Grade X
Lesson : 7 Coordinate Geometry

Objective Type Questions

I. Multiple choice questions

1. In the given figure, O is the intersecting point of $O A$ and $O C$ and $O A B C$ is a square of side 4 units, then the position of A, B and C is

a) $(4,0)(4,4)(0,4)$
b) $(4,0)(0,4)(4,4)$
c) $(0,4)(4,4)(4,0)$
d) None of the above
2. In the given figure, the ordinates of the points P, Q, R and S is
a) $2,-2,-5,6$
b) $3,4,-3,-1$
c) $3,4,-5,5$
d) $2,4,-5,-1$

3. The coordinates of the point P as shown in the diagram will be

a) $(2,-3)$
b) $(-3,2)$
c) $(2,3)$
d) $(3,2)$
4. The coordinate of the vertices of a rectangle whose length and breadth are 6 and 4 units, respectively. Its one vertex is at the origin. The longer side is on the x-axis and one of the vertices lies in second quadrant is
a) $(0,0)(6,4)(6,0)(0,4)$
b) $(0,0)(0,4)(6,0)(6,4)$
c) $(0,0)(6,4)(-6,0)(6,4)$
d) $(0,0)(6,4)(-6,4)(-6,0)$
5. The point $P(-4,2)$ lies on the line segment joining he points $A(-4,6)$ and B ($-4,-6$)
a) True
b) False
c) Can't say
d) Partially True / False
6. The distance of the point $P(2,3)$ from the x axis is
a) 2 units
b) 3 units
c) 1 units
d) 5 units
7. The distance between the points $P(-6,7)$ and $Q(-1,-5)$ is
a) -6 units
b) 13 units
c) 1 units
d) 5 units
8. The distance between the points ($a \cos \theta+b \sin \theta, 0$) and $(0, a \sin \theta-b \cos \theta)$, is
a) $a^{2}+b^{2}$
b) $a^{2}-b^{2}$
c) $\sqrt{a^{2}+b^{2}}$
d) $\sqrt{a^{2}-b^{2}}$
9. The value of y, if the distance between the points $(2, y)$ and $(-4,3)$ is 10 is
a) 6
b) -11
c) 5
d) 11
10. Point $P(0,2)$ is the point of intersection of y-axis and perpendicular bisector of line segment joining the points $A(1,1)$ and $B(3,3)$
a) True
b) False
c) Can't say
d) Partially True / False
11. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p is.
a) 4
b) -4
c) Both a and b
d) 0
12. A circle has its centre at the origin and a point $P(5,0)$ lies on it. The point $Q(6,8)$ lies outside the circle.
a) True
b) False
c) Can't say
d) Partially True / False
13. The radius of the circles whose centre is at $(0,0)$ and which passes through the points $(-6,8)$ is \qquad .
a) 10 units
b) 11 units
c) 9 units
d) 8 units
14. Is the points $(1,-1),(5,2)$ and $(9,5)$ are collinear?
a) Yes
b) No
c) Can't find
d) None of the above
15. If the point $P(2,1)$ lies on the line segment joining points $A(4,2)$ and $B(8,4)$, then \qquad _.
a) $A P=\frac{1}{3} A B$
b) $A P=P B$
c) $P B=\frac{1}{3} A B$
d) $A P=\frac{1}{2} A B$
16. If the point $P(x, y)$ is equidistant from the points $A(5,1)$ and $B(1,5)$, then The points $A(5,1)$ and $B(1,5)$ then
a) $y=3 x$
b) $x=y$
c) $x=-8 y$
d) $-8 x=y$
17. A point on x-axis which is equidistant from the points $(1,3)$ and $(-1,2)$
a) $\left(\frac{5}{2}, 0\right)$
b) $(5,0)$
c) $(4,0)$
d) $\left(\frac{5}{4}, 0\right)$
18. The point on x-axis which is equidistant from the point $(7,6)$ and $(-3,4)$ is
a) $(0,3)$
b) $(4,3)$
c) $(3,0)$
d. None of these
19. The coordinates of the point which is equidistant from the three vertices of the $\triangle A O B$ as shown in the figure is

a) (x, y)
b) (y, x)
c) $\left(\frac{y}{2}, \frac{x}{2}\right)$
d) $\left(\frac{x}{2}, \frac{y}{2}\right)$
20. The coordinate of a point on y-axis which is equidistant from the point $A(6,5)$ and $B(-4,3)$ will be
a) $(0,9)$
b) $(0,-9)$
c) $(0,5)$
d) $(0,3)$
21. The radius of the circle whose and points of diameter are $(24,1)$ and $(2,23)$ is
a) $22 \sqrt{2}$ units
b) $23 \sqrt{2}$ units
c) $11 \sqrt{2}$ units
d) None of these
22. If the points $A(4,3)$ and $B(x, 5)$ are on the circle with centre $O(2,3)$, then the value of x is
a) 0
b) 1
c) 2
d) 3
23. The perimeter of a triangle with vertices $(0,4)(0,0)$ and $(3,0)$ is
a) 5 units
b) 12 units
c) 11 units
d) $(7+\sqrt{5}$ units $)$
24. If three points $(0,0),(3, \sqrt{3})$ and $(3, \lambda)$ from an equilateral triangle then - λ equals.
a) 2
b) -3
c) -4
d) None of these
25. If $A O B C$ is a rectangle whose three vertices are $A(0,3), O(0,0)$ and $B(5,0)$, then the length of its diagonal is
a) 5 units
b) 3 units
c) $\sqrt{34}$ units
d) 4 units
26. The points $(3,2),(-2,-3)$ and $(2,3)$ form a triangle name the type of triangle formed.
a) equilateral
b) isosceles
c) right angle
d) None of these
27. $(5,-2)(6,4)$ and $(7,-2)$ are the vertices of an \qquad triangle.
a) equilateral
b) right angle
c) isosceles
d) None of these
28. The points $(-4,0),(4,0)$ and $(0,3)$ are the vertices of a
a) right angled triangle
b) isosceles triangle
c) isosceles
d) None of these
29. The points $(2,3),(3,4),(5,6)$ and $(4,5)$ are the vertices of a
a) Parallelogram
b) Triangle
c) Square
d) None of these
30. The coordinates of the point which divides the line segment joining the points $(4,-3)$ and $(9,7)$ internally in the ration $3: 2$ is.
a) $(7,3)$
b) $(3,7)$
c) $(35,15)$
d) $(27,21)$
31. The point which divides the line segment joining the points $(7,-6)$ and $(3,4)$ in the ratio 1:2 internally lies on the
a) i quadrant
b) ii quadrant
c. iii quadrant
d) iv quadrant
32. If $P(9 a-2-b)$ divides line segment joining $A(3 a+1,-3)$ and $B(8 a, 5)$ in the ratio $3: 1$, then the values of a and b is
a) $a=-1, b=3$
b) $a=-1, b=-3$
c) $a=0, b=0$
d) $a=1, b=-3$
33. The point $(-4,6)$ divides the line segment joining the points $A(-6,10)$ and $B(3,-8)$ The points $A(-6,10)$ and $B(3,8)$ The ratio is
a) $1: 2$
b) $7: 2$
c) $2: 7$
d) $4: 1$
34. If $P\left(\frac{a}{3}, 4\right)$ is the mid-point of the line segment joining the points $Q(-6,5)$ and $R(-2,3)$ then the value of a is.
a) -4
b) -12
c) 12
d) -8
35. The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,3), \quad B(6,7)$ and $C(8,3)$ is
a) $(0,1)$
b) $(0,-1)$
c) $(-1,0)$
d) $(1,0)$
36. If $x-2 y+k=0$ is a median of the triangle whose vertices are at points $A=(-1,3), B(0,4)$ and $C(-5,2)$, then the value of k is
a) 2
b) 4
c) 6
d) 8
37. The perpendicular bisector of the line segment joining the points $A(1,5)$ and $B(4,6)$ cuts the y-axis at
a) $(0,13)$
b) $(0,-13)$
c) $(0,12)$
d) $(13,0)$
38. The point \qquad lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$
a) $(0,0)$
b) $(0,2)$
c) $(2,0)$
d) $(-2,0)$
39. A line intersects the y axis and x axis at the points P and Q respectively. If $(2,-5)$ is the midpoint of $P Q$ then the coordinated of P and Q are respectively.
a) $(0,5)$ and $(2,0)$
b) $(0,10)$ and $(-4,0)$
c) $(0,4)$ and $(-10,0)$
d) $(0,-10)$ and $(4,0)$
40. $\triangle A B C$ with vertices $A(-2,0) B(-2,0)$ and $C(0,2)$ is similar to $\triangle D E F$ with vertices $D(-4,0), E(4,0)$ and $F(0,4)$
a) True
b) False
c) Can't say
d) Partially True / False
41. If (a, b) is the mid-point of the line segment joining the points $A(10,-6)$ and $B(k, 4)$ and $a-2 b=1$, then the value of k is
a) 30
b) 22
c) 4
d) 40
42. Using section formula, check that the points $A(-3,-1), B(1,3)$ and $C(-1,1)$ are collinear
a) Yes
b) No
c) Can't say
d) None of these
43. The ratio, in which the Y axis divides the line segment joining the point $(5,-6)$ and $(-1,-4)$ is
a) $1: 5$
b) $5: 1$
c) $2: 4$
d) None of these
44. Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio 2:3
a) $(1,3)$
b) $(2,6)$
c) $(3,4)$
d) $(4,6)$
45. The ratio in which the point $P(m, 6)$ divides the join $A(-4,3)$ and $B(2,8)$ is
\qquad —.
a) 2:3
b) 1: 2
c) $3: 2$
d) 2:1
46. If the points $A(6,1), B(8,2) C(9,4)$ and $D(p, 3)$ are the vertices of a parallelogram, taken in order, then the value of p is.
a) 5
b) 6
c) 8
d) 7
47. The coordinates of point A, where $A B$ is the diameter of a circle whose centre is $(3,-4)$ and B is $(1,4)$ is '
a) $(2,0)$
b) $(12,-5)$
c) $5,-12)$
d) None of the above
48. The coordinates of the point of trisection of the line segment joining (2, -3) and $(4,-1)$ (when the point is near the point $(2,-3)$ is
a) $(10 / 3,-5 / 3)$
b) $(8 / 3,-7 / 3)$
c) $(3,-2)$
d) None of the above
49. List II gives the coordinates of the point P that divides the line segment joining the points in the given ratio given in List-I, match them correctly.

List I	List II		
P.	$A(-1,3)$ and $B(-5,6)$ internally in the ratio 1:2	1.	$(7,3)$
Q.	$A(-2,1)$ and $B(1,4)$ internally in the ratio 2: 1	2.	$(0,3)$
R.	$A(1,7)$ and $B(1,4)$ internally in the ratio $2: 1$	3.	$\left(\frac{11}{3}, \frac{26}{3}\right)$
S.	A(4, -3) and B $(8,5)$ internally in the ratio 3: 1	4.	$\left(\frac{7}{3}, 4\right)$

Codes

a) 4231
b) 3241
c) 4231
d) 3124
50. Match the following

List I		List II	
P.	Distance between ($-6,7$) and ($-1,-5$) is	1.	-3, 7
Q.	The value of k for which the distance between $A(k,-5)$ and $B(2,7)$ is 13 units	2.	$x+y=5$
R.	(x, y) is equidistant from $(5,1)$ and $(-1,5)$ if	3.	$3 x=2 y$
S.	$x, y(2,3)$ and $(8,5)$ internally in the ratio 3:1	4.	$\left(\frac{7}{3}, 4\right)$
PQRS PQRS PQRS PQRS			

a) 3421
b) 1243
c) 4132
d) 3241

II. Multiple choice questions

1. The ratio of the distances of point $P(3,4)$ from origin to that from y-axis is.
a) $3: 5$
b) $5: 3$
c) $5: 4$
d) $3: 4$
2. $A O B C$ is a rectangle whose three vertices are $A(0,4), O(0,0)$ and $B(3,0)$. The length of its diagonal is.
a) 25 units
b) 5 units
c) 3 units
d) 4 units
3. The distance between $A(10 \cos \theta, 0)$ and $B(10 \sin \theta, 0)$ is.
a) $\sqrt{10}$
b) 10
c) 5
d) $10 \sin \theta, \cos \theta$
4. Perimeter of the triangle formed by the points $O(0,0), A(a, 0)$ and $B(0, b)$ is
a) $a+b$
b) $a b$
c) $a+b+2 \sqrt{a b}$
d) $a+b+\sqrt{a^{2}-b^{2}}$
5. The points $(-8,0),(8,0),(0,5)$ are the vertices of a
a) right triangle
b) isosceles triangle
c) equilateral triangle
d) scalene triangle
6. The points $(-2,2)(8,-2)$ and $(-4,-3)$ are the verticies of a
a) equilateral triangle
b) isosceles triangle
c) right triangle
d) scalene triangle
7. The points $(1,7)(4,2)(8,-2)$ and $(-4,-3)$ are the verticies of a
a) parallelogram
b) rhombus
c) rectangle
d) square
8. The line segment joining the points $(2,-3)$ and $(5,6)$ is divided by x-axis in the ratio.
a) $2: 1$
b) $3: 1$
c) $1: 2$
d) $1: 3$
9. The line segment joining the points $(3,5)$ and $(-4,2)$ is divided by y-axis in the ratio.
a) $5: 3$
b) $3: 5$
c) $4: 3$
d) $3: 4$
10. If $(3,2),(4, k)$ and $(5,3)$ are collinear then k is equal to
a) $\frac{3}{2}$
b) $\frac{2}{5}$
C) $\frac{5}{2}$
d) $\frac{3}{5}$
11. If the points $(p, 0),(0, q)$ and $(1,1)$ are collinear then $\frac{1}{p}+\frac{1}{q}$
a) -1
b) 1
c) 2
d) 0
12. The coordinates of reflection of $Q(-1,-3)$ in x-axis are
a) $(1,3)$
b) $(-1,3)$
c) $(1,-3)$
d) none of these
13. The distance between the points $(-3,0)$ and $(3,0)$ is
a) 3 units
b) $3 \sqrt{2}$ units
c) $2 \sqrt{3}$ units
d) 6 units
14. If $P\left(\frac{a}{3}, 4\right)$ is the mid point of the line segment joining the points $A(-6,5)$ and $B(-2,3)$ then value of a is.
a) -4
b) -12
c) 12
d) -6
15. The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,3), B(6,7)$ and $C(8,3)$ is
a) $(0,1)$
b) $(0,-1)$
c) $(1,0)$
d) $(-1,0)$

Fill in the blanks

1. Distance of point $P(a, b)$ from origin is \qquad $\sqrt{a^{2}+b^{2}}$
2. Coordinates of mid point joining $P(\alpha, \beta)$ and $Q(\gamma, \delta)$ are \qquad $\left(\frac{\alpha+\gamma}{2}, \frac{\beta+\delta}{2}\right)$
3. For given three points A, B, C if out of three possible distances A, B, C if out of three possible distance $A B, B C$ and $C A$ the length of the greatest distance is equal to sum of other two distances than the points A, B, C are said to be Collinear
4. For given four points A, B, C, D if lengths, $A B, B C, C D$ and $D A$ are all equal then $A B C D$ is necessarily a rhombus
5. For given four points A, B, C, D if length $A B=B C=C D=D A$ and $A C \neq B D$ then $A B C D$ is a rhombus but not square
6. For given four points $A B C D$ to be a Parallelogram It is sufficient to show that opposite sides are equal.
7. For given four points A, B, C, D if $A B=C D B C=D A$ and $A C \neq B D$ then $A B C D$ is a Parallelogram but not rectangle.
8. If area of a triangle is zero square units then its verticies are collinear
9. The distance between (α, β) and $(-\alpha-\beta)$ is $2 \sqrt{\boldsymbol{\alpha}^{2}+\boldsymbol{\beta}^{2}}$.
10. If the point $P(x, y)$ divides the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ In the ratio $m: n$ the value of $y-x=\frac{m\left(y_{2}-x_{2}\right)+n\left(y_{1}-x_{1}\right)}{m+n}$

I. Very short answer question

1. A triangle with verticies $(4,0),(-1,-1)$ and $(3,5)$ is a / an
a) equilateral triangle
b) right- angled triangle
c) isosceles right - angled triangle
d) none of these

Let $A(4,0), B(-1,-1), C(3,5)$

$$
\begin{aligned}
A B & =\sqrt{(-1-4)^{2}+(-1-0)^{2}}=\sqrt{26} \\
B C & =\sqrt{(3+1)^{2}+(5+1)^{2}}=\sqrt{52} \\
A C & =\sqrt{(3-4)^{2}+(5-0)^{2}}=\sqrt{26} \\
\Rightarrow & A B^{2}+A C^{2}-B C^{2} \text { and } A B=A C
\end{aligned}
$$

Hence, triangle is an isosceles right angled triangle
2. A circle drawn with origin as the centre passes through $\left(\frac{13}{2}, 0\right)$. The point which does not lie in the interior of the circle is
a) $\left(\frac{3}{4}, 1\right)$
b) $\left(2, \frac{7}{3}\right)$
c) $\left(5, \frac{1}{2}\right)$
d) $\left(-6, \frac{5}{2}\right)$

Distance of $\left(-6, \frac{5}{2}\right)$ from centre of the circle i.e. $(0,0)$
$=\sqrt{(0+6)^{2}+\left(0-\frac{5}{2}\right)^{2}}=\sqrt{36+\frac{25}{4}}$
$=\sqrt{\frac{144+25}{4}}=\frac{13}{2}=$ radius circle
3. If the distance between the points $(4, p)$ and $(1,0)$ is 5 units, then the value of p is
a) 4 only
b) ± 4
c) -4 only
d) 0
b) $\sqrt{(4-1)^{2}+(p-0)^{2}}=5$
$\Rightarrow \quad 3^{2}+p^{2}=5^{2} \Rightarrow p^{2}=25-9=16 \Rightarrow p= \pm 4$
4. Find the distance of a point $P(x, y)$ from the origin

Let the coordinates of the origin be $O(0,0)$
By using distance formula
Distance PO $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Distance PO $=\sqrt{(0-x)^{2}+(0-y)^{2}}$

$$
=\sqrt{(-x)^{2}+(-y)^{2}}=\sqrt{(x)^{2}+(y)^{2}} \text { units }
$$

5. If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k ?

Using distance formula

$$
\begin{aligned}
A B & =\sqrt{(1-4)^{2}+(0-k)^{2}} \\
\Rightarrow \quad 5 & =\sqrt{(-3)^{2}+(-k)^{2}} \\
\Rightarrow \quad 5 & =\sqrt{9+k^{2}}
\end{aligned}
$$

On squaring, we get

$$
\begin{aligned}
& (5)^{2}=\left({\sqrt{9+k^{2}}}^{2}\right)=9+k^{2} \\
\Rightarrow & 25-9=k^{2} \Rightarrow \quad k^{2}=16 \\
\therefore & \quad \mathrm{k}= \pm \sqrt{16}= \pm 4
\end{aligned}
$$

6. Show that $(1,-1)$ is the centre of the circle circumscribing the triangle whose angular points are (4, 3), (-2, 3) and (6, -1)
$P(1,-1)$ will be the centre of the circle circumscribing the triangle whose angular points are $A(4,3) B(-2,3)$ and $C(6,-1)$ if $P A=P B=P C$

Now PA $=\sqrt{(4-1)^{2}+(3+1)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
$P B=\sqrt{(-2-1)^{2}+(3+1)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
$P C=\sqrt{(-2-1)^{2}+(3+1)^{2}}=\sqrt{25}=5$
Hence the result
7. Find the coordinates of a point A, where $A B$ is diameter of a circle whose centre is $(2,-3)$ and B is the point $(1,4)$
$A B$ is diameter of the circle.
Let C be centre of circle, coordinates of C are $(2,-3)$
So C is mid-point of $A B$ (diameter)
Let coordinates of A are (x, y)
$\therefore \frac{x+1}{2}=2$ and $\frac{y+4}{2}=-3$
$\Rightarrow x+1=4$ and $y+4=-6$
$\Rightarrow x=3$ and $\mathrm{y}=-10$
\therefore the coordinates of A are $(3,-10)$
8. If $P(1,2) Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram PQRS, then
a) $a=2, b=4$
b) $a=3, b=4$
c) $a=2, b=3$
d) $a=3 b=5$

Mid - point of $P R=\left(\frac{1+5}{2}, \frac{2+7}{2}\right)=\left(3, \frac{9}{2}\right)$
$S(a, b) \quad R(5,7)$

Mid - point of SQ $=\left(\frac{4+a}{2}, \frac{6+b}{2}\right)$
Diagonal of parallelogram bisect each other.

$$
\begin{array}{ll}
\therefore & \left(3, \frac{9}{2}\right)=\left(\frac{4+a}{2}, \frac{6+b}{2}\right) \\
\Rightarrow & 3=\frac{4+a}{2}, \frac{9}{2}=\frac{6+b}{2} \\
\Rightarrow & a=2 \quad b=3
\end{array}
$$

9. A straight line is drawn joining the points $(3,4)$ and $(5,6)$. If the line is extended, the ordinate of the point on the line, whose abscissa is -1 is \qquad .

Let line is extended, $C(-1, y)$ such that

$$
\begin{aligned}
& A B=B C=K: 1 \\
\therefore & \frac{(-1) \times \boldsymbol{K}+\mathbf{3}}{\boldsymbol{K}+\mathbf{1}}=5 \\
\Rightarrow & K=-\frac{1}{3} \\
\therefore \quad & Y=0
\end{aligned}
$$

10. $A(5,1), B(1,5)$ and $C(-3,-1)$ are the vertices of $\triangle A B C$. Find the length of median $A D$.
$A D$ is the median of $\triangle A B C$
$\therefore \quad D$ is mid - point of $B C$ Coordinates of D are :

$$
\left(\frac{1-3}{2}, \frac{5-1}{2}\right)=\left(\frac{-2}{2}, \frac{4}{2}\right)=(-1,2)
$$

Length of $A D=\sqrt{(5+1)^{2}(1-2)^{2}}$

$$
=\sqrt{36+1}=\sqrt{37} \text { units }
$$

11. Find the coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$

Coordinates of the centroid of a triangle whose vertices are $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
& \left(x_{3}, y_{3}\right) \text { are }\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}++y_{3}}{3}\right) \\
& \quad=\left(\frac{0+8+8}{3}, \frac{6+12+0}{3}\right)=\left(\frac{16}{3}, \frac{18}{3}\right)=\left(\frac{16}{3}, 6\right)
\end{aligned}
$$

12. The coordinates of one end point of the diameter is $(4,-1)$ and centre of the circle is $(1,-3)$. Find the coordinates of the other end of the diameter.

$(1,-3)$
Given that coordinates of one end point of the diameter is $(4,-1)$ and centre of the circle is $(1,-3)$

Let coordinates of the other end of the diameter be (x, y)
We know that the centre of the circle $(1,-3)$ is the mid-point of diameter.

$$
\begin{array}{ll}
\Rightarrow & \frac{4+x}{2}=1 \text { and } \frac{-1+y}{2}=-3 \\
\Rightarrow & 4+x=2 \text { and }-1+y=-6 \\
\Rightarrow & x=-2 \text { and } y=-6+1=-5
\end{array}
$$

Thus, coordinates of the other end of the diameter are $(-2,-5)$
13. Point P divides the line segment joining the points $A(2,-5)$ and $B(5,-2)$ in the ratio 2: 3. Name the quadrant in which P lies.

$$
\begin{aligned}
x & =\frac{2 \times 5+3 \times 2}{2+3} \\
y & =\frac{2 \times 2+3(-5)}{2+3} \\
\Rightarrow \quad x & =\frac{10+6}{5}=\frac{16}{5}=3.2 \\
\Rightarrow \quad y & =\frac{4-15}{5}=\frac{-11}{5}=-2.2
\end{aligned}
$$

Point $P(3.2,-2.2)$ lies in IV quadrant
14. In figure $P(5,-3)$ and $Q(3, y)$ are the points of trisection of the line segment joining $A(7,-2)$ and $B(1,-5)$ Find y
$\because \quad A P=P Q=B Q$

$\Rightarrow \quad Q$ is mid-point of $P B$
$\Rightarrow \quad y=\frac{-3+(-5)}{2}=-4$
15. If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k ?

Let $A(4, k), B(1,0) \Rightarrow$
$A B=5$ given

$$
\begin{array}{lc}
\Rightarrow & \sqrt{(4-1)^{2}+(k-0)^{2}}=5 \\
\Rightarrow & \sqrt{3^{2}+k^{2}}=5 \\
\Rightarrow & k^{2}+9=25 \\
\Rightarrow & k^{2}=25-9=16 \\
\therefore & \mathrm{k}= \pm 4
\end{array}
$$

16. Find the distance of a point $P(x, y)$ from the origin. Using distance formula for distance between
$\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

\therefore Reqd distance $=\sqrt{(x-0)^{2}+(y-0)^{2}}$

$$
=\sqrt{x^{2}+y^{2}}
$$

17. Find distance between $A(10 \cos \theta, 0)$ and $B(0,10 \sin \theta)$

$$
\begin{aligned}
& A B=\sqrt{(0-10 \cos \theta)^{2}+(10 \sin \theta-0)^{2}} \\
& =\sqrt{100 \cos ^{2} 0+100 \sin ^{2} \theta} \\
& =\sqrt{100\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} \\
& =\sqrt{100}=10 \text { units }
\end{aligned}
$$

18. Find the coordinates of reflection of $Q(-1,-3)$ in x-axis.

Reflection of $Q(-1,-3)$ is $(-1,3)$
Q (-1, -3)

Q (-1, -3)

19. Find the coordinates of the point on y-axis which is nearest to the point $(-2,5)$

To get the coordinates of the point on y - axis which is nearest to the point $P(-2,5)$ drop a perpendicular $P M$ from on y-axis

Coordinates of M are $(0,5)$ which is the nearest point to $P(-2,5)$
20. If the point $(0,2)$ is equidistant from the points $(3, k)$ and $(k, 5)$, find the value of k,

Let the points be $P(0,2), A(3, k)$ and $B(k, 5)$
Now,
$P A=P B$

$$
\begin{array}{cc}
& \text { Or, } \quad P A^{2}=P B^{2} \\
\Rightarrow & (3-0)^{2}+(K-2)^{2}=(K-0)^{2}+(5-2)^{2} \\
\Rightarrow & 9+(K-2)^{2}=k^{2}+9 \\
\Rightarrow & k^{2}=(k-2)^{2} \\
\Rightarrow & \quad \mathrm{k}= \pm(k-2) \\
& \\
& \mathrm{k}=(\mathrm{k}-2) \text { (impossible) } \\
\therefore & \mathrm{k}=-(\mathrm{k}-2)=-\mathrm{k}+2 \\
& \\
& \text { Or } \quad 2 \mathrm{k}=2 \text { or } \mathrm{k}=1 .
\end{array}
$$

Short answer type questions I

1. Find the linear relation between x and y such that $P(x, y)$ is equidistant from the points $A(1,4)$ and $B(-1,2)$
$P(x, y)$ is equidistant from the points $A(1,4)$ and $B(-1,2)$
$P A=P B$

$$
\sqrt{(x-1)^{2}+(y-4)^{2}}=\sqrt{(x-1)^{2}+(y-2)^{2}}
$$

Squaring both sides, we get
$(x-1)^{2}+(y-4)^{2}=(x-1)^{2}+(y-2)^{2}$
$x^{2}-2 x+1+y^{2}-8 y+16=x^{2}-2 x+1+y^{2}-4 y+4$
$-2 x+17-8 y=2 x-4 y+5$
$-4 x-4 y=-12$
$x+y=3$
2. If the point (x, y) is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$. Prove that $b x=a y$

Consider that point $\mathrm{P}(x, y)$ is equidistant from
$A(a+b, b-a)$ and $B(a-b, a+b)$
$\therefore P A=P B$

$$
\begin{aligned}
& \sqrt{[x-(a+b)]^{2}+[y-(b-a)]^{2}} \\
& =\sqrt{[x-(a-b)]^{2}+[y-(a+b)]^{2}}
\end{aligned}
$$

Squaring both sides, we get

$$
\begin{aligned}
& x^{2}+(a+b)^{2}-2(a+b) x+y^{2}+(b-a)^{2}-2(b-a) y \\
= & x^{2}+(a-b)^{2}-2(a-b) x+y^{2}+(a+b)^{2}-2 y(a+b) \\
\Rightarrow & -2(a+b) x-2(b-a) y=-2(a-b) x-2 y(a+b) \\
\Rightarrow & 2 x(a-b)+2 y(a+b) y=2 x(a+b)+2 y(b-a) \\
\Rightarrow & x(a-b)+y(a+b)=x(a+b)+y(b-a) \\
\Rightarrow & x(a-b-a-b)=y(b-a-a-b)
\end{aligned}
$$

$-2 b x=-2 a y$
$b x=a y$
3. Find the point on y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$

Let point on y-axis be $(0, a)$
Now distance of this point from $(5,-2)$ is equal to distance from point $(-3,2)$
i.e. $\sqrt{5^{2}+(-2-a)^{2}}=\sqrt{(3)^{2}+(a-2)^{2}}$

Squaring and simplifying we get
$25+4+a^{2}+4 a=9+a^{2}+4-4 a$
$\Rightarrow 8 a=-16 \Rightarrow a=-2$
Point (0, -2)
4. Write the coordinates of a point P on x-axis which is equidistant from the points $A(-2,0)$ and $B(6,0)$

Let coordinates of the P are $(x, 0)$
ATO

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{BP} \\
& \sqrt{(x+2)^{2}+(0-0)^{2}}=\sqrt{(x-6)^{2}+(0-0)^{2}} \\
& (x+2)^{2}=(x-6)^{2}
\end{aligned}
$$

$x^{2}+4+4 x=x^{2}+36-12 x$
$16 x=32 \Rightarrow x=2$
\therefore Coordinates of the point P are $(2,0)$
5. The centre of a circle is $(2 \alpha-1,7)$ and it passes through the point $(-3,-1)$. If the diameter of the circle is 20 units then find the value of α.
$O A=10$ units.

$\Rightarrow O A=\sqrt{(2 \alpha-1+3)^{2}+(7+1)^{2}}$
$\Rightarrow 10=\sqrt{4 \alpha^{2}+4+8 \alpha+64}$
Squaring $100-4 \alpha^{2}+8 \alpha+68$
$\Rightarrow 4 \alpha^{2}+8 \alpha-32=0 \Rightarrow \alpha^{2}+2 \alpha-8=0$
$\Rightarrow \alpha^{2}+4 \alpha-2 \alpha-8=0 \Rightarrow \alpha(\alpha+4)-2(\alpha+4)=0$
$\Rightarrow(\alpha+4)(\alpha-2)=0$
$\therefore \alpha=-4 \alpha=2$
6. Use distance formula to show that the points $A(-2,3), B(7,0)$ are collinear

$$
\begin{aligned}
A B & =\sqrt{(1+2)^{2}+(2-3)^{2}}=\sqrt{9+1}=\sqrt{10} q \\
B C & =\sqrt{(7-1)^{2}+(0-2)^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10} \\
A C & =\sqrt{(7+2)^{2}+(0-3)^{2}} \\
& =\sqrt{81+9}=\sqrt{90}=3 \sqrt{10}
\end{aligned}
$$

$$
\text { Since } A B+B C=\sqrt{10}+2 \sqrt{10}
$$

$$
=(1+2) \sqrt{10}=3 \sqrt{10}=A C
$$

Hence the points A, B and C are collinear.
7. Show that the points $A(a, a), B(-a,-a)$ and $C(-a \sqrt{3}, a \sqrt{3})$ form an equilateral triangle.

$$
\begin{aligned}
A B & =\sqrt{(-a-a)^{2}+(-a-a)^{2}} \\
& =\sqrt{(-2 a)^{2}+(-2 a)^{2}} \\
& =\sqrt{4 a^{2}+4 a^{2}}=\sqrt{8 a^{2}}=2 \sqrt{2} a \\
B C & =\sqrt{(-a \sqrt{3}+a)^{2}+(a \sqrt{3}+a)^{2}} \\
& =\sqrt{3 a^{2}+a^{2}-2 \sqrt{3} a^{2}+3 a^{2}+a^{2}+2 \sqrt{3} a^{2}} \\
& =\sqrt{8 a^{2}}=2 \sqrt{2} a \\
A C & =\sqrt{(-a \sqrt{3}-a)^{2}+(a \sqrt{3}-a)^{2}} \\
& =\sqrt{3 a^{2}+a^{2}+2 \sqrt{3} a^{2}+3 a^{2}+a^{2}-2 \sqrt{3} a^{2}} \\
& =\sqrt{8 a^{2}}=2 \sqrt{2} a
\end{aligned}
$$

Since $A B=B C=A C \therefore \triangle A B C$ is equilateral triangle
8. Find the ratio in which $P(4, m)$ divides the line segment joining the points $A(2,3)$ and $B(6,-3)$ Hence find m.

Let $p(4, m)$ divides $A(2,3)$ and $B(6,-3)$ in the ration $m_{1}: m_{2}$,
[By using section formula]

$$
\begin{array}{ll}
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, & y=\frac{m_{1} y_{2+} m_{2} y_{1}}{m_{1}+m_{2}}, \\
\Rightarrow & 4=\frac{m_{1} \times 6+m_{2} \times 2}{m_{1}+m_{2}} \\
\Rightarrow & 4 m_{1}+4 m_{2}=6 m_{1}+2 m_{2} \\
\Rightarrow & 4 m_{2}+2 m_{2}=6 m_{1}+2 m_{1} \\
\Rightarrow & 2 m_{1}+2 m_{1} \\
\therefore & m_{1}: m_{2}=1: 1
\end{array}
$$

$$
\text { Also, } \quad m=\frac{m_{1} \times(-3)+m_{2} \times 3}{m_{1}+m_{2}}
$$

$=\quad \frac{1 \times(-3)+1 \times 3}{2}=\frac{-3+3}{2}=\frac{0}{2}=0$
$\therefore \quad m=0$
9. If the point $C(-1,2)$ divides the line segment $A B$ in the ratio $3: 4$, where the coordinates of A are $(2,5)$, find the coordiantes of B.

$$
\begin{array}{ccc}
\qquad \begin{array}{c}
3 \\
A(2,5)
\end{array} & C(-1,2) & B(x, y) \\
\begin{array}{lll}
\frac{(3 \times x+4 \times 2)}{3+4}=-1 & \Rightarrow & \\
3 x+8=-7 & \Rightarrow & 3 x=-15 \\
x=-5 & &
\end{array} &
\end{array}
$$

$\therefore \quad$ Coordinates of B are $(-5,-2)$

$$
\begin{aligned}
& \frac{(3 \times y+4 \times 5)}{3+4}=2 \Rightarrow \frac{3 y+20}{7}=2 \\
& 3 y+20=14 \Rightarrow 3 y=14-20 \\
& 3 y=-6 \Rightarrow y=-2
\end{aligned}
$$

10. The point R divides the line segment $A B$ where $A(-4,0), B(0,6)$ are such that $A R=\frac{3}{4} A B$. Find the coordinates of R.
A $(-4,0)$
$R(x, y)$
B $(0,6)$

Let coordinates of R be (x, y)

$$
\begin{gathered}
A R=\frac{3}{4} A B \quad \text { (Given) } \\
B u t, A R+R B \Rightarrow A B=\frac{3}{4} A B+R B=A B \\
\Rightarrow \quad R B=A B-\frac{3}{4} A B=\frac{4 A B-3 A B}{4}=\frac{A B}{4} \\
\frac{A R}{R B} \quad=\frac{\frac{3}{4} A B}{\frac{1}{4} A B}=\frac{3}{4}: \frac{1}{4}=\frac{3}{4} \times \frac{4}{1}=3: 1 \\
x=\frac{3 \times 0+1 \times(-4)}{3+1}=\frac{0-4}{4}=\frac{-4}{4}=-1
\end{gathered}
$$

and $\mathrm{y}=\frac{3 \times 6+1 \times 0}{3+1}=\frac{18+0}{4}=\frac{18}{4}=\frac{9}{2}$
Thus coordinates of R are $\left(-1, \frac{9}{2}\right)$
11. If $A(4,-8), B(3,6)$ and $C(5,-4)$ are the vertices of $\triangle A B C, D$ is the mid point of $B C$ and P is a point on $A D$ joined such that $\frac{A P}{P D}=2$, find the coordinates of P.
$A(4,-8) B(3,6)$ and $C(5,-4)$ are verticies of $\triangle A B C$ and D is the mid-point of $B C$
\therefore Coordinates of D are

$$
\left(\frac{3+5}{2}, \frac{6+(-4)}{2}\right)=\left(\frac{8}{2}, \frac{2}{2}\right)=(4,1) z
$$

$$
\begin{aligned}
& \frac{A P}{P D}=2 \\
\Rightarrow \quad A P & : P D=2: 1
\end{aligned}
$$

$$
\Rightarrow \text { Coordinates of } P \text { are }\left(\frac{2 \times 4+1 \times 3}{2+1}, \frac{2 \times 1+1 \times 6}{2+1}\right)
$$

$$
=\left(\frac{8+3}{3}, \frac{2+6}{3}\right)=\left(\frac{11}{3}, \frac{8}{3}\right)
$$

12. The line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by $2 x-y+k=0$. find the value of k
$\underset{A(2,1)}{\bullet}$

Since point P trisects $A B$, then $P A: P B=1: 2$
Coordinates of P are

$$
x=\frac{5+4}{3}=3 \text { and } y=\frac{-8+2}{3}=-2
$$

Now P lies on $2 x-y+k=0$
On putting values of x and y, we get

$$
6+2+k=0 \Rightarrow k=-8
$$

13. If C is a point lying on the line segment $A B$ joining $A(1,1)$ and $B(2,-3)$ such that $3 A C=C B$, then find the coordinates of C.
A (1, 1)
$C(x, y)$
B $(2,-3)$

$$
\frac{\mathrm{AC}}{\mathrm{CB}}=\frac{1}{3}
$$

(Given)
Coordinates of C

$$
\begin{aligned}
& (x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2+} m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
\therefore & x=\frac{2+3}{4}=\frac{5}{4} \text { and } y=\frac{-3+3}{1+3}=0 \\
& (x, y)=\left(\frac{5}{4}, 0\right)
\end{aligned}
$$

14. The coordinates of the mid-point of the line joining the points (3p, 4) and $(-2,2 q)$ are $(5, p)$. Find the values of p and q.
A $(3 p, 4)$
$R(5, p)$
$B(-2,2 q)$
$R(5, p)$ is the mid-point of the line segment joining the points $A(3 p, 4)$ and $B(-2,2 q)$.

$$
\begin{array}{ll}
\therefore & \left(\frac{3 \mathbf{p}-2}{2}, \frac{4+2 \mathbf{q}}{2}\right)=(5, p) \\
\Rightarrow & \frac{3 \mathbf{p}-2}{2}=5 \text { and } \frac{4+2 \mathbf{q}}{2}=P \\
\Rightarrow & 3 p=10+2 \text { and } 4+2 q=2 p \tag{ii}\\
\Rightarrow & 3 p=12 \Rightarrow
\end{array}
$$

Substituting $p=4$ from (i) in (ii), we get

$$
\begin{array}{ll}
& 4+2 q=8 \quad \Rightarrow \quad 2 q=4 \Rightarrow q=2 \\
\therefore & p=4 \text { and } q=2
\end{array}
$$

15. Find the ratio in which the line segment joining $(2,-3)$ and $(5,6)$ is divided by x - axis,

Let the required ratio be k: 1
Then the coordinates of the point of division are

$$
\left(\frac{2 k+5}{k+1}, \frac{-3 k+6}{k+1}\right)
$$

This point lies on the x-axis whose equation is $y=0$

$$
\therefore \quad \frac{-3 k+6}{k+1}=0 \Rightarrow 3 k=6, \text { or } k=2
$$

\therefore Line segment joining the two points is divided in the ratio 2: 1 internally by x-axis.
16. In given figure $B D$ bisects $\angle B$. Find the length of $B D$

Here, BD bisects $\angle B$
$\therefore \quad \frac{A D}{C D}=\frac{A B}{B C}$
(using angle bisector property)

$$
\begin{align*}
& A B=\sqrt{1^{2}+7^{2}}+=\sqrt{50} \tag{i}\\
& B C=\sqrt{(2-1)^{2}+(0-7)^{2}}+=\sqrt{50}
\end{align*}
$$

\therefore (i) becomes

$$
\frac{A D}{C D}=\frac{\sqrt{50}}{\sqrt{50}}=\frac{1}{1}=D \text { bisects } A C
$$

Coordinates of D are

$$
\begin{aligned}
\left(\frac{\mathbf{0 + 2}}{2}, \frac{\mathbf{0 + 0}}{2}\right) & =(1,0) \\
B D=\sqrt{(1-1)^{2}+(0-7)^{2}} & =7
\end{aligned}
$$

$$
\therefore \quad B D=7 \text { units }
$$

17. Find the value of x for which the distance between the point $P(2,-3)$ and $Q(x, 5)$ is 10 unit

According as given $P Q=10$ units

$$
\Rightarrow \quad \sqrt{(2-x)^{2}+(-3-5)^{2}}=10
$$

Squaring both sides, we have

$$
\begin{array}{rr}
& 4+x^{2}-4 x+64=100 \\
\Rightarrow & x^{2}-4 x-32=0 \\
\Rightarrow & x^{2}-8 x+4 x-32=0 \\
\Rightarrow & x(x-8)+4(x-8)=0 \\
\Rightarrow & \quad(x-8)(x+4)=0 \\
& \triangle A B C x=8 \text { or } x=-4
\end{array}
$$

18. Find the ratio in which y - axis divides the line segment joining the points $A(5,-6)$ and $B(-1,-4)$ Also find the coordinates of the point of division.

Let P be a point on the y-axis dividing the line segment $A B$ in the ration $k: l$ using the section formula we get. DIAGRAM
$(0, \alpha)=\left[\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right]$
$\Rightarrow \quad \frac{-k+5}{k+1}=0, \frac{-4 k-6}{k+1}=\alpha$

$(5,-6)$

Now, $\quad \frac{-k+5}{k+1}=0$,
$\Rightarrow-k+5=0$
$\Rightarrow \quad \mathrm{k}=5$
Also $\frac{-4 k-6}{k+1}=\propto$

$$
\begin{array}{rlrl}
\Rightarrow & \frac{-4 \times 5-6}{5+1} & =\propto \\
\Rightarrow & \propto=-\frac{13}{3}
\end{array}
$$

Thus the y-axis divides the line segment in the ration $5: 1$
Also the coordinates of the point of division are $\left(0,-\frac{13}{3}\right)$
19. Let P and Q be the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$ such that P is nearer to A. Find the coordinates of P and Q

Using section formula:

$$
\begin{aligned}
& \begin{aligned}
P(x, y) & =\left[\left\{\frac{(-7 \times 1)+(2 \times 2)}{1+2}\right\},\left\{\frac{(1 \times 4)+(2 \times(-2))}{1+2}\right\}\right] \\
& =(-1,0) \\
Q(a, b) & =\left[\left\{\frac{(-7 \times 2)+(1 \times 2)}{2+1}\right\},\left\{\frac{(2 \times 4)+(1 \times(-2))}{2+1}\right\}\right] \\
=\left(\frac{-12}{3},\right. & \left.\frac{6}{3}\right)=(-4,2)
\end{aligned}
\end{aligned}
$$

20. Find the ration in which $P(4, m)$ divides the line segment joining the points $A(2,3)$ and $B(6,-3)$. Hence find m,

Let P divides $A B$ in the ration $k: 1$ By section formula

$$
P \rightarrow(4, m) \rightarrow\left(\frac{6 k+2}{k+1}, \frac{-3 k+3}{k+1}\right)
$$

$\Rightarrow \quad \frac{6 k+2}{k+1}=4$
$\Rightarrow \quad 6 \mathrm{k}+2=4 \mathrm{k}+4$
$\Rightarrow \quad 2 \mathrm{k}=2$
$\Rightarrow \quad \mathrm{k}=1$
$\therefore \quad$ Ratio is $1: 1$

Hence

$$
m=\frac{-3 k+3}{k+1}=\frac{-3(1)+3}{1+1}=0
$$

$\Rightarrow \quad m=0$
21. Point $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,3 y)$. Find the values of y. Hence find the radius of the circle.

$$
\Rightarrow \quad \begin{gathered}
\text { By mid-point formula } \\
\frac{y+7}{2}=-3 y \\
y=-1
\end{gathered}
$$

Now, $A(-1,1)$ and $O(2,3)$
\therefore Radius $=A O=\sqrt{(2+1)^{2}+(3+1)^{2}}=5$ units
22. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $R(-3,6)$, find the coordinates of P.

Sol. Let point P be $(2 a, a)$

$$
\begin{aligned}
& P Q=P R(\text { given }) \\
& \begin{array}{c}
\Rightarrow \sqrt{(2 a-2)^{2}+(a-(-5))^{2}} \\
=\sqrt{\left.(2 a-(-3))^{2}+(a-6)\right)^{2}} \\
\Rightarrow \sqrt{(2 a-2)^{2}+(a \bar{\mp} 5)^{2}} \\
\quad=\sqrt{(2 a \mp 3)^{2}+(a+6)^{2}}
\end{array} \\
& \begin{array}{c}
\Rightarrow \sqrt{4 a^{2}+4-8 a+a^{2}+25+10 a} \\
\quad=\sqrt{4 a^{2}+9+12 a+a^{2}+36+10 a-12 a}
\end{array} \\
& \Rightarrow \sqrt{5 a^{2}+2 a+29}=\sqrt{5 a^{2}+45}
\end{aligned}
$$

Squaring both sides, we get

$$
\begin{array}{rlrl}
& 5 a^{2}+2 a+29=5 a^{2}+45 \\
\Rightarrow & 5 a^{2}+2 a-5 a^{2}=45-29 \\
\Rightarrow & & 2 a=16 \\
\Rightarrow & & a=8
\end{array}
$$

Thus, the coordinates of the point P are $(16,8)$
23. Prove that the points $(3,0),(6,4)$, and $(-1,3)$ are the vertices of a right angled isosceles triangle,

Let A, B and C be the points $(3,0),(6,4)$, and $(-1,3)$ respectively.
Using Distance formula:

$$
\begin{aligned}
& A B \quad=\sqrt{6-3^{2}+(4-0)} \\
& =\sqrt{9+16}=\sqrt{25}=5 \\
& B C \quad=\sqrt{(6+1)^{2}+(4-3)^{2}} \\
& =\sqrt{49+1}=\sqrt{50}=5 \sqrt{2} \\
& \text { Observe } A C^{2}=\sqrt{(3+1)^{2}+(0+3)^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5 \\
& A B=A C=5 \\
& \Rightarrow \triangle A B C \text { is isosceles triangle. }
\end{aligned}
$$

Also, $(5)^{2}+(5)^{2}=50=(5 \sqrt{2})^{2}$
$\Rightarrow \quad A C^{2}+A B^{2}=B C^{2}$
$\Rightarrow \triangle A B C$ is right angled at A.
24. If $(-2,3),(4,-3)$ and $(4,5)$ are the mid-points of the sides of a triangle, find the coordinates of the centroid,

Let the given triangle be $A B C$ and D, E, F are mid-points of sides
$A B, B C, C A$ respectively, where $D(-2,3), E(4,-3), F(4,5)$. Since centroid of a triangle is same as centroid of triangle obtained by joining mid-points of sides of main triangle.

\because Centroid of $\triangle A B C=$ Centroid of $\triangle D E F$
$=\left(\frac{-2+4+4}{3}, \frac{3-3+5}{3}\right)=\left(2, \frac{5}{3}\right)$.
25. If $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$, then show that the line $5 x+3 y+2=0$ passes through the point $(-1,3 p)$.

Using Mid point formula

$$
\begin{gathered}
\left(\mathbf{1}, \frac{p}{3}\right)=\left(\frac{2+0}{2}, \frac{0+\frac{2}{9}}{2}\right) \\
\left(\mathbf{1}, \frac{p}{3}\right)=\left(\mathbf{1}, \frac{1}{9}\right) \\
\Rightarrow \quad \frac{p}{3}=\frac{\mathbf{1}}{9} \\
\Rightarrow \quad p=\frac{1}{3} \\
\because(-1,3 p)=\left(-\mathbf{1}, 3 x \frac{1}{3}\right)=(-1,1) \\
\text { Plug in } x=-1, y=1 \text { in } 5 x+3 y+2=0 \\
5(-1)+3(1)+2=0 \\
\quad-5+5=0 \text { (satisfied) } \\
\Rightarrow(-1,3 p) \text { i.e. }(-1,1) \text { lies on line } 5 x+3 y+2=0
\end{gathered}
$$

Short answer type questions II

1. Show that the points $A(1,2), B(5,4) C(3,8)$ and $D(-1,6)$ are the vertices of a square.
$A B=\sqrt{4^{2}+2^{2}}=\sqrt{16+4}=\sqrt{20}$
$B C=\sqrt{(-2)^{2}+(4)^{2}}=\sqrt{4+16}=\sqrt{20}$
$C D=\sqrt{(-4)^{2}+(-2)^{2}}=\sqrt{16+4}=\sqrt{20}$
$D A=\sqrt{(-2)^{2}+(4)^{2}}=\sqrt{4+16}=\sqrt{20}$
Here $A B=B C=C A=D A$
$A C=\sqrt{2^{2}+6^{2}}=\sqrt{40}$
And $B D=\sqrt{(-6)^{2}+(2)^{2}}=\sqrt{36+4}=\sqrt{40}$
All slides of quadrilateral are equal and diagonals are equal.
$\therefore A B C D$ is square
2. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a parallelogram.

D $(2,4)$

$$
A(1,0)
$$

$$
B(5,3)
$$

$A B=\sqrt{(5-1)^{2}+(3-0)^{2}}=\sqrt{16+9}=5$
$D C=\sqrt{(2+2)^{2}+(7-4)^{2}}=\sqrt{16+9}=5$
$B C=\sqrt{(5-2)^{2}+(3-7)^{2}}=\sqrt{9+16}=5$
$A D=\sqrt{(1+2)^{2}+(0-0)^{2}}=\sqrt{9+16}=5$
Or
Alternatively

The given points are the verticies of a parallelogram
Mid point of $A C=\left(\frac{1+2}{2}, \frac{0+7}{2}\right)=\left(\frac{3}{2}, \frac{7}{2}\right)$
Mid point of $\mathrm{BD}=\left(\frac{5-2}{2}, \frac{3+4}{2}\right)=\left(\frac{3}{2}, \frac{7}{2}\right)$
Mid point of $A C=$ mid points of $B D$
\Rightarrow diagonals bisect each other
\therefore The given points are the verticies of a parallelogram
3. Show that points $A(7,5), B(2,3)$ and $C(6,-7)$ are the verticies of a right triangle. Also find its area.
$A B=\sqrt{(2-7)^{2}+(3-5)^{2}}=\sqrt{25+4}=\sqrt{29}$
$B C=\sqrt{(6-2)^{2}+(-7-3)^{2}}=\sqrt{16+100}=\sqrt{116}$
$C A=\sqrt{(7-6)^{2}+(5+7)^{2}}=\sqrt{1+144}=\sqrt{145}$
Since, $A B^{2}+B C^{2}=29+116=145=C A^{2}$
$\therefore \triangle A B C$ is right angles at B

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} A B \times B C \\
& =\frac{1}{2} \sqrt{29} \cdot \sqrt{116}=\frac{1}{2} \sqrt{29} \cdot 2 \cdot \sqrt{29}=29
\end{aligned}
$$

4. Two points $A(1,0)$ and $B(-1,0)$ with a variable point $P(x, y)$ satisfy the relation $\quad A P-B P=1$. Show that $12 x^{2}-4 y^{3}=3$.

Given $A P-B P=1$
$\Rightarrow \sqrt{(x-1)^{2}+(y-0)^{2}}-\sqrt{(x+1)^{2}+(y-0)^{2}}=1$
$\Rightarrow \sqrt{(x-1)^{2}+y^{2}}=1+\sqrt{(x+1)^{2}+y^{2}}$
Squaring both sides

$$
\begin{aligned}
& (x-1)^{2}+y^{2}=1 \quad(x+1)^{2}+y^{2}+2 \sqrt{(x-1)^{2}+y^{2}} \\
& \Rightarrow \quad x^{2}+1-2 x=1+x^{2}+2 x+2 \sqrt{(x+1)^{2}+y^{2}} \\
& \Rightarrow \quad-1-4 x=2 \sqrt{(x+1)^{2}+y^{2}}
\end{aligned}
$$

Squaring both sides

$$
\Rightarrow \quad x^{2}+1-2 x=1+x^{2}+1+2 x+2 \sqrt{(x+1)^{2}+y^{2}}
$$

$$
\Rightarrow \quad-1-4 x=2 \sqrt{(x+1)^{2}+y^{2}}
$$

Squaring both sides

$$
\begin{aligned}
& (-1-4 x)^{2}=4(x+1)^{2}+y^{2} \\
\Rightarrow & 1+16 x^{2}+8 x=4 x^{2}=4 x^{2}+1+2 x+y^{2} \\
\Rightarrow & 12 x^{2}-4 y^{2}=3
\end{aligned}
$$

5. If coordinates of two adjacent vertices of a parallelogram are $(3,2)$, $(1,0)$ and diagonals bisect each other at $(2,-5)$ find coordinates of the other two vertices.

Let $A B C D$ be a parallelogram, diagonals $A C$ and $B D$ intersects at O.
Let $A(3,2), B(1,0)$ and $O(2,-5)$ are coordinates.
Let coordinates of C are (a, b) and coordinates of D are (x, y). As diagonals of parallelogram bisect each other at 0 . So, O is mid point of $A C$ and BD.
$\therefore \quad 2=\frac{3+a}{2}$ and $-5=\frac{2+b}{2}$

$\Rightarrow \quad a=1$ and $b=-12$
Also, $\quad \frac{1+x}{2}=2$ and $\frac{0+y}{2}=-5$

$$
x=3 \text { and } y=-10
$$

\therefore Coordinates are $(1,-12)$ and $(3,-10)$
6. Given two fixed two point $P(-3,4)$ and $Q(5,-2)$. Find the coordinates of points A and B in $P Q$ such that $5 P A=3 P Q$ and $3 P B=2 P Q$.

Here $5 P A=3 P Q$
$\Rightarrow \quad \frac{P Q}{P A}=\frac{5}{3}$
$\Rightarrow \quad \frac{P A+A Q}{P A}=\frac{5}{3}$
$\Rightarrow \quad \frac{P A}{P A}+\frac{A Q}{P A}=\frac{5}{3}$
$\Rightarrow \quad 1+\frac{A Q}{P A}=\frac{5}{3}$
$\Rightarrow \quad \frac{A Q}{P A}=\frac{5}{3}-1 \Rightarrow \frac{A Q}{P A}=\frac{2}{3}$ or $\frac{P A}{A Q}=\frac{3}{2}$
Thus A divides PQ in the ratio 3: 2 internally. Using section formula
$A\left[\frac{3(5)+2(-3)}{3+2}, \frac{3(-2)+2(4)}{3+2}\right]=\left(\frac{9}{5}, \frac{2}{5}\right)$
Again 3PB $=2 P Q$
$\Rightarrow \quad \frac{P Q}{P B}=\frac{3}{2}$
$\Rightarrow \quad \frac{P B+B Q}{P B}=\frac{3}{2}$
$\Rightarrow \quad \frac{P B+B Q}{P B}=\frac{3}{2}$
$\Rightarrow \quad \frac{P B}{P B}+\frac{B Q}{P B}=\frac{3}{2} \Rightarrow 1+\frac{B Q}{P B}=\frac{3}{2}$
$\Rightarrow \quad \frac{B Q}{P B}=\frac{3}{2}-1=\frac{1}{2}$
$\Rightarrow \quad \frac{P B}{B Q}=\frac{2}{1}$
Thus B divides $P Q$ in the ratio $2: 1$. Using section formula.
B is $\left[\frac{2(5)+1(-3)}{2+1}, \frac{2(-2)+1(4)}{2+1}\right]=\left(\frac{7}{3}, 0\right)$
Thus A is $\left(\frac{9}{5}, \frac{2}{5}\right)$ and B is $\left(\frac{7}{3}, 0\right)$
7. Find the coordinates of the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$

Let P and Q be the points of trisection of $A B$
$\therefore P$ divides $A B$ in the ratio 1: 2 and Q divides $A B$ in the ratio 2: 1 internally.

Applying section formula, coordinates of P are

$$
P \rightarrow\left[\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+1(-2)}{1+2}\right] \text { i.e. } P(-1,0)
$$

Similarly, coordinates of Q are

$$
\left[\frac{2(-7)+1(2)}{2+1}, \frac{2(4)+1(-2)}{2+1}\right] \text { i.e. } Q(-4,2)
$$

8. If the point $P(x, y)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$. Prove that $b x=a y$.

Using mid-point formula

$$
\begin{array}{rlrl}
& (x, y) & =\left[\frac{\mathbf{a}+\mathbf{b}+\mathbf{a}-\mathbf{b}}{2}, \frac{\mathbf{b}-\mathbf{a}+\mathbf{a}+\mathbf{b}}{2}\right] \\
\Rightarrow & x=\frac{\mathbf{a}+\mathbf{b}+\mathbf{a}-\mathbf{b}}{2}=a \\
\Rightarrow & & y=\frac{\mathbf{b}-\mathbf{a}+\mathbf{a}+\mathbf{b}}{2}=b \tag{2}
\end{array}
$$

(1) $+(2)$ gives $=\frac{x}{y}=\frac{a}{b}$
$\Rightarrow \quad b x=a y$ (Proved)
9. The vertices of a triangle are $(-2,0),(2,3)$ and $(1,-3)$. Is the triangle equilateral, isosceles or scalene?

Let the given points be $A(-2,0), B(2,3)$ and $(1,-3)$.

$$
\begin{aligned}
\therefore \quad A B & =\sqrt{(-2-2)^{2}(0-3)^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5 \\
B C & =\sqrt{(2-1)^{2}(3+3)^{2}} \\
& =\sqrt{1+36}=\sqrt{37} \\
C A & =\sqrt{(1+2)^{2}(-3-0)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Clearly $5 \neq 37=3 \sqrt{2}$
i.e. $A B \neq B C \neq C A$
$\Rightarrow \triangle A B C$ is a scalene triangle
10. Find the area of a rhombus if its vertices are $(3,0)(4,5),(-1,4)$ and ($-2,-1$) taken in order

Let $A B C D$ be given rhombus with $A(3,0), B(4,5),(-1,4)$ and $(-2,-1)$

$$
D(-2,-1)
$$

B $(4,5)$

Thus $A C$ and $B D$ are its diagonals
Using distance formula

$$
\begin{aligned}
& A C=\sqrt{(3+1)^{2}(0-4)^{2}} \\
& \quad \sqrt{16+16}=\sqrt{32}=4 \sqrt{2} \text { units } \\
& B D=\sqrt{(4+2)^{2}(5+1)^{2}} \\
& \quad \sqrt{36+36}=6 \sqrt{2} \text { units }
\end{aligned}
$$

Since area of rhombus $=\frac{1}{2}$ (Product of the diagonals)

$$
=\frac{1}{2}(4 \sqrt{2}) 6 \sqrt{2}=24 \text { sq. units }
$$

11. Find the point on y-axis which is equidistant from the point $(5,-2)$ and $(-3,2)$

Let the required point on y - axis be $P(0, b)$ and given points be $A(5,2)$ and B $(-3,2)$

According to question

$$
\begin{array}{ll}
& \\
& P A=P B \\
\Rightarrow & \\
\Rightarrow & (5-0)^{2}+(-2-\mathrm{b})^{2}=(-3-0)^{2}+(-2-\mathrm{b})^{2} \\
\Rightarrow & 29+4 \mathrm{~b}+b^{2}=13+b^{2}-4 \mathrm{~b} \\
\Rightarrow & \mathrm{~b}=-2
\end{array}
$$

\therefore Required point is $(0,-2)$
12. The line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected by the points P and Q, where P is nearer to A. If the point P also lies on the line $2 x-y+k=0$, find the value of k.

Or
Show that $(a, a),(-a,-a)$ and $(-\sqrt{3} a, \sqrt{3} a)$ are verticies of an equilateral triangle.

Since, P lies nearer to A and is one of the point of trisection.

$\therefore P$ divides $A B$ in the ratio $1: 2$ So, by section formula
$P\left[\frac{1 \times 5+2 \times 2}{1+2}, \frac{1 \times(-8)+2 \times 1}{1+2}\right]$
$=P\left(\frac{9}{3}, \frac{-6}{3}\right)=P(3,-2)$
Since P lies on $2 x-y+k=0$
\therefore Coordinates of P must satisfy
$\Rightarrow \quad 2(3)-(-2)+k=0$
$\Rightarrow \quad 10+\mathrm{k}=0$
$\Rightarrow \quad \mathrm{k}=-10$
Or
Let given point be $A(a, a) B(-a,-a)$ and $C(-\sqrt{3} a, \sqrt{3} a)$
Now using Distance Formula

$$
\begin{aligned}
A B & =\sqrt{\left(a(-a)^{2}+\left(a(-a)^{2}\right.\right.} \\
& =\sqrt{(2 a)^{2}+(2 a)^{2}}=\sqrt{8 a^{2}}=2 \sqrt{2 a} \\
B C & =\sqrt{(-a+\sqrt{3} a)^{2}+(-a-\sqrt{3} a)^{2}} \\
& =\sqrt{a^{2}+3 a^{2}-2 \sqrt{3} a^{2}+a^{2}+3 a^{2}+2 \sqrt{3} a^{2}} \\
& =\sqrt{(2 a)^{2}+(6 a)^{2}}=\sqrt{8 a^{2}}=2 \sqrt{2 a} \\
C A & =\sqrt{(-\sqrt{3} a-a)^{2}+(\sqrt{3} a-a)^{2}} \\
& =\sqrt{3 a^{2}+a^{2}+2 \sqrt{3} a^{2}+3 a^{2}+a^{2}-2 \sqrt{3} a^{2}} \\
& =\sqrt{8 a^{2}}=2 \sqrt{2 a}
\end{aligned}
$$

Since $A B=B C=C A=(2 \sqrt{2} a$ each $)$
$\therefore \triangle A B C$ is an equilateral triangle
13. Show that $\triangle A B C$, where $A(-2,0), B(2,0), C(0,2)$ and $\triangle P Q R$ where $P(-4,0), Q(4,0) R(0,4)$ are similar triangles

Using distance formula
$A B=\sqrt{-2-2)^{2}+(0-0)^{2}}=4$ units
$B C=\sqrt{(2-0)^{2}+(0-2)^{2}}$
$=\sqrt{4+4}=2 \sqrt{2}$ units
$A C=\sqrt{-2-0)^{2}+(0-2)^{2}}$
$=\sqrt{4+4}=2 \sqrt{2}$ units
$P Q=\sqrt{(-4-4)^{2}(0-0)^{2}}=\sqrt{64}=8$ units
$Q R=\sqrt{(4-0)^{2}+(0-4)^{2}}=\sqrt{16+16}$
$=\sqrt{32}=4 \sqrt{2}$ units
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{1}{2}$
i.e. sides of Δ s are proportional
$\Rightarrow \quad \triangle A B C \sim \triangle P Q R$
14. Two friends Seema and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometowns represented by Town A and Town B respectively in the figure given below. Town A and Town B are connected by trains from the same station C (in the given figure) in Delhi. Based on the given situation, answer the following questions.

i. Who will travel more distance, Seema or Aditya, to reach to their hometown?
ii. Seema and Aditya planned to meet at a location D situated at a point D represented by the mid-point of the line joining the point5s represented by Town A and Town B. Find the coordinates of the point represented by the point D.
iii. Find the area of the triangle formed by joining the points represented by A, B and C.

Sol. i. Reading the coordinates of A, B, C as given below $A(1,7), B(4,2), C(-4,4)$
Distance travelled by Seema $=A B$
$=\sqrt{(1-4)^{2}+(7-2)^{2}}=\sqrt{9+25}=\sqrt{34}$
Distance travelled by Aditya
$=B C=\sqrt{(4+4)^{2}+(2-4)^{2}}=\sqrt{64+4}=\sqrt{68}$
$\mathrm{Ce} \quad \sqrt{68}>\sqrt{34}$
\therefore Aditya travels more distance.
ii. Using mid-point formula, The coordinates of D are
$=\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)$
iii. Area of $\triangle \mathrm{ABC}=\frac{1}{2}|1(2-4)+4(4-7)-4(7-2)|$

$$
\begin{aligned}
& =\frac{1}{2}|-2-12-20|=\frac{1}{2}|-34| \\
& =17 \text { sq. Units }
\end{aligned}
$$

Long answer type questions

1. One vertex of an equilateral triangle with side 2 units is at origin.

Another vertex lies on the line $x=\sqrt{3 y}$ and is in first quadrant. Find the coordinates of other two vertices.

Here, one vertex 0 is at origin, other vertex $A(h, k)$ is on the line $x=\sqrt{3 y}$ and third vertex is $\mathrm{B}(\alpha, \beta)$

$O(0,0)$
$A(h, k)$
$\therefore \triangle O A B$ is an equilateral $\triangle O A=2$ units

$$
\begin{equation*}
\Rightarrow \quad \sqrt{h^{2}+k^{2}}=2 \Rightarrow h^{2}+k^{2}=4 \tag{i}
\end{equation*}
$$

Also, $A(h, k)$ is on the line $x=\sqrt{3 y}$

$$
\begin{equation*}
\Rightarrow \quad h=\sqrt{3 k} \tag{ii}
\end{equation*}
$$

Substituting in (i), we get

$$
\begin{array}{lc}
& (\sqrt{3 \mathrm{k}})^{2}+k^{2}=4 \\
\Rightarrow & 4 k^{2}=4 \Rightarrow k^{2}=1 \\
\Rightarrow & \mathrm{k}= \pm 1
\end{array}
$$

But A is in $1^{\text {st }}$ quadrant $\therefore k=\neq 1$ when $k=1$, eq (ii) becomes

$$
h=\sqrt{3} \times 1=\sqrt{3}
$$

\therefore Coordinated of A are $(\sqrt{3}, 1)$
Now

$$
O B=2
$$

$\Rightarrow \quad \sqrt{\alpha^{2}+\beta^{2}}=2$
$\Rightarrow \quad \sqrt{\alpha^{2}+\beta^{2}}=4$
Also $A B=2$

$$
\begin{array}{cc}
\Rightarrow & \sqrt{(\alpha-b)^{2}+(\beta-k)^{2}}=4 \\
\Rightarrow & (\alpha-\sqrt{3})^{2}+(\beta-1 k)^{2}=4 \\
\Rightarrow & \alpha^{2}+3-2 \sqrt{3} \alpha+\beta^{2}+1-2 \beta=4 \\
\Rightarrow & \alpha^{2}+\beta^{2}-2 \sqrt{3} \alpha-2 \beta=0 \\
\Rightarrow & 4-2 \sqrt{3} \alpha-2 \beta=0 \\
& \sqrt{3} \alpha+\beta=2 \\
\Rightarrow & \beta=2-\sqrt{3} \alpha \tag{iv}
\end{array}
$$

Substituting in (iii), we get

$$
\begin{aligned}
& \alpha^{2}+(2-\sqrt{3} \alpha)^{2}=4 \Rightarrow \alpha^{2}+4+3 \alpha^{2}-4 \sqrt{3} \alpha=4 \\
\Rightarrow & 4 \alpha^{2}-4 \sqrt{3} \alpha=4 \Rightarrow 4 \alpha(\alpha-\sqrt{3})=0 \\
\Rightarrow & \alpha=0 \text { or } \alpha=\sqrt{3}
\end{aligned}
$$

When $\alpha=0$ eq.(iv) becomes $=\beta=2-\sqrt{3} \times 0=2$
Coordinates of B are $(0,2)$
When $\alpha=\sqrt{3}$ eq.(iv) becomes $\quad=\beta=2-\sqrt{3} \times \sqrt{3}=-1$
Coordinates of B are $(\sqrt{3},-1)$
2. The line segment $A B$ joining the points $A(3,-4)$ and $B(1,2)$ is trisected at the points $P(p,-2)$ and $Q\left(\frac{5}{3}, q\right)$. Find the values of p and q
Now $A P: P B=1: 2$

$$
\begin{aligned}
& \therefore \quad p=\frac{1 \times 1+2 \times 3}{1+2} \Rightarrow p=\frac{7}{3} \\
& \text { Also } A Q: Q B=2: 1 \Rightarrow q=\frac{2 \times 2+1 \times 4}{1+2}=0
\end{aligned}
$$

3. In figure, the vertices of $\triangle A B C$ are $A(4,6), B(1,5)$ and $C(7,2)$. A line- segment $D E$ is drawn to intersect the sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3}$. Calculate the area of $\triangle A D E$ and compare it with area of $\triangle A B C$.

$$
\begin{aligned}
& \frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3} \\
& \Rightarrow \\
& \Rightarrow \quad \frac{A D}{A B-A D}=\frac{A E}{A C-C E}=\frac{1}{3-1} \\
& \Rightarrow A D: B D=1: 2 A E: E C=1: 2
\end{aligned}
$$

Using section formula
$D=\left\{\frac{2 \times 4+1 \times 1}{3}, \frac{2 \times 6+1 \times 5}{3}\right\}=\left[3, \frac{17}{3}\right]$
$E=\left\{\frac{2 \times 4+1 \times 7}{3}, \frac{2 \times 6+1 \times 2}{3}\right\}=\left[5, \frac{14}{3}\right]$
Area of $\triangle A D B$
$=\frac{1}{2}+\left|4\left[\frac{17}{3}-\frac{14}{3}\right]-3\left[6-\frac{14}{3}\right]+5\left[6-\frac{17}{3}\right]\right|$
$=\frac{1}{2}+\left|\left[4+(-12)+\frac{5}{3}\right]\right|=\frac{1}{2}\left|\left[\frac{12-36+5}{3}\right]\right|$
$=\frac{1}{2}\left|\left[-\frac{19}{3}\right]\right|=\frac{1}{2} \times \frac{19}{3}$
$=\frac{19}{6}$ Sq. units $=3.16$ Sq. units

Area of $\triangle A B C$
$\frac{1}{2}|[4(5-2)+1(2-6)+7(6-5)]|$
$\frac{1}{2}|[12-4+7]|=\frac{15}{2}=7.5$ Sq. units
So, area of $\triangle A B C$ is more than that of $\triangle A D B$ by 4. 34 Sq. units.
4. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points $(1,3)$ and $(2,7)$.

Let line $3 x+y-9=0$ divides the segment joining the points $A(1,3)$ and $B(2,7)$ in the ratio $k: 1$ at point L.

Using section formula
Co-ordinates of L are
$x=\frac{k \times 2+1 \times 1}{k+1}$
$x=\frac{2 k+1}{k+1}$

and $y=\frac{7 \times k+3 \times 1}{k+1}$

$$
y=\frac{7 k+3}{k+1}
$$

New point L lies on line $3 x+y-9=0$
i.e. $3\left[\frac{2 k+1}{k+1}\right]+\left[\frac{7 k+3}{k+1}\right]-9=0$
$\Rightarrow \frac{6 k+3+7 k+3-9 k-9}{k+1}=0$

$$
\begin{aligned}
& 4 \mathrm{k}-3=0 \\
& \mathrm{~K}=\frac{3}{4}
\end{aligned}
$$

Hence required ratio be 3:4

