^2 + (3+1)^2} = \sqrt{9+16} = \sqrt{25} = 5$ PB = $\sqrt{(-2-1)^2 + (3+1)^2} = \sqrt{9+16} = \sqrt{25} = 5$ PC = $\sqrt{(-2-1)^2 + (3+1)^2} = \sqrt{25} = 5$ Hence the result
- 7. Find the coordinates of a point A, where AB is diameter of a circle whose centre is (2, -3) and B is the point (1, 4)

AB is diameter of the circle.

Let C be centre of circle, coordinates of C are (2, -3)

So C is mid-point of AB (diameter)

Let coordinates of A are (x, y)

$$\therefore \frac{x+1}{2} = 2 \text{ and } \frac{y+4}{2} = -3$$

$$\Rightarrow x + 1 = 4 \text{ and } y + 4 = -6$$

$$\Rightarrow x = 3 \text{ and } y = -10$$

$$\therefore \text{ the coordinates of A are (3, -10)}$$

8. If P(1, 2) Q (4, 6), R (5, 7) and S (a, b) are the vertices of a parallelogram PQRS, then a) a = 2, b = 4 b) a = 3, b = 4 c) a = 2, b = 3 d) a = 3 b = 5 Mid - point of PR = $\left(\frac{1+5}{2}, \frac{2+7}{2}\right) = (3, \frac{9}{2})$ S (a, b) R (5, 7) Mid - point of SQ = $\left(\frac{4+a}{2}, \frac{6+b}{2}\right)$

Diagonal of parallelogram bisect each other.

- $\therefore \quad (3, \frac{9}{2}) = \left(\frac{4+a}{2}, \frac{6+b}{2}\right)$ $\Rightarrow \quad 3 = \frac{4+a}{2}, \frac{9}{2} = \frac{6+b}{2}$ $\Rightarrow \quad a = 2 \quad b = 3$ $P(1, 2) \qquad Q(4, 6)$
- 9. A straight line is drawn joining the points (3, 4) and (5, 6). If the line is extended, the ordinate of the point on the line, whose abscissa is -1 is ____.

Let line is extended, C (-1, y) such that

$$AB = BC = K : 1$$

$$\therefore \quad \frac{(-1) \times K + 3}{K + 1} = 5$$

$$\Rightarrow K = -\frac{1}{3}$$

$$\therefore \quad Y = 0$$

10. A (5, 1), B (1, 5) and C (-3, -1) are the vertices of △ ABC. Find the length of median AD.

AD is the median of \triangle ABC

 \therefore D is mid - point of BC

Coordinates of D are :

$$\left(\frac{1-3}{2}, \frac{5-1}{2}\right) = \left(\frac{-2}{2}, \frac{4}{2}\right) = (-1, 2)$$

Length of AD = $\sqrt{(5+1)^2(1-2)^2}$

$$=\sqrt{36+1} = \sqrt{37}$$
 units

11. Find the coordinates of the centroid of a triangle whose vertices are

(0, 6), (8, 12) and (8, 0)

Coordinates of the centroid of a triangle whose vertices are $(x_1, y_1)(x_2, y_2)$

$$(x_3, y_3) \text{ are } \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_3}{3}\right)$$
$$= \left(\frac{0 + 8 + 8}{3}, \frac{6 + 12 + 0}{3}\right) = \left(\frac{16}{3}, \frac{18}{3}\right) = \left(\frac{16}{3}, 6\right)$$

12. The coordinates of one end point of the diameter is (4, -1) and centre of the circle is (1, -3). Find the coordinates of the other end of the diameter.

Given that coordinates of one end point of the diameter is (4, -1) and centre of the circle is (1, -3)

Let coordinates of the other end of the diameter be (x, y)

We know that the centre of the circle (1, -3) is the mid-point of diameter.

 $\Rightarrow \qquad \frac{4+x}{2} = 1 \text{ and } \frac{-1+y}{2} = -3$ $\Rightarrow \qquad 4+x = 2 \text{ and } -1+y = -6$

 \Rightarrow x = -2 and y = -6 + 1 = -5

Thus, coordinates of the other end of the diameter are (-2, -5)

13. Point P divides the line segment joining the points A (2, -5) andB (5, -2) in the ratio 2: 3. Name the quadrant in which P lies.

$$x = \frac{2 \times 5 + 3 \times 2}{2 + 3}$$

$$y = \frac{2 \times 2 + 3(-5)}{2 + 3}$$

$$\Rightarrow \qquad x = \frac{10 + 6}{5} = \frac{16}{5} = 3.2$$

$$\Rightarrow \qquad y = \frac{4 - 15}{5} = \frac{-11}{5} = -2.2$$

Point P (3.2, - 2.2) lies in IV quadrant

14. In figure P (5, -3) and Q (3, y) are the points of trisection of the line segment joining A (7, -2) and B (1, -5) Find y

$$\therefore AP = PQ = BQ$$

$$(7, -2) (5, -3) (3, y) (1, -5)$$

$$\Rightarrow Q \text{ is mid-point of PB}$$

$$\Rightarrow y = \frac{-3 + (-5)}{2} = -4$$

15. If the distance between the points (4, k) and (1, 0) is 5, then what

can be the possible values of k?

Let A (4, k), B (1, 0)
$$\Rightarrow$$

AB = 5 given
 $\Rightarrow \sqrt{(4-1)^2 + (k-0)^2} = 5$
 $\Rightarrow \sqrt{3^2 + k^2} = 5$
 $\Rightarrow k^2 + 9 = 25$
 $\Rightarrow k^2 = 25 - 9 = 16$
 $\therefore k = \pm 4$

16. Find the distance of a point P(x, y) from the origin. Using distance formula for distance between

A
$$(x_1, y_1)$$
 and B (x_2, y_2)
AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 \therefore Reqd distance = $\sqrt{(x - 0)^2 + (y - 0)^2}$
= $\sqrt{x^2 + y^2}$

17. Find distance between $A(10 \cos \theta, 0)$ and $B(0, 10 \sin \theta)$

$$AB = \sqrt{(0 - 10 \cos \theta)^2 + (10 \sin \theta - 0)^2}$$

= $\sqrt{100 \cos^2 0 + 100 \sin^2 \theta}$
= $\sqrt{100 (\cos^2 \theta + \sin^2 \theta)}$
= $\sqrt{100}$ = 10 units

18. Find the coordinates of reflection of Q (-1, -3) in x-axis.

- 19. Find the coordinates of the point on y-axis which is nearest to the point (-2, 5)

To get the coordinates of the point on y - axis which is nearest to the

point P(-2, 5) drop a perpendicular PM from on y-axis

Coordinates of M are (0, 5) which is the nearest point to P (-2, 5)

20. If the point (0,2) is equidistant from the points (3,k) and (k,5), find the value of k,

Let the points be P(0, 2), A(3, k) and B(k, 5)

Now, PA = PB

Or, $PA^2 = PB^2$ $\Rightarrow (3-0)^2 + (K-2)^2 = (K-0)^2 + (5-2)^2$ $\Rightarrow 9 + (K-2)^2 = k^2 + 9$ $\Rightarrow k^2 = (k-2)^2$ $\Rightarrow k = \pm (k-2)$ k = (k-2) (impossible) $\therefore k = -(k-2) = -k+2$ Or 2k = 2 or k = 1.

Short answer type questions I

1. Find the linear relation between x and y such that P (x, y) is equidistant from the points A (1, 4) and B (-1, 2)

P(x, y) is equidistant from the points A(1, 4) and B(-1, 2)

PA = PB

$$\sqrt{(x-1)^2 + (y-4)^2} = \sqrt{(x-1)^2 + (y-2)^2}$$

Squaring both sides , we get

$$(x - 1)^{2} + (y - 4)^{2} = (x - 1)^{2} + (y - 2)^{2}$$

$$x^{2} - 2x + 1 + y^{2} - 8y + 16 = x^{2} - 2x + 1 + y^{2} - 4y + 4$$

$$-2x + 17 - 8y = 2x - 4y + 5$$

$$-4x - 4y = -12$$

$$x + y = 3$$

2. If the point (x, y) is equidistant from the points (a + b, b - a) and (a - b, a + b), Prove that bx = ay
Consider that point P (x, y) is equidistant from
A(a + b, b - a) and B (a - b, a + b)

 \therefore PA = PB

 $\sqrt{[x - (a + b)]^2 + [y - (b - a)]^2}$ = $\sqrt{[x - (a - b)]^2 + [y - (a + b)]^2}$ Squaring both sides , we get $x^2 + (a + b)^2 - 2(a + b)x + y^2 + (b - a)^2 - 2(b - a)y$ = $x^2 + (a - b)^2 - 2(a - b)x + y^2 + (a + b)^2 - 2y(a + b)$ $\Rightarrow -2(a + b)x - 2(b - a)y = -2(a - b)x - 2y(a + b)$ $\Rightarrow 2x(a - b) + 2y(a + b)y = 2x(a + b) + 2y(b - a)$ $\Rightarrow x(a - b) + y(a + b) = x(a + b) + y(b - a)$ $\Rightarrow x(a - b - a - b) = y(b - a - a - b)$ -2bx = -2aybx = ay

3. Find the point on y-axis which is equidistant from the points (5, -2) and (-3, 2)

Let point on y-axis be (0, a)

Now distance of this point from (5, -2) is equal to distance from point (-3,2)

i.e.
$$\sqrt{5^2 + (-2 - a)^2} = \sqrt{(3)^2 + (a - 2)^2}$$

Squaring and simplifying we get

$$25 + 4 + a^2 + 4a = 9 + a^2 + 4 - 4a$$

$$\Rightarrow$$
 8a = -16 \Rightarrow a = -2

Point (0, -2)

4. Write the coordinates of a point P on x - axis which is equidistant from the points A (-2, 0) and B(6, 0)

Let coordinates of the P are (x, 0)

ATO

AP = BP

$$\sqrt{(x+2)^2 + (0-0)^2} = \sqrt{(x-6)^2 + (0-0)^2}$$
$$(x+2)^2 = (x-6)^2$$

 x^2 + 4 + 4x = x^2 + 36 - 12x

 $16x = 32 \Rightarrow x = 2$

- \therefore Coordinates of the point P are (2, 0)
- 5. The centre of a circle is $(2\alpha 1, 7)$ and it passes through the point (-3, -1). If the diameter of the circle is 20 units then find the value of α .
 - OA = 10 units.

6. Use distance formula to show that the points A(-2, 3), B (7, 0) are collinear

 $AB = \sqrt{(1+2)^2 + (2-3)^2} = \sqrt{9+1} = \sqrt{10}q$ $BC = \sqrt{(7-1)^2 + (0-2)^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$ $AC = \sqrt{(7+2)^2 + (0-3)^2}$ $= \sqrt{81+9} = \sqrt{90} = 3\sqrt{10}$ Since AB + BC = $\sqrt{10} + 2\sqrt{10}$ $= (1+2)\sqrt{10} = 3\sqrt{10} = AC$

Hence the points A, B and C are collinear.

7. Show that the points A (a, a), B (-a, -a) and C ($-a\sqrt{3}$, $a\sqrt{3}$) form an equilateral triangle.

$$AB = \sqrt{(-a-a)^2 + (-a-a)^2}$$

= $\sqrt{(-2a)^2 + (-2a)^2}$
= $\sqrt{4a^2 + 4a^2} = \sqrt{8a^2} = 2\sqrt{2}a$
$$BC = \sqrt{(-a\sqrt{3} + a)^2 + (a\sqrt{3} + a)^2}$$

= $\sqrt{3a^2 + a^2} - 2\sqrt{3}a^2 + 3a^2 + a^2 + 2\sqrt{3}a^2$
= $\sqrt{8a^2} = 2\sqrt{2}a$
$$AC = \sqrt{(-a\sqrt{3} - a)^2 + (a\sqrt{3} - a)^2}$$

= $\sqrt{3a^2 + a^2} + 2\sqrt{3}a^2 + 3a^2 + a^2 - 2\sqrt{3}a^2$
= $\sqrt{8a^2} = 2\sqrt{2}a$

Since $AB = BC = AC \therefore \Delta ABC$ is equilateral triangle

8. Find the ratio in which P (4, m) divides the line segment joining the points A(2, 3) and B (6, -3) Hence find m.

Let p (4, m) divides A (2, 3) and B (6, -3) in the ration $m_1: m_2$,

[By using section formula]

$$x = \frac{m_1 x_{2+} m_2 x_1}{m_1 + m_2}, \quad y = \frac{m_1 y_{2+} m_2 y_1}{m_1 + m_2},$$

$$\Rightarrow \qquad 4 = \frac{m_1 x 6 + m_2 x 2}{m_1 + m_2},$$

$$\Rightarrow \qquad 4 m_1 + 4 m_2 = 6 m_1 + 2 m_2,$$

$$\Rightarrow \qquad 4 m_2 + 2 m_2 = 6 m_1 + 2 m_1,$$

$$\Rightarrow \qquad 2 m_1 + 2 m_1,$$

$$\therefore \qquad m_1 : m_2 = 1 : 1,$$

Also,
$$m = \frac{m_1 x (-3) + m_2 x 3}{m_1 + m_2},$$

$$= \frac{1 \times (-3) + 1 \times 3}{2} = \frac{-3 + 3}{2} = \frac{0}{2} = 0$$

∴ m = 0

9. If the point C (-1, 2) divides the line segment AB in the ratio 3: 4, where the coordinates of A are (2, 5), find the coordiantes of B.

$$3 \qquad 4$$

$$A(2,5) \qquad C(-1,2) \qquad B(x,y)$$

$$\frac{(3 \times x + 4 \times 2)}{3+4} = -1 \qquad \Rightarrow \qquad \frac{3x+8}{7} = -1$$

$$3x + 8 = -7 \qquad \Rightarrow \qquad 3x = -15$$

$$x = -5$$
Coordinates of B are (-5, -2)
$$\frac{(3 \times y + 4 \times 5)}{3+4} = 2 \qquad \Rightarrow \qquad \frac{3y+20}{7} = 2$$

$$3y + 20 = 14 \qquad \Rightarrow \qquad 3y = 14 - 20$$

$$3y = -6 \qquad \Rightarrow \qquad y = -2$$

10. The point R divides the line segment AB where A (-4, 0), B (0,6) are such that AR = $\frac{3}{4}$ AB. Find the coordinates of R.

Let coordinates of R be (x, y)

:.

$$AR = \frac{3}{4}AB \qquad (Given)$$

$$But, AR + RB \Rightarrow AB = \frac{3}{4}AB + RB = AB$$

$$\Rightarrow RB = AB - \frac{3}{4}AB = \frac{4AB - 3AB}{4} = \frac{AB}{4}$$

$$\frac{AR}{RB} = \frac{\frac{3}{4}AB}{\frac{1}{4}AB} = \frac{3}{4}: \frac{1}{4} = \frac{3}{4} \times \frac{4}{1} = 3: 1$$

$$x = \frac{3 \times 0 + 1 \times (-4)}{3+1} = \frac{0-4}{4} = \frac{-4}{4} = -1$$
and $y = \frac{3 \times 6 + 1 \times 0}{3+1} = \frac{18+0}{4} = \frac{18}{4} = \frac{9}{2}$
Thus coordinates of R are $\left(-1, \frac{9}{2}\right)$

11. If A (4, -8), B (3, 6) and C (5, -4) are the vertices of \triangle ABC, D is the mid point of BC and P is a point on AD joined such that $\frac{AP}{PD}$ = 2, find the coordinates of P.

A (4, -8) B (3,6) and C (5, -4) are verticies of \triangle ABC and D is the mid-point of BC

 \therefore Coordinates of D are

$$\begin{pmatrix} \frac{3+5}{2}, \frac{6+(-4)}{2} \end{pmatrix} = \begin{pmatrix} \frac{8}{2}, \frac{2}{2} \end{pmatrix} = (4, 1)z$$

$$\frac{AP}{PD} = 2$$

$$\Rightarrow AP : PD = 2 : 1$$

$$\Rightarrow Coordinates of P are \left(\frac{2 \times 4 + 1 \times 3}{2+1}, \frac{2 \times 1 + 1}{2+1}\right)$$

$$= \left(\frac{8+3}{3}, \frac{2+6}{3}\right) = \left(\frac{11}{3}, \frac{8}{3}\right)$$

12. The line segment joining the points A (2, 1) and B (5, -8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k = 0, find the value of k 1 2

× 6`

Since point P trisects AB, then PA : PB = 1: 2

Coordinates of Pare

$$x = \frac{5+4}{3} = 3$$
 and $y = \frac{-8+2}{3} = -2$

Now P lies on 2x - y + k = 0

On putting values of x and y, we get

 $6 + 2 + k = 0 \Rightarrow k = -8$

13. If C is a point lying on the line segment AB joining A(1, 1) and B (2, -3) such that 3AC = CB, then find the coordinates of C.

A (1, 1)

$$\begin{array}{l}
\frac{AC}{CB} = \frac{1}{3} \\
(Given)
\end{array}$$
Coordinates of C

$$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$\therefore x = \frac{2+3}{4} = \frac{5}{4} \text{ and } y = \frac{-3+3}{1+3} = 0$$

$$(x, y) = \left(\frac{5}{4}, 0\right)$$

14. The coordinates of the mid-point of the line joining the points (3p, 4) and (-2, 2q) are (5, p). Find the values of p and q.

R (5, p) is the mid-point of the line segment joining the points A (3p, 4) and B (-2, 2q).

 $\begin{array}{l} \therefore \qquad \left(\frac{3p-2}{2}, \frac{4+2q}{2}\right) = (5, p) \\ \Rightarrow \qquad \frac{3p-2}{2} = 5 \quad \text{and} \frac{4+2q}{2} = P \\ \Rightarrow \qquad 3p = 10+2 \quad \text{and} \quad 4+2q = 2p \qquad \dots\dots\dots(ii) \\ \Rightarrow \qquad 3p = 12 \Rightarrow \qquad p = 4 \qquad \dots\dots\dots(i) \\ \text{Substituting } p = 4 \text{ from (i) in (ii), we get} \\ 4+2q = 8 \qquad \Rightarrow \qquad 2q = 4 \quad \Rightarrow \quad q = 2 \end{array}$

 \therefore p = 4 and q = 2

15. Find the ratio in which the line segment joining (2, -3) and (5, 6) is divided by x - axis,

Let the required ratio be k:1

Then the coordinates of the point of division are

$$\left(\frac{2k+5}{k+1}\,,\;\frac{-3k+6}{k+1}\,\right)$$

This point lies on the x - axis whose equation is y = 0

 $\therefore \quad \frac{-3k+6}{k+1} = 0 \quad \Rightarrow \quad 3k = 6, \text{ or } k = 2$

... Line segment joining the two points is divided in the ratio 2: 1 internally by

x - axis.

16. In given figure BD bisects $\angle B$. Find the length of BD

Here, BD bisects $\angle B$

 $\therefore \qquad \frac{AD}{CD} = \frac{AB}{BC}$

(using angle bisector property)(i)

AB =
$$\sqrt{1^2 + 7^2} + = \sqrt{50}$$

BC = $\sqrt{(2 - 1)^2 + (0 - 7)^2} + = \sqrt{50}$

∴ (i) becomes

$$\frac{\text{AD}}{\text{CD}} = \frac{\sqrt{50}}{\sqrt{50}} = \frac{1}{1} = \text{D bisects AC}$$

Coordinates of D are

$$\left(\frac{0+2}{2}, \frac{0+0}{2}\right) = (1, 0)$$

$$\mathsf{BD} = \sqrt{(1-1)^2 + (0-7)^2} = \mathbf{7}$$

- \therefore BD = 7 units
- 17. Find the value of x for which the distance between the point P (2,-3) and Q (x, 5) is 10 unit

According as given PQ = 10 units

$$\Rightarrow \sqrt{(2-x)^2 + (-3-5)^2} = 10$$

Squaring both sides, we have

- $4 + x^2 4x + 64 = 100$ $x^2 - 4x - 32 = 0$ ⇒ $\Rightarrow \qquad x^2 - 8x + 4x - 32 = 0$ \Rightarrow x(x-8) + 4(x-8) = 0(x-8)(x+4) = 0 \Rightarrow
 - $\triangle ABC x = 8 \text{ or } x = -4$
- 18. Find the ratio in which y axis divides the line segment joining the points A(5,-6) and B(-1,-4) Also find the coordinates of the point of division.

Let P be a point on the y - axis dividing the line segment AB in the ration k: lusing the section formula we get. DIAGRAM

 $(0, \alpha) = \left[\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right]$ $\Rightarrow \frac{-k+5}{-k+5} = 0, \quad \frac{-4k-6}{k+1} = \alpha \qquad A \frac{\overbrace{k:1}}{P} B \\ (5, -6) \qquad P (-1, -4)$ Now, $\frac{-k+5}{k+1} = 0$, $\Rightarrow -k + 5 = 0$ \Rightarrow k=5 Also $\frac{-4k-6}{k+1} = \propto$ $\implies \qquad \frac{-4 \times 5 - 6}{5 + 1} = \propto$ $\Rightarrow \qquad \propto = -\frac{13}{3}$

Thus the y-axis divides the line segment in the ration 5 :1

Also the coordinates of the point of division are $\left(\mathbf{0}, -\frac{13}{3}\right)$

19. Let P and Q be the points of trisection of the line segment joining the points A (2, -2) and B (-7, 4) such that P is nearer to A. Find the coordinates of P and Q

Using section formula:

P(x, y) =
$$\left[\left\{\frac{(-7\times1)+(2\times2)}{1+2}\right\}, \left\{\frac{(1\times4)+(2\times(-2))}{1+2}\right\}\right]$$

= (-1, 0)

Q(a, b) =
$$\left[\left\{\frac{(-7\times2)+(1\times2)}{2+1}\right\}, \left\{\frac{(2\times4)+(1\times(-2))}{2+1}\right\}\right]$$

 $=\left(\frac{-12}{3}, \frac{6}{3}\right)=(-4, 2)$

20. Find the ration in which P (4, m) divides the line segment joining the points A (2, 3) and B (6,-3). Hence find m,

Let P divides AB in the ration k : 1 By section formula

$$P \rightarrow (4, m) \rightarrow \left(\frac{6k+2}{k+1}, \frac{-3k+3}{k+1}\right)$$

B (6, -3)
 $P \rightarrow (4, m)$
A (2, 3)
 $\frac{6k+2}{k+1} = 4$

 $\Rightarrow \qquad 6k+2=4k+4$

 \Rightarrow 2k = 2

 \Rightarrow

 \Rightarrow k = 1

: Ratio is 1 : 1

Hence
$$m = \frac{-3k+3}{k+1} = \frac{-3(1)+3}{1+1} = 0$$

 $\implies m = 0$

21. Point A(-1, y) and B(5, 7) lie on a circle with centre O(2,3y). Find the values of y. Hence find the radius of the circle.

By mid-point formula

$$\Rightarrow \frac{y+7}{2} = -3y$$

$$y = -1$$
Now, A(-1, 1) and O(2, 3)

: Radius = AO =
$$\sqrt{(2+1)^2 + (3+1)^2}$$
 = 5 units

22. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from Q (2,-5) and R (-3,6), find the coordinates of P.

PQ = PR (given)

$$\Rightarrow \sqrt{(2a-2)^2 + (a-(-5))^2}$$

$$= \sqrt{(2a-(-3))^2 + (a-6)^2}$$

$$\Rightarrow \sqrt{(2a-2)^2 + (a \mp 5)^2}$$

$$= \sqrt{(2a \mp 3)^2 + (a+6)^2}$$

$$\Rightarrow \sqrt{4a^2 + 4 - 8a + a^2 + 25 + 10a}$$

$$= \sqrt{4a^2 + 9 + 12a + a^2 + 36 + 10a - 12a}$$

$$\Rightarrow \sqrt{5a^2 + 2a + 29} = \sqrt{5a^2 + 45}$$

Squaring both sides, we get

$$5a^{2} + 2a + 29 = 5a^{2} + 45$$

$$\Rightarrow 5a^{2} + 2a - 5a^{2} = 45 - 29$$

$$\Rightarrow 2a = 16$$

$$\Rightarrow a = 8$$

Thus, the coordinates of the point P are (16, 8)

23. Prove that the points (3, 0), (6, 4), and (-1, 3) are the vertices of a right angled isosceles triangle,

Let A, B and C be the points (3, 0), (6, 4), and (-1, 3) respectively.

Using Distance formula:
AB =
$$\sqrt{6-3^2 + (4-0)}$$

= $\sqrt{9+16} = \sqrt{25} = 5$
BC = $\sqrt{(6+1)^2 + (4-3)^2}$
= $\sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$
ObserveAC² = $\sqrt{(3+1)^2 + (0+3)^2}$
= $\sqrt{16+9} = \sqrt{25} = 5$
AB = AC = 5
 $\Rightarrow \Delta ABC$ is isosceles triangle.
Also, $(5)^2 + (5)^2 = 50 = (5\sqrt{2})^2$

$$\Rightarrow \qquad AC^2 + AB^2 = BC^2$$

 $\Rightarrow \Delta ABC$ is right angled at A.

24. If (-2,3), (4, -3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of the centroid,

Let the given triangle be ABC and D, E, F are mid-points of sides

AB, BC, CA respectively, where D (-2,3), E(4,-3), F(4,5). Since centroid of a triangle is same as centroid of triangle obtained by joining mid-points of sides of main triangle.

 \because Centroid of ΔABC = Centroid of ΔDEF

$$=\left(\frac{-2+4+4}{3},\frac{3-3+5}{3}\right)=\left(2,\frac{5}{3}\right).$$

25. If $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points (2, 0) and $\left(0, \frac{2}{9}\right)$, then show that the line 5x + 3y + 2 = 0 passes through the point (-1, 3p).

Using Mid point formula

$$\begin{pmatrix} 1, \frac{p}{3} \end{pmatrix} = \begin{pmatrix} \frac{2+0}{2}, \frac{0+\frac{2}{9}}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1, \frac{p}{3} \end{pmatrix} = \begin{pmatrix} 1, \frac{1}{9} \end{pmatrix}$$

$$\Rightarrow \quad \frac{p}{3} = \frac{1}{9} \\ \Rightarrow \quad p = \frac{1}{3} \\ \because (-1, 3p) = \begin{pmatrix} -1, 3x & \frac{1}{3} \end{pmatrix} = (-1, 1) \\ \text{Plug in } x = -1, y = 1 \text{ in } 5x + 3y + 2 = 0 \\ 5(-1) + 3(1) + 2 = 0 \\ -5 + 5 = 0 \text{ (satisfied)} \\ \Rightarrow (-1, 3p) \text{ i.e.}(-1, 1) \text{ lies on line } 5x + 3y + 2 = 0$$

1. Show that the points A(1, 2), B (5, 4) C (3, 8) and D (-1, 6) are the vertices of a square.

 $AB = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20}$ $BC = \sqrt{(-2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20}$ $CD = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20}$ $DA = \sqrt{(-2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20}$

Here AB = BC = CA = DA

$$AC = \sqrt{2^2 + 6^2} = \sqrt{40}$$

And BD = $\sqrt{(-6)^2 + (2)^2} = \sqrt{36 + 4} = \sqrt{40}$

All slides of quadrilateral are equal and diagonals are equal.

- : ABCD is square
- 2. Show that the points A(1,0), B (5,3), C (2,7) and D (-2, 4) are the vertices of a parallelogram.

AB = $\sqrt{(5-1)^2 + (3-0)^2} = \sqrt{16 + 9} = 5$ DC = $\sqrt{(2+2)^2 + (7-4)^2} = \sqrt{16 + 9} = 5$ BC = $\sqrt{(5-2)^2 + (3-7)^2} = \sqrt{9+16} = 5$ AD = $\sqrt{(1+2)^2 + (0-0)^2} = \sqrt{9+16} = 5$ Or

Alternatively

The given points are the verticies of a parallelogram

Mid point of AC = $\left(\frac{1+2}{2}, \frac{0+7}{2}\right) = \left(\frac{3}{2}, \frac{7}{2}\right)$ Mid point of BD = $\left(\frac{5-2}{2}, \frac{3+4}{2}\right) = \left(\frac{3}{2}, \frac{7}{2}\right)$

Mid point of AC = mid points of BD

- \Rightarrow diagonals bisect each other
- \therefore The given points are the verticies of a parallelogram
- 3. Show that points A (7, 5), B (2, 3) and C (6, -7) are the verticies of a right triangle. Also find its area.

AB =
$$\sqrt{(2-7)^2 + (3-5)^2} = \sqrt{25+4} = \sqrt{29}$$

BC =
$$\sqrt{(6-2)^2 + (-7-3)^2} = \sqrt{16+100} = \sqrt{116}$$

CA =
$$\sqrt{(7-6)^2 + (5+7)^2} = \sqrt{1+144} = \sqrt{145}$$

Since, $AB^2 + BC^2 = 29 + 116 = 145 = CA^2$

 $\therefore \Delta$ ABC is right angles at B

Area =
$$\frac{1}{2}$$
 AB × BC
= $\frac{1}{2}\sqrt{29}.\sqrt{116}$ = $\frac{1}{2}\sqrt{29}.2.\sqrt{29}$ = 29

4. Two points A(1, 0) and B (-1, 0) with a variable point P(x, y) satisfy the relation AP - BP = 1. Show that $12x^2 - 4y^3 = 3$.

Given AP - BP = 1

$$\Rightarrow \sqrt{(x-1)^2 + (y-0)^2} - \sqrt{(x+1)^2 + (y-0)^2} = 1$$
$$\Rightarrow \sqrt{(x-1)^2 + y^2} = 1 + \sqrt{(x+1)^2 + y^2}$$

Squaring both sides

$$(x-1)^{2} + y^{2} = 1 \quad (x+1)^{2} + y^{2} + 2\sqrt{(x-1)^{2} + y^{2}}$$

$$\Rightarrow \qquad x^{2} + 1 - 2x = 1 + x^{2} + 2x + 2\sqrt{(x+1)^{2} + y^{2}}$$

$$\Rightarrow \qquad -1 - 4x = 2\sqrt{(x+1)^{2} + y^{2}}$$

Squaring both sides

 $\Rightarrow \qquad x^2 + 1 - 2x = 1 + x^2 + 1 + 2x + 2\sqrt{(x+1)^2 + y^2}$

 $\Rightarrow \qquad -1 - 4x = 2\sqrt{(x+1)^2 + y^2}$

Squaring both sides

$$(-1-4x)^2 = 4(x+1)^2 + y^2$$

$$\Rightarrow$$
 1 + 16x² + 8x = 4x² = 4 x² + 1 + 2x + y²

 \Rightarrow 12 x^2 - 4 y^2 = 3

5. If coordinates of two adjacent vertices of a parallelogram are (3, 2),

(1, 0) and diagonals bisect each other at (2, -5) find coordinates of the other two vertices.

Let ABCD be a parallelogram, diagonals AC and BD intersects at O.

Let A (3, 2), B (1, 0) and 0 (2, -5) are coordinates.

Let coordinates of C are (a, b) and coordinates of D are (x, y). As diagonals of parallelogram bisect each other at 0. So, O is mid point of AC and BD.

$$\therefore 2 = \frac{3+a}{2} \text{ and } -5 = \frac{2+b}{2}$$

$$D(x, y) \qquad C(a, b)$$

$$A(3, 2) \qquad B(1, 0)$$

$$\Rightarrow$$
 a = 1 and b = -12

Also,

$$\frac{1+x}{2}$$
 = 2 and $\frac{0+y}{2}$ = -5

- \therefore Coordinates are (1, -12) and (3, -10)
- 6. Given two fixed two point P (-3, 4) and Q (5, -2). Find the coordinates of points A and B in PQ such that 5 PA = 3 PQ and 3PB = 2 PQ.

Here
$$5PA = 3PQ$$

$$\Rightarrow \frac{PQ}{PA} = \frac{5}{3}$$

$$\Rightarrow \frac{PA + AQ}{PA} = \frac{5}{3}$$

$$\Rightarrow \frac{PA}{PA} + \frac{AQ}{PA} = \frac{5}{3}$$

$$\Rightarrow 1 + \frac{AQ}{PA} = \frac{5}{3}$$

$$\Rightarrow \frac{AQ}{PA} = \frac{5}{3} - 1 \Rightarrow \frac{AQ}{PA} = \frac{2}{3} \text{ or } \frac{PA}{AQ} = \frac{3}{2}$$

Thus A divides PQ in the ratio 3: 2 internally. Using section formula

$$A \left[\frac{3(5)+2(-3)}{3+2}, \frac{3(-2)+2(4)}{3+2}\right] = \left(\frac{9}{5}, \frac{2}{5}\right)$$

$$Again 3PB = 2 PQ$$

$$\Rightarrow \frac{PQ}{PB} = \frac{3}{2}$$

$$\Rightarrow \frac{PB+BQ}{PB} = \frac{3}{2}$$

$$\Rightarrow \frac{PB+BQ}{PB} = \frac{3}{2}$$

$$\Rightarrow \frac{PB+BQ}{PB} = \frac{3}{2} \Rightarrow 1 + \frac{BQ}{PB} = \frac{3}{2}$$

$$\Rightarrow \frac{BQ}{PB} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$\Rightarrow \frac{PB}{BQ} = \frac{2}{1}$$

Thus B divides PQ in the ratio 2:1. Using section formula.

B is
$$\left[\frac{2(5)+1(-3)}{2+1}, \frac{2(-2)+1(4)}{2+1}\right] = \left(\frac{7}{3}, 0\right)$$

Thus A is $\left(\frac{9}{5}, \frac{2}{5}\right)$ and B is $\left(\frac{7}{3}, 0\right)$

7. Find the coordinates of the points of trisection of the line segment

Let $\mathsf{P} \text{ and } \mathsf{Q}$ be the points of trisection of $\mathsf{A}\mathsf{B}$

∴ P divides AB in the ratio 1: 2 and Q divides AB in the ratio 2: 1 internally.

(2. -2)
(-7, 4)

▲
P

Q
B

Applying section formula, coordinates of P are

P →
$$\left[\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+1(-2)}{1+2}\right]$$
 i.e. P (-1, 0)

Similarly, coordinates of Q are

$$\left[\frac{2(-7)+1\,(2)}{2+1},\,\frac{2(4)+1\,(-2)}{2+1}\right]$$
 i.e. Q (-4, 2)

8. If the point P (x, y) is equidistant from the points A (a + b, b - a) and B (a - b, a + b). Prove that bx = ay.

$$(a + b, b - a)$$
 $(a - b, a + b)$
A 1 P(x, y) 1 B

Using mid-point formula

$$(x, y) = \left[\frac{a + b + a - b}{2}, \frac{b - a + a + b}{2}\right]$$

$$\Rightarrow \qquad x = \frac{a + b + a - b}{2} = a \qquad \dots \dots (1)$$

$$\Rightarrow \qquad y = \frac{b - a + a + b}{2} = b \qquad \dots \dots (2)$$

$$(1) + (2) \text{ gives } = \frac{x}{y} = \frac{a}{b}$$

$$\Rightarrow$$
 bx = ay (Proved)

9. The vertices of a triangle are (-2, 0), (2, 3) and (1, -3). Is the triangle equilateral, isosceles or scalene?

Let the given points be A (-2, 0), B (2, 3) and (1, -3).

$$\therefore AB = \sqrt{(-2-2)^2(0-3)^2}$$

= $\sqrt{16+9} = \sqrt{25} = 5$
BC = $\sqrt{(2-1)^2(3+3)^2}$
= $\sqrt{1+36} = \sqrt{37}$
CA = $\sqrt{(1+2)^2(-3-0)^2}$
= $\sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$

Clearly 5 \neq 37 = $3\sqrt{2}$

i.e. $AB \neq BC \neq CA$

 $\Rightarrow \Delta$ ABC is a scalene triangle

10. Find the area of a rhombus if its vertices are (3, 0) (4, 5), (-1, 4) and (-2, -1) taken in order

Let ABCD be given rhombus with A (3, 0), B (4, 5), (-1, 4) and (-2, -1)

Thus AC and BD are its diagonals

Using distance formula

$$AC = \sqrt{(3+1)^2(0-4)^2}$$

$$\sqrt{16+16} = \sqrt{32} = 4\sqrt{2} \text{ units}$$

$$BD = \sqrt{(4+2)^2(5+1)^2}$$

$$\sqrt{36+36} = 6\sqrt{2} \text{ units}$$
Since area of rhombus = $\frac{1}{2}$ (Product of the diagonals)

$$=\frac{1}{2}(4\sqrt{2}) 6\sqrt{2} = 24$$
 sq. units

11. Find the point on y -axis which is equidistant from the point (5, -2) and (-3, 2)

Let the required point on y- axis be P(0, b) and given points be A(5, 2) and B(-3, 2)

According to question

$$PA = PB$$

$$\Rightarrow PA^{2} = PB^{2}$$

$$\Rightarrow (5-0)^{2} + (-2-b)^{2} = (-3-0)^{2} + (-2-b)^{2}$$

$$\Rightarrow 29 + 4b + b^{2} = 13 + b^{2} - 4b$$

$$\Rightarrow b = -2$$

$$\therefore \text{ Required point is (0, -2)}$$

12. The line segment joining the points A (2, 1) and B (5, -8) is trisected by the points P and Q, where P is nearer to A. If the point P also lies on the line 2x - y + k = 0, find the value of k. Or

Show that (a, a), (-a, -a) and $(-\sqrt{3}a, \sqrt{3}a)$ are verticies of an equilateral triangle.

Since, P lies nearer to A and is one of the point of trisection.

 \therefore P divides AB in the ratio 1 : 2 So, by section formula

$$\mathsf{P}\left[\frac{1\times5+2\times2}{1+2}, \frac{1\times(-8)+2\times1}{1+2}\right]$$
$$= \mathsf{P}\left(\frac{9}{3}, \frac{-6}{3}\right) = \mathsf{P}\left(3, -2\right)$$

Since P lies on 2x - y + k = 0

: Coordinates of P must satisfy

$$\Rightarrow$$
 10 + k = 0

⇒

Or

Let given point be A (a, a) B (-a, -a) and C ($-\sqrt{3}a$, $\sqrt{3}a$)

k = -10

Now using Distance Formula

$$AB = \sqrt{(a(-a)^{2} + (a(-a)^{2})^{2}}$$

$$= \sqrt{(2a)^{2} + (2a)^{2}} = \sqrt{8a^{2}} = 2\sqrt{2a}$$

$$BC = \sqrt{(-a + \sqrt{3}a)^{2} + (-a - \sqrt{3}a)^{2}}$$

$$= \sqrt{a^{2} + 3a^{2} - 2\sqrt{3}a^{2} + a^{2} + 3a^{2} + 2\sqrt{3}a^{2}}$$

$$= \sqrt{(2a)^{2} + (6a)^{2}} = \sqrt{8a^{2}} = 2\sqrt{2a}$$

$$CA = \sqrt{(-\sqrt{3}a - a)^{2} + (\sqrt{3}a - a)^{2}}$$

$$= \sqrt{3a^{2} + a^{2} + 2\sqrt{3}a^{2} + 3a^{2} + a^{2} - 2\sqrt{3}a^{2}}$$

$$= \sqrt{8a^{2}} = 2\sqrt{2a}$$

Since AB = BC = CA = $(2\sqrt{2}a \text{ each})$

- $\therefore \Delta$ ABC is an equilateral triangle
- 13. Show that \triangle ABC, where A (-2, 0), B (2, 0), C (0, 2) and \triangle PQR where P (-4, 0), Q (4, 0) R (0, 4) are similar triangles

Using distance formula

$$AB = \sqrt{-2 - 2}^{2} + (0 - 0)^{2} = 4 \text{ units}$$

$$BC = \sqrt{(2 - 0)^{2} + (0 - 2)^{2}}$$

$$= \sqrt{4 + 4} = 2\sqrt{2} \text{ units}$$

$$AC = \sqrt{-2 - 0}^{2} + (0 - 2)^{2}$$

$$= \sqrt{4 + 4} = 2\sqrt{2} \text{ units}$$

$$PQ = \sqrt{(-4 - 4)^{2}(0 - 0)^{2}} = \sqrt{64} = 8 \text{ units}$$

$$QR = \sqrt{(4 - 0)^{2} + (0 - 4)^{2}} = \sqrt{16 + 16}$$

$$= \sqrt{32} = 4\sqrt{2} \text{ units}$$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{1}{2}$$
i.e. sides of Δs are proportional

$$\Rightarrow \Delta ABC \sim \Delta PQR$$

14. Two friends Seema and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometowns represented by Town A and Town B respectively in the figure given below. Town A and Town B are connected by trains from the same station C (in the given figure) in Delhi. Based on the given situation, answer the following questions.

- i. Who will travel more distance, Seema or Aditya, to reach to their hometown?
- ii. Seema and Aditya planned to meet at a location D situated at a point D represented by the mid-point of the line joining the point5s represented by Town A and Town B. Find the coordinates of the point represented by the point D.
- iii. Find the area of the triangle formed by joining the points represented by A,B and C.

Sol. i. Reading the coordinates of A,B,C as given below A(1, 7), B(4, 2),C(-4, 4)

Distance travelled by Seema = AB

 $=\sqrt{(1-4)^2+(7-2)^2}=\sqrt{9+25}=\sqrt{34}$

Distance travelled by Aditya

$$= BC = \sqrt{(4+4)^2 + (2-4)^2} = \sqrt{64+4} = \sqrt{68}$$

Ce $\sqrt{68} > \sqrt{34}$

: Aditya travels more distance.

ii. Using mid-point formula, The coordinates of D are

$$= \left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$$

iii. Area of $\triangle ABC = \frac{1}{2} | 1(2-4) + 4(4-7) - 4(7-2) |$
$$= \frac{1}{2} | -2 - 12 - 20 | = \frac{1}{2} | -34 |$$
$$= 17 \text{ sq. Units}$$

Long answer type questions

1. One vertex of an equilateral triangle with side 2 units is at origin. Another vertex lies on the line $x = \sqrt{3y}$ and is in first quadrant. Find the coordinates of other two vertices.

Here , one vertex 0 is at origin, other vertex A (h, k) is on the line $x = \sqrt{3y}$ and third vertex is B (α , β)

O (0, 0)

A (h, k)

 $\therefore \Delta OAB$ is an equilateral $\Delta OA = 2$ units

$$\Rightarrow \qquad \sqrt{h^2 + k^2} = 2 \quad \Rightarrow \quad h^2 + k^2 = 4 \qquad \dots (i)$$

Also, A (h, k) is on the line $x = \sqrt{3y}$

$$\Rightarrow$$

h = √3k(ii)

Substituting in (i), we get

$$(\sqrt{3k})^2 + k^2 = 4$$

⇒

 $4k^2 = \mathbf{4} \implies k^2 = \mathbf{1}$

 \Rightarrow

But A is in 1^{st} quadrant $\therefore k = \neq 1$ when k = 1, eq (ii) becomes

h = $\sqrt{3} \times 1 = \sqrt{3}$: Coordinated of A are $(\sqrt{3}, 1)$ OB = 2Now $\sqrt{\alpha^2 + \beta^2} = 2$ \Rightarrow $\sqrt{\alpha^2 + \beta^2} = 4$ ⇒ Also AB = 2 $\sqrt{(\alpha - b)^2 + (\beta - k)^2} = 4$ \Rightarrow $(\alpha - \sqrt{3})^2 + (\beta - 1k)^2 = 4$ \Rightarrow $\Rightarrow \quad \alpha^2 + 3 - 2\sqrt{3}\alpha + \beta^2 + 1 - 2\beta = 4$ $\alpha^2 + \beta^2 - 2\sqrt{3}\alpha - 2\beta = 0$ \Rightarrow $4 - 2\sqrt{3}\alpha - 2\beta = 0$ [Using (iii)] \Rightarrow $\sqrt{3} \alpha + \beta = 2$ $\beta = 2 - \sqrt{3} \alpha$...(iv) \Rightarrow Substituting in (iii), we get $\alpha^{2} + (2 - \sqrt{3} \alpha)^{2} = 4 \implies \alpha^{2} + 4 + 3 \alpha^{2} - 4 \sqrt{3} \alpha = 4$ $\Rightarrow 4\alpha^2 - 4\sqrt{3}\alpha = 4 \Rightarrow 4\alpha(\alpha - \sqrt{3}) = 0$ $\Rightarrow \alpha = 0 \text{ or } \alpha = \sqrt{3}$ When $\alpha = 0$ eq.(iv) becomes = $\beta = 2 - \sqrt{3} \times 0 = 2$ Coordinates of B are (0, 2)When $\alpha = \sqrt{3}$ eq.(iv) becomes = $\beta = 2 - \sqrt{3} \times \sqrt{3} = -1$ Coordinates of B are $(\sqrt{3}, -1)$ 2. The line segment AB joining the points A (3, -4) and B (1, 2) is

trisected at the points P (p, -2) and Q $\left(\frac{5}{3}, q\right)$. Find the values of p and q Now AP : PB = 1: 2

A (3, -4)
(p, -2)
$$\left(\frac{5}{3}, q\right)$$
 B (1, 2)

$$\therefore \qquad p = \frac{1 \times 1 + 2 \times 3}{1 + 2} \implies p = \frac{7}{3}$$
Also AQ: QB = 2: 1 $\implies q = \frac{2 \times 2 + 1 \times 4}{1 + 2} = 0$

3. In figure, the vertices of \triangle ABC are A (4, 6), B (1, 5) and C (7, 2). A line- segment DE is drawn to intersect the sides AB and AC at D and E respectively such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{3}$. Calculate the area of \triangle ADE and compare it with area of \triangle ABC.

Using section formula

$$D = \left\{\frac{2 \times 4 + 1 \times 1}{3}, \frac{2 \times 6 + 1 \times 5}{3}\right\} = \left[3, \frac{17}{3}\right]$$

$$E = \left\{\frac{2 \times 4 + 1 \times 7}{3}, \frac{2 \times 6 + 1 \times 2}{3}\right\} = \left[5, \frac{14}{3}\right]$$
Area of \triangle ADB
$$= \frac{1}{2} + \left|4\left[\frac{17}{3} - \frac{14}{3}\right] - 3\left[6 - \frac{14}{3}\right] + 5\left[6 - \frac{17}{3}\right]\right|$$

$$= \frac{1}{2} + \left| \left[4 + (-12) + \frac{5}{3} \right] \right| = \frac{1}{2} \left| \left[\frac{12 - 36 + 5}{3} \right] \right|$$
$$= \frac{1}{2} \left| \left[-\frac{19}{3} \right] \right| = \frac{1}{2} \times \frac{19}{3}$$
$$= \frac{19}{6} \text{ Sq. units} = 3.16 \text{ Sq. units}$$

Area of Δ ABC

 $\frac{1}{2} |[4 (5 - 2) + 1 (2 - 6) + 7(6 - 5)]|$ $\frac{1}{2} |[12 - 4 + 7]| = \frac{15}{2} = 7.5 \text{ Sq. units}$

So, area of \triangle ABC is more than that of \triangle ADB by 4. 34 Sq. units.

4. Determine the ratio in which the line 3x + y - 9 = 0 divides the segment joining the points (1,3) and (2,7).

Let line 3x + y - 9 = 0 divides the segment joining the points A (1, 3) and B (2, 7) in the ratio k : 1 at point L.

Using section formula

Co-ordinates of L are

$$x = \frac{k \times 2 + 1 \times 1}{k + 1}$$

$$x = \frac{2k + 1}{k + 1}$$

and $y = \frac{7 \times k + 3 \times 1}{k+1}$

$$\gamma = \frac{7k+3}{k+1}$$

New point L lies on line 3x + y - 9 = 0

i.e.
$$3\left[\frac{2k+1}{k+1}\right] + \left[\frac{7k+3}{k+1}\right] - 9 = 0$$

$$\Rightarrow \frac{6k+3+7k+3-9k-9}{k+1} = 0$$

$$4k - 3 = 0$$

 $K = \frac{3}{4}$

Hence required ratio be 3 : 4