GRADE-9
$\mathcal{L E S S O N}-12,[\mathcal{H E R O N} \mathcal{N}$ FORMALA]

Objective Type Questions

I- Multiple cfoice questions

1. A triangular colorfulscenery is made in a wall with sides $50 \mathrm{~cm}, 50 \mathrm{~cm}$ and 80 cm ,
\mathcal{A} golden thread is to fang from the vertex so as to just reach the side 80 cm . How much length of goldenthread is required?
a) 40 cm
b) 80 cm
c) 50 cm
d) 30 cm

Sol.(d) Here $a=50 \mathrm{~cm}, 6=50 \mathrm{~cm}, c=80 \mathrm{~cm}$
$\mathcal{S}=\frac{a+b+c}{2}=\frac{50+50+80}{2}=\frac{180}{2}=90 \mathrm{~cm}$
Are a of triangle

$$
=\sqrt{90(90-50)(90-50)(90-80)}
$$

$$
=\sqrt{90 \times 40 \times 40 \times 10}=1200 \mathrm{~cm}^{2}
$$

\Rightarrow Area of triangle $=\frac{1}{2} \times$ base \times height
$\Rightarrow \quad 1200=\frac{1}{2} \times 80 \times d$
$\Rightarrow \quad d=\frac{1200}{40}=30 \mathrm{~cm}$
\therefore Length of goldenthread $=30 \mathrm{~cm}$
2. Given three sticks of lengths $10 \mathrm{~cm}, 5 \mathrm{~cm}$ and 3 cm . A triangle is formed using the sticks, then area of the triangle will be
a) $50 \mathrm{~cm}^{2}$
b) $25 \mathrm{~cm}^{2}$
c) $15 \mathrm{~cm}^{2}$
d) unable to form a triangle, so no area can be calculated.

Sol. (d) It is not possible to form a triangle because sum of two sides is less than third side $(5+3<10)$
3. A gardener fhas to put double fence all round a triangular path with sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and 60 m . In the middle of each sides, there is a gate of width 10 m . Find the length of the wire needed for the fence.
a) 250 m
b) 490 m
c) 230 m
d) 460 m

Sol. (d)

Length of wire needed
$=2$ [perimeter of path -3 (length of gate)]

$$
=2[120+80+60-3(10)]=2[230]=460 m
$$

4. A traffic signal board is board is equilateral in shape, with words 'SCHOO\& AHEAD' with on it. The perimeter of the board is 180 cm , then the area of the signalboard is
a) $2826 \mathrm{~cm}^{2}$
b) $1413 \mathrm{~cm}^{2}$
c) $900 \sqrt{3} \mathrm{~cm}^{2}$ d) $100 \sqrt{3} \mathrm{~cm}^{2}$

Sol.(c), side of equilateral Δ

$$
\begin{aligned}
& =\frac{\text { perimeter of equilateral } A}{3} \\
& =\frac{180}{3}=60 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of equilateral $\Delta=\frac{\sqrt{3}}{4}(60)^{2}=900 \sqrt{3} \mathrm{~cm}^{2}$
5. In a family with two sons, a father has a field in the form of a right angled triangle with sides 18 m and 40 m . He wants to give independent charge to his sons, so he divided the field in the ratio 2:1:1, the bigger part he kept for himself and divided remaining equally among the sons, find the total are a distributed to the sons.
a) $360 \mathrm{~m}^{2}$
b) $90 \mathrm{~m}^{2}$
c) $180 \mathrm{~m}^{2}$
d) $200 \mathrm{~m}^{2}$

Sol. (c). Farmer divides the field in the ration 2:1:1,
$\therefore \mathcal{A r e}$ a of right angular field

$$
\begin{gathered}
=\frac{1}{2} \times \text { base } \times \text { altitude } \\
=\frac{1}{2} \times 18 \times 40=360 \mathrm{~m}^{2} \\
\text { Area distributed to each son }=\frac{1}{4}[360]=90 \mathrm{~m}^{2} \\
\text { Totalareadistributed to sons }=2(90)=180 \mathrm{~m}^{2}
\end{gathered}
$$

6. The base of a right triangle is 8 cm a fypotenuse is 10 cm . Its area will be [N CCERT Exemplar]
a) $24 \mathrm{~cm}^{2}$
b) $40 \mathrm{~cm}^{2}$
c) $48 \mathrm{~cm}^{2}$
d) $80 \mathrm{~cm}^{2}$

Sol. (a), Altitude of right triangle $=\sqrt{(10)^{2}-(8)^{2}}=6$
Are a of rigft triangle $=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}$
7. Two sides of a triangle are 8 cm and 11 cm a perimeter of triangle is 32 cm . Then value of 's'is
a) 19 cm
b) 20 cm
c) 21.5 cm
d) 16 cm

Sol. (d), Perimeter (2s) $=32 \mathrm{~cm} \Rightarrow s=16 \mathrm{~cm}$
8. The area of an isosceles triangle having base 4 cm and length of one of equal sides as 6 cm
(a) $8 \sqrt{2} \mathrm{~cm}^{2}$
(b) $16 \sqrt{2} \mathrm{~cm}^{2}$
(c) $4 \sqrt{2} \mathrm{~cm}^{2}$
(d) $16 \mathrm{~cm}^{2}$
Sol. (a), $\kappa=\sqrt{36-4}=\sqrt{32} c m=4 \sqrt{2} c m$
$\therefore \operatorname{Area}=\frac{1}{2}$ Х $4 \times 4 \sqrt{2} \mathrm{~cm}^{2}=8 \sqrt{2} \mathrm{~cm}^{2}$

9. Are a of a triangle with base 4 cm and height 6 cm is 12 cm . State true or false. I ustify your answer.

Sol. False, As area is in square units
10. The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to the Gase is 3:2, then area of the triangle is \qquad .

Sol. Perimeter, $3 x+3 x+2 \chi=32 \Rightarrow x=4 \mathrm{~cm}$
\therefore Sides are $12 \mathrm{~cm}, 12 \mathrm{~cm}, 8 \mathrm{~cm}$
$\therefore \mathcal{H e}$ igft $=\sqrt{(12)^{2}-(4)^{2}} \mathrm{~cm}=\sqrt{128} \mathrm{~cm}=8 \sqrt{2} \mathrm{~cm}$
\therefore Are a of the triangle $=\frac{1}{2} \chi 8 \times 8 \sqrt{2} \mathrm{~cm}^{2}=32 \sqrt{2} \mathrm{~cm}^{2}$
11. Find the area of triangle faving base 6 cm and altitude 8 cm .
[CBSE 2011]
Sol. Are a of triangle $=\frac{1}{2} \mathrm{x}$ base x altitude

$$
=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}
$$

12. Find the area of triangle whose sides are $13 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .

Sol. Given $a=13 \mathrm{~cm}, b=14 \mathrm{~cm}$, and $c=15 \mathrm{~cm}$
Semiperimeter, $s=\frac{a+b+c}{2}=\frac{13+14+15}{2}=\frac{42}{2}$

$$
=21 \mathrm{~cm}
$$

Ulsing $\mathcal{H e r o n ' s ~ f o r m u l a . ~}$

$$
\begin{aligned}
& \text { Area of triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21 \times 8 \times 7 \times 6}=\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3} \\
& =\sqrt{7 \times 7 \times \underline{3 \times 3} \times \underline{2 \times 2} \times \underline{2 \times 2}} \\
& =7 \times 3 \times 2 \times 2=84 \mathrm{~cm}^{2}
\end{aligned}
$$

13. If the base of a right - angled triangle is 15 cm and its fypotenuse is 25 cm , then find its area.

Sol. Ulsing Pythagoras theorem in right-angled $\Delta \mathcal{A B C}$ we have

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow \quad & 25^{2}=x^{2}+15^{2}
\end{aligned}
$$

$$
\Rightarrow x^{2}=25^{2}-15^{2}=625-225=400
$$

$\therefore x=\sqrt{400}=20 \mathrm{~cm}$
\therefore Area of right-angled triangle $=\frac{1}{2} \times$ base \times height
$\operatorname{ar}(\mathcal{A B C})=\frac{1}{2} \times 15 \times 20=150 \mathrm{~cm}^{2}$
14. Two sides of a triangle are 13 cm and 14 cm and its semi-perimeter is 18 cm . Find the third side of this triangle.

Sol.Semi-perimeter of triangle, $s=\frac{a+b+c}{2}$

$$
\Rightarrow \quad 18=\frac{13+14+c}{2}
$$

$$
\Rightarrow \quad c=36-27=9
$$

\therefore Third side of the triangle is 9 cm
15. Find the are a of an equilateral triangle with side $2 \sqrt{3} \mathrm{~cm}$

$$
\text { Sol. Are a of an equilateral triangle }=\frac{\sqrt{3}}{4} \times(\text { side })^{2}
$$

$=\frac{\sqrt{3}}{4} \times(2 \sqrt{3})^{2}($ Given side $=2 \sqrt{3} \mathrm{~cm})$
$=\frac{\sqrt{3}}{4} \times 4 \times 3=3 \sqrt{3} \mathrm{~cm}^{2}$

```
II - Multiple cfoice questions
```

1. A rhombus shaped field has green grass for 36 cows to graze. If each side of the field is 30 m and longer diagonal is 48 m , then how much area of grass each cow will get, if $216 \mathrm{~m}^{2}$ of area is not to be grazed.
a) $6 \mathrm{~m}^{2}$
b) $12 m^{2}$
c) $18 m^{2}$
d) $29 m^{2}$

Sol. (c) $\mathcal{A B C D}$ is a rfombus shaped field side $=30 \mathrm{~m}$, diagonal $\mathcal{B D}=48 \mathrm{~m}$

So, $a=30 \mathrm{~m}, 6=30 \mathrm{~m}, c=48 \mathrm{~m}$
$s=\frac{a+b+c}{2}=\frac{30+30+48}{2}=54 \mathrm{~m}$
Area of $\mathcal{A B D}=\sqrt{54 \times 24 \times 24 \times 6}$

$$
=24 \times 3 \times 6=432 \mathrm{~m}^{2}
$$

Area of rhombus $=2$ x area of $\triangle \mathcal{A B D}$

$$
=2 \times 432=864 \mathrm{~m}^{2}
$$

Area to be grazed $=864-216=648 \mathrm{~m}^{2}$
Are a grazed by each cow $=\frac{648}{36}=18 \mathrm{~m}^{2}$
2. The are a of a regular hexagon' 'a'is the sum of the areas of the five equilateral triangles with side 'a': Write true or false and justify your answer [$\mathcal{N C E R T}$ Exemplar]

Sol. False, because regular hexagon consists of six equilateral triangles of side 'a'

I-Sfort answer type questions

1. Find the area of an isosceles triangle whose one side is 10 cm greater than each of its equal sides and perimeter is 100 cm [CBSE 2014]

Sol. Let equal sides of an isosceles triangle bex cm. Therefore, the length of its greater side $=(x+10)$ cm
$\Rightarrow \quad x+x+(x+10)=100$
$\Rightarrow \quad 3 x=100-10=90$
$\Rightarrow \quad x=\frac{90}{3}=30 \mathrm{~cm}$
\therefore Base of an isosceles triangle $=10+x=10+30=40 \mathrm{~cm}$

We know that in an isosceles triangle, its altitude bisects the base.
$\therefore \quad \triangle A B C$ is a right-angled triangle.

$$
\begin{aligned}
& A B^{2}=B D^{2}+A D^{2} \text { [Ulsing Pythagoras Theorem] } \\
\Rightarrow & 30^{2}=20^{2}+A D^{2} \\
& \left(\because \mathcal{B D}=\frac{1}{2} B C=\frac{1}{2} \times 40=20 \mathrm{~cm}\right) \\
\Rightarrow & A D^{2}=30^{2}-20^{2}=900-400=500 \\
\Rightarrow & A D=\sqrt{500}=10 \sqrt{5} \mathrm{~cm}
\end{aligned}
$$

$\therefore \mathcal{A r e a}$ of an isosceles triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 40 \times 10 \sqrt{5}=200 \sqrt{5} \mathrm{~cm}^{2}$
2. The sides of triangle are $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$, Find the area. [CBS E 2016]

Sol. Given $a=8 c m, 6=15 \mathrm{~cm}$ and $c=17 \mathrm{~cm}$
The semi-perimeter of triangle,

$$
s=\frac{a+b+c}{2}
$$

$$
\Rightarrow \quad s=\frac{8+15+17}{2}=\frac{40}{2}=20 \mathrm{~cm}
$$

Ulsing $\mathcal{H e r o n ' s ~ f o r m u l a . ~}$
Are a of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{20(20-8)(20-15)(20-17)}$
$=\sqrt{20 \times 12 \times 5 \times 3}=\sqrt{5 \times 4 \times 4 \times 3 \times 5 \times 3}$
$=\sqrt{\underline{5 \times 5} \times \underline{4 \times 4} \times \underline{3 \times 3}}=5 \times 4 \times 3=60 \mathrm{~cm}^{2}$
3. Find the perimeter of an isosceles right-angled triangle faving an area of $5000 \mathrm{~m}^{2}$ (Ulse $\sqrt{\mathbf{2}}=1.41$)
[CBS E 2015]

Sol. $\operatorname{Let} \triangle \mathcal{A B C}$ be an isosceles right-angled triangle in which $\mathcal{A B}=\mathcal{B C}=x \mathrm{~m}$.
$\therefore \mathcal{A r e}$ a of $\Delta \mathcal{A B C}=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& 5000=\frac{1}{2} \times x \times x \quad \text { [Givenarea }=5000 \mathrm{~m}^{2} \text {] } \\
& \Rightarrow x^{2}=5000 \times 2=10000 \\
& \Rightarrow x=\sqrt{10000}=100 \mathrm{~m}
\end{aligned}
$$

Uling Pythagoras theorem in an isosceles right-angled $\Delta \mathcal{A B C}$, we five

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=x^{2}+x^{2}=2 x^{2} \\
& \therefore \mathcal{A C}=x \sqrt{2}=100 \sqrt{2} \mathrm{~m} \\
& \quad=100 \nprec 1.41=141 \mathrm{~m}
\end{aligned}
$$

\therefore Perimeter of an isosceles right-angled $\Delta \mathcal{A B C}=$ sum of all sides

$$
\begin{aligned}
& =\mathcal{A B}+\mathcal{B C}+\mathcal{A C} \\
& =100+100+141=341 \mathrm{~m}
\end{aligned}
$$

4. The sides of triangle are 100 m 120 m and 140 m , Find its area.
(Ulse $\sqrt{\mathbf{6}}=2.45$)

Sol. Given $a=100 \mathrm{~m}, 6=120 \mathrm{~m}, \mathrm{c}=140 \mathrm{~m}$
\therefore Perimeter of triangle, $2 s=a+b+c$
$\Rightarrow 2 s=100+120+140=360 m$
\Rightarrow Semi perimeter, $s=\frac{360}{2}=180 \mathrm{~m}$
'Using $\mathcal{H e}$ ron's formula
Are a of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{180(180-100)(180-120)(180-140)}$
$=\sqrt{180 \times 80 \times 60 \times 40}=\sqrt{60 \times 3 \times 40 \times 2 \times 60 \times 40}$
$=\sqrt{\underline{60 \times 60} \times \underline{40 \times 40 \times 6}}$
$=60 \times 40 \times \sqrt{6}=2400 \times 2.45=5880 \mathrm{~m}^{2}$

```
II - Sfort Answer Type Question
```

1. Find the area of quadrilateral $\mathcal{A B C D}$ as shown in the figure:

Sol. Area of quadrilateral $\mathcal{A B C D}=\operatorname{ar}(\Delta \mathcal{A B C})+\operatorname{ar}(\Delta \mathcal{A D C})$
$=\frac{1}{2} \times A C \times B N+\frac{1}{2} \times A C \times D M$
$=\frac{1}{2} \times 15 \times 5+\frac{1}{2} \times 15 \times 3$
$=\frac{15}{2} \times(5+3)=\frac{15}{2} \times 8=60 \mathrm{~cm}^{2}$

2. Two adjacent sides of a parallelogram measures 5 cm and 3.5 cm . One of its diagonal measures 6.5 cm . Find the area of the parallelogram.

Sol. Let $\mathcal{A B C D}$ be the parallelogram with $\mathcal{A B}=5 \mathrm{~cm} . \mathcal{B C}=3.5 \mathrm{~cm}$ and $\mathcal{A C}=6.5 \mathrm{~cm}$ as shown in figure.

Semi-perimeter of $\triangle \mathcal{A B C}$
$s=\frac{a+b+c}{2}$
$=\frac{5+3.5+6.5}{2}=\frac{15}{2}=7.5 \mathrm{~cm}$
Ulsing Her on's formula.

$$
\begin{aligned}
& \text { Are a of } \Delta \mathcal{A B C}=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{7.5(7.5-5)(7.5-3.5)(7.5-6.5)} \\
& =\sqrt{7.5 \times 2.5 \times 4 \times 1} \\
& =\sqrt{7.5 \times 10}=\sqrt{75}=5 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

We know that the diagonal of a parallelogram divides it into two congruent triangles of equalarea.
$\therefore \mathcal{A r e a}$ of parallelogram $\mathcal{A B C D}=2 x \operatorname{ar}(\Delta \mathcal{A B C})$
$=2 \times 5 \sqrt{3}=10 \sqrt{3} \mathrm{~cm}^{2}$
3. Calculate the area of trapezium as shown in the figure
[CBSE 2015]

Sol. In $\triangle \mathcal{B O C}, \angle O=90^{\circ}$ as $\operatorname{CO} \| \mathcal{A D}$

Ulsing Pythagoras theorem in right-angled $\Delta \mathcal{B} O C$, we have

$$
\begin{aligned}
& B C^{2}=O C^{2}+O B^{2} \\
& \Rightarrow \quad 17^{2}=O C^{2}+8^{2} \\
& \Rightarrow \quad O C=\sqrt{17^{2}-8^{2}}=\sqrt{289-64}=\sqrt{225} \\
& \therefore \quad O C=15 \mathrm{~cm}
\end{aligned}
$$

$$
\therefore \text { Area of trapezium } \mathcal{A B C D}=\frac{1}{2} \times(A B+C D) \times O C
$$

$$
=\frac{1}{2} \times(14+6) \times 15
$$

$$
(\because A B=A O+O B=6+8=14 \mathrm{~cm})
$$

$$
=\frac{1}{2} \times 20 \times 15=150 \mathrm{~cm}^{2}
$$

4. In the given figure, $\mathcal{A B C D}$ is a square of side $4 c m, \mathcal{E}$ and \mathcal{F} are mid-points of $\mathcal{A B}$ and $\mathcal{A D}$ respectively. Find the area of the shaded region.
[CBSE2016]

Sol. $\mathcal{A r e}$ a of square $\mathcal{A B C D}=(\text { side })^{2}$

$$
(\because \text { side of square }=4 \mathrm{~cm})
$$

$$
=4^{2}=16 \mathrm{~cm}^{2}
$$

Are a of right-angled $\triangle \mathcal{E A F}=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times A E \times A F$
$=\frac{1}{2} \times 2 \times 2 \quad\left(\because A E=\frac{1}{2} A B\right.$ and $\left.A F=\frac{1}{2} A D\right)$
$=2 \mathrm{~cm}^{2}$
\therefore Areaof shaded region $=\mathcal{A r e}$ a of square $\mathcal{A B C D} \cdot \mathcal{A r e}$ a of $\Delta \mathcal{E A F}=16-2=$ $14 \mathrm{~cm}^{2}$
5. Find the area of the parallelogram, whose one diagonal is 6.8 cm and the perpendicular distance from the opposite vertex is 7.5 cm [$\mathcal{H O} \mathcal{T S}$]

Sol. We know that the diagonal of parallelogram divides it into two congruent triangles of equal area.
\therefore Area of one triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times 6.8 \times 7.5 \\
& =25.5 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of parallelogram

$$
\begin{aligned}
& =2 \times \mathcal{A r e a} \text { of one congruent triangle } \\
& =2 \times 25.5=51 \mathrm{~cm}^{2}
\end{aligned}
$$

```
III - Short Answer Type Question
```

1. Find the area of shaded region in the given figure.
[All measurements are in cm]

Sol. Are a of right - angled $\triangle \mathcal{A D B}$
$=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times B D \times A D \quad[\mathcal{B a s e}=\mathcal{B D}$ feight $=\mathcal{A D}]$
$=\frac{1}{2} \times 5 \times 12=30 \mathrm{~cm}^{2}$
Ulsing Pythagoras theorem in an isosceles right-angled $\Delta \mathcal{A D B}$, we have

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2} \\
& =12^{2}+5^{2}=144+25=169
\end{aligned}
$$

\therefore Perimeter of triangle,

$$
\begin{aligned}
2 s & =\mathcal{A B}+\mathcal{B C}+\mathcal{A C} \\
& =13+14+15=42 \mathrm{~cm}
\end{aligned}
$$

Semi perimeter, $s=\frac{42}{2}=21 \mathrm{~cm}$
'Using $\mathcal{H e}$ ron's formula
Are a of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-13)(21-15)(21-14)}$
$=\sqrt{21 \times 8 \times 6 \times 7}=\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7}$
$=\sqrt{\underline{7 \times 7} \times \underline{3 \times 3} \times \underline{2 \times 2} \times \underline{2 \times 2}}$
$=7 \times 3 \times 2 \times 2=84 \mathrm{~cm}^{2}$
$\mathcal{A r e a}$ of shaded portion $\quad=\operatorname{ar}(\Delta \mathcal{A B C})-\operatorname{ar}(\Delta \mathcal{A D B})$

$$
=84-30=54 \mathrm{~cm}^{2}
$$

2. The perimeter of a triangular garden is 900 cm and its sides are in the ration $3: 5: 4$. Using Heron's formula, find the area of triangular garden.
[CBSE 2015]

Sol. Suppose that the sides of a triangular garden (in cm) are $3 x, 5 x$, and 4χ
Perimeter of triangular garden $=900 \mathrm{~cm}$
$\Rightarrow 900=3 x+5 x+4 x$
$\Rightarrow 900=12 x$
$\Longrightarrow \quad x=\frac{900}{12}=75 \mathrm{~cm}$

So, the sides of triangular garden are $3 \times 75 \mathrm{~cm}, 5 \times 75 \mathrm{~cm}$ and $4 \times 75 \mathrm{~cm}$, i.e. $225 \mathrm{~cm}, 375 \mathrm{~cm}$ and 300 cm
\mathcal{N} Now we have semi-perimeter,
$s=\frac{225+375+300}{2} \mathrm{~cm}=\frac{900}{2}=450 \mathrm{~cm}$
'Using $\mathcal{H e r o n ' s ~ f o r m u l a ~}$
Are a of triangular garden $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{450(450-225)(450-375)(450-300)}$
$=\sqrt{450 \times 225 \times 75 \times 150}$
$=\sqrt{225 \times 2 \times 225 \times 75 \times 75 \times 2}$
$=\sqrt{\underline{225 \times 225} \times \underline{75 \times 75} \times \underline{2 \times 2}}$
$=225 \times 75 \times 2=33,750 \mathrm{~cm}^{2}=3.375 \mathrm{~m}^{2}$
3. Find the area of triangle whose perimeter is 180 cm and its two sides are 80 cm and 18 cm . Calculate the altitude of triangle corresponding to its shortest side
[CBS E 2015]

Sol. Given $a=80 \mathrm{~cm}$ and $b=18 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Perimeter of triangle }=a+b+c \\
& \Rightarrow 180=80+18+c \\
& \therefore \quad c=180-98=82 \mathrm{~cm}
\end{aligned}
$$

and semi-perimeter, $s=\frac{\text { perimeter }}{2}=\frac{180}{2}$

$$
=90 \mathrm{~cm}
$$

Ulsing $\mathcal{H e r o n ' s}$ formula
Area of triangular $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{90(90-80)(90-18)(90-82)}$
$=\sqrt{90 \times 10 \times 72 \times 8}$
$=\sqrt{10 \times 9 \times 10 \times 9 \times 8 \times 8}$
$=\sqrt{\underline{10 \times 10 \times 9 \times 9} \times \underline{8 \times 8}}$
$=10 \times 9 \times 8=720 \mathrm{~cm}^{2}$

The shortest side of triangle $=18 \mathrm{~cm}$
$\therefore \mathcal{A r e a}$ of triangle $=\frac{1}{2} \times$ base \times altitude

$$
\begin{aligned}
& 720=\frac{1}{2} \times 18 \times h \\
\therefore & h=\frac{720}{9}=80 \mathrm{~cm}
\end{aligned}
$$

$\therefore \mathcal{A l t i t u d e}$ of triangle corresponding to its shortest side (18 cm) is 80 cm

```
IV - Short Answer Iype Question
```

1. A floor design is made on a floor of a room by joining four triangular tiles of dimensions $12 \mathrm{~cm}, 20 \mathrm{~cm}$ and 24 cm , each. Find the cost of the tiles at the rate of Rs. $\sqrt{\mathbf{1 4}}$ per $\mathrm{cm}^{2} \quad$ [HOTS]

Sol. Given $a=12 \mathrm{~cm}, 6=20 \mathrm{~cm}, c=24 \mathrm{~cm}$
\therefore Semi-perimeter, $s=\frac{a+b+c}{2}$

$$
s=\frac{12+20+24}{2}=\frac{56}{2}=28 \mathrm{~cm}
$$

Ulsing $\mathcal{H e}$ ron's formula.
Are a of one triangular tile $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{28(28-12)(28-20)(28-24)}$
$=\sqrt{28 \times 16 \times 8 \times 4}$
$=\sqrt{14 \times 2 \times 4 \times 4 \times 4 \times 2 \times 4}$
$=\sqrt{4 \times 4 \times \underline{4 \times 4} \times \underline{2 \times 2 \times 14}}$
$=4 \times 4 \times 2 \times \sqrt{14}=32 \sqrt{14} \mathrm{~cm}^{2}$
\therefore Area of 4 such tiles $=4 \times 32 \sqrt{14}$

$$
=128 \sqrt{14} \mathrm{~cm}^{2}
$$

Cost of one tile $=\mathcal{R s} \cdot \sqrt{14}$ per cm^{2}
\therefore Totalcost of 4 tiles $=$ Rs. $\sqrt{14} \times 128 \sqrt{14}$

$$
=\mathcal{R} s 128 \times 14=1792
$$

Hence cost of designing the floor $=$ Rs. 1792
2. A forest reservoir is in the shape of quadrilateral whose sides taken in order are 9 m , $40 \mathrm{~m}, 15 \mathrm{~m}$ and 28 m . If the angle between first two sides is a right angle, find the area of a forest reservoir. [HOTS]

Sol. $\quad \triangle \mathcal{A B C}$ is a right-angled triangle. So, by using Pythagoras theorem in right - angled $\triangle \mathcal{A B C}$, we have
$A C^{2}=A B^{2}+B C^{2}$
$=9^{2}+40^{2}$
$=81+1600=1681$
$\therefore \mathcal{A C}=\sqrt{1681}=41 \mathrm{~m}$

\therefore Are a of $\Delta \mathcal{A D B}=\frac{1}{2} \times$ base \times height

$$
\begin{array}{r}
=\frac{1}{2} \times B C \times A B \\
=\frac{1}{2} \times 40 \times 9=180 \mathrm{~cm}^{2}
\end{array}
$$

\mathcal{N} ow, in $\triangle \mathcal{A C D}$

Let $a=\mathcal{A C}=41 m, b=\mathcal{C D}=15 m$, and $c=\mathcal{A D}=28 m$
Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{41+15+28}{2}=\frac{84}{2}=42 \mathrm{~cm}$

Ulsing Heron's formula.
Are a of $\triangle \mathcal{A C D}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{42(42-41)(42-15)(42-28)}$
$=\sqrt{42 \times 1 \times 27 \times 14}$
$=\sqrt{42 \times 1 \times 27 \times 14}$
$=\sqrt{42 \times 3 \times 3 \times 3 \times 3 \times 14}$
$=\sqrt{\underline{14 \times 14 \times \underline{3 \times 3} \times \underline{3 \times 3}}}$
$=14 \times 3 \times 3=126 \mathrm{~m}^{2}$
$\therefore \mathcal{A r e}$ a of quadrilateral $\mathcal{A B C D}=\operatorname{ar}(\triangle \mathcal{A B C})+\operatorname{ar}(\triangle \mathcal{A C D})=180+126=306 \mathrm{~m}^{2}$
3. Sanya has a piece of land which is in the shape of a rhombus. She wits her one daughter and one son to work on the land and produce different crops to suffice the needs of the ir family. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonal is 160 m , how much area each of them will get?

Sol. Let $\mathcal{A B C D}$ be the field.

Perimeter of field $=400 \mathrm{~m}$

So, each side $=400 \mathrm{~m} \div 4=100 \mathrm{~m}$
i.e., $\mathscr{A B}=\mathscr{A D}=100 \mathrm{~m}$

Let diagonal $\mathcal{B D}=160 \mathrm{~m}$

Then semi-perimeter of $\Delta \mathcal{A B D}$ is given $6 y$
$s=\frac{100+100+168}{2}=180 \mathrm{~m}$

Ulsing Her on's formula.
$\mathcal{A r e}$ a of $\Delta \mathcal{A B D}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{180(180-100)(180-100)(180-160)}$
$=\sqrt{180 \times 80 \times 80 \times 20} \mathrm{~m}^{2}=4800 \mathrm{~m}^{2}$.

Therefore, each of them willget an area of $4800 \mathrm{~m}^{2}$ since $\operatorname{ar}(\Delta \mathcal{A B D})=\operatorname{ar}(\Delta \mathcal{B C D})$
4. Two parallel sides of a trapezium are 120 cm and 154 cm and other sides are 50 cm and 52 cm . Find the area of trapezium [CBSE 2011]

Sol. Let $\mathcal{A B C D}$ be a trapezium in which $\mathcal{A B}=154 \mathrm{~cm}, \mathcal{C D}=120 \mathrm{~cm}, \mathcal{A D}=50 \mathrm{~cm}$, $\mathcal{B C}=52 \mathrm{~cm}$

Construction: $\mathcal{D r a w} \mathcal{C E} \| \mathcal{A D}$ and $\mathcal{C F} \perp \mathcal{A B}$

\mathcal{N} ow, $C \mathcal{D} \| \mathcal{A B}$ and $C E \| \mathcal{D A}$
$\therefore \mathcal{A E C D}$ is a parallelogram.
$\Longrightarrow \mathcal{C E}=\mathcal{A D}=50 \mathrm{~cm}$
and $\mathcal{C D}=\mathcal{A E}=120 \mathrm{~cm}$
$\therefore B E=A B-A E=154-120=34 \mathrm{~cm}$

In $\Delta \mathcal{B E C}$, semi-perimeter,
$s=\frac{a+b+c}{2}$
$\Rightarrow s=\frac{50+52+34}{2}=\frac{136}{2}=68 \mathrm{~cm}$
Ulsing Her on's formula.
$\mathcal{A r e}$ a of $\Delta \mathcal{C E B}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{68(68-50)(68-52)(68-34)}$
$=\sqrt{68 \times 18 \times 16 \times 34}$
$=\sqrt{34 \times 2 \times 2 \times 9 \times 4 \times 4 \times 34}$
$=\sqrt{\underline{34 \times 34} \times \underline{2 \times 2} \times \underline{3 \times 3} \times \underline{4 \times 4}}$
$=34 \times 2 \times 3 \times 4$
$=34 \times 24=816 \mathrm{~cm}^{2}$
\mathcal{B} ut $\mathcal{A r e}$ a of $\Delta \mathcal{C E B}=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& \Rightarrow \quad 816=\frac{1}{2} \times B E \times C F \\
& 816=\frac{1}{2} \times 34 \times C F \\
& \Rightarrow \quad C \mathcal{F}=\frac{816}{17}=48 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of trapezium

$$
\mathcal{A B C D}=\frac{1}{2} \times(\text { Sum of parallel sides }) \times \text { height }=\frac{1}{2} \times(A B+C D) \times C F
$$

$$
=\frac{1}{2} \times(154+120) \times 48=\frac{1}{2} \times 274 \times 48=6576 \mathrm{~cm}^{2}
$$

5. Find the area of a regular hexagon whose one side is 4 units

Sol. The six sides of regular hexagon are of equallength. The point of intersection of its diagonal divides it into six equilateral triangles each of side 4 units as shown in figure.

Area of an equilateral triangle each side of 'a'unit $=\frac{\sqrt{3}}{4} \times a^{2}$
Area of $\triangle O A B=\frac{\sqrt{3}}{4} \times 4^{2}=4 \sqrt{3} s q$. units

Area of hexagon $\mathcal{A B C D E F}=6 \chi \operatorname{ar}(\Delta O \mathcal{A B})$

$$
\begin{aligned}
& =6 \times 4 \sqrt{3} \\
& =24 \sqrt{3} \text { sq.units }
\end{aligned}
$$

$$
I-L o n g ~ A n s w e r ~ T y p e ~ Q u e s t i o n ~
$$

1. The perimeter of a right - angled triangle is 12 cm and its hypotenuse is of length 5 cm . Find the other two sides and calculate its area. Verify the result using \mathcal{H} eron's formula.

Sol. Let $\triangle \mathcal{A B C}$ be the right-angled triangle.

\mathcal{N} ow,

$$
x+y+5=12 \text { [Given perimeter of triangle is } 12 \mathrm{~cm} \text {] }
$$

$\Rightarrow \quad x+y=7$

Using Pythagoras the orem in right-angled $\Delta \mathcal{A B C}$, we get

$$
\begin{equation*}
x^{2}+y^{2}=25 \tag{ii}
\end{equation*}
$$

Squaring (i) both sides, we get $(x+y)^{2}=7^{2}$
$\Rightarrow \quad x^{2}+y^{2}+2 x y=49$
$\Rightarrow \quad 25+2 x y=49$
$\Rightarrow \quad x y=12$
$\therefore \mathcal{A r e}$ a of right - angled $\Delta \mathcal{A B C}=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times x \times y==\frac{1}{2} \times 12 \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

\mathcal{N} ow, consider $(x-y)^{2}=(x+y)^{2}-4 x y$

$$
=49-4 \times 12=1
$$

$\Rightarrow \quad x-y= \pm 1$
If $x+y=7$ and $x-y=1$, we get $x=4, y=3$
If $x+y=7$ and $x-y=-1$, we get $x=3, y=4$
Therefore, length of the other two sides of triangle are 3 cm and 4 cm

Verification of $\mathcal{A r e a}$ of $\triangle \mathcal{A B C}$ by \mathcal{H} ron's formula:
semi-perimeter, $s=\frac{3+4+5}{2}=6 \mathrm{~cm}$
Ulsing Her on's formula,
$\mathcal{A r e}$ a of $\triangle \mathcal{A B C}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{6(6-3)(6-4)(6-5)}=\sqrt{6 \times 3 \times 2 \times 1}$
$=\sqrt{\underline{6 \times 6}}=6 \mathrm{~cm}^{2}$
Which is same as obtained earlier.

Hence result is verified.
2. How much area of triangle will increase in percentage, if eack side of the triangle is doubled? [HOTS]

Sol. Let a, b, c be the sides of the triangle

Letits semi-perimeter be s_{1}
$\therefore \quad s_{1}=\frac{a+b+c}{2}$
'Using Heron's formula
$\mathcal{A r e}$ a of triangle $A_{1}=\sqrt{s(s-a)(s-b)(s-c)}$
$\Rightarrow \quad A_{1}=\sqrt{s_{1}\left(s_{1}-a\right)\left(s_{1}-b\right)\left(s_{1}-c\right)}$
When the sides of triangle are doubled, i.e., $2 a, 26,2 c$, then its

Semi-perimeter,

$$
s_{2}=\frac{2 a+2 b+2 c}{2}=2\left(\frac{a+b+c}{2}\right)=2 s_{1}
$$

'Using $\mathcal{H e}$ ron's formula
Area of triangle $A_{2}=\sqrt{s_{2}\left(s_{2}-2 a\right)\left(s_{2}-2 b\right)\left(s_{2}-2 c\right)}$
$\Rightarrow \quad A_{2}=\sqrt{2 s_{1}\left(2 s_{1}-2 a\right)\left(2 s_{1}-2 b\right)\left(2 s_{1}-2 c\right)} \quad\left(\because s_{2}=2 s_{1}\right)$
$=4 \sqrt{s_{1}\left(s_{1}-a\right)\left(s_{1}-b\right)\left(s_{1}-c\right)}$
$\Rightarrow A_{2}=4 A_{1}=4 \times \mathcal{A r e a}$ of original triangle

Hence, percentage increase in area
$=\frac{\text { Increase in area }}{\text { Original area }} \times 100=\frac{A_{2}-A_{1}}{A_{1}} \not \subset 100$
$=\left(\frac{A_{2}}{A_{1}}-1\right) \times 100=(4-1) \times 100=300 \%$
3. The difference between the two adjoining sides containing right angle of a right. angled triangle is 14 cm . The area of triangle is $120 \mathrm{~cm}^{2}$. Verify this area by using Heron's formula
[$\mathcal{H O} \mathcal{T S}$]
Sol. Let $\triangle \mathcal{A} \mathcal{B C}$ be the right angled triangle with $\angle \mathcal{B}=90^{\circ}$

Let $\mathcal{B C}=x$ cm and $\mathcal{A B}=(x-14)$ cm
Are a of right-angled $\triangle \mathcal{A B C}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times B C \times A B
$$

$$
\begin{array}{cc}
\Rightarrow & 120=\frac{1}{2} \times x \times(x-14) \\
\Rightarrow & 240=x^{2}-14 x \\
\Rightarrow & x^{2}-14-240=0 \\
\Rightarrow & x^{2}-24 x+10 x-240=0 \\
\Rightarrow & x(x-24)+10(x-24)=0 \\
\Rightarrow & \\
\Rightarrow & \text { either } x-24=0 \text { or } x+10=0 \\
\Rightarrow & \text { either } x=24 \text { or } x=-10
\end{array}
$$

Since lengtf cannot be negative, so by ignoring $\chi=-10$, we get
$\mathcal{B C}=x=24 c m$ and $\mathcal{A B}=x-14=24-14=10 c m$
And Sypotenuse, $\mathcal{A C}=\sqrt{A B^{2}+B C^{2}}=\sqrt{10^{2}+24^{2}}$

$$
=\sqrt{100+576}=\sqrt{676}=26 \mathrm{~cm}
$$

Verification of $\mathcal{A r e a}$ of $\triangle \mathcal{A B C}$ by $\mathcal{H e r o n ' s ~ f o r m u l a ~}$
Let $a=24 \mathrm{~cm}, 6=10 \mathrm{~cm}, c=26 \mathrm{~cm}$
\therefore Semi-perimeter,
$s=\frac{a+b+c}{2}=\frac{24+10+26}{2}=\frac{60}{2}=30 \mathrm{~cm}$
'Using $\mathcal{H e}$ ron's formula
$\mathcal{A r e}$ a of $\triangle \mathcal{A B C}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{30(30-24)(30-10)(30-26)}$
$=\sqrt{30 \times 6 \times 20 \times 4}=\sqrt{6 \times 5 \times 6 \times 5 \times 4 \times 4}$
$=\sqrt{6 \times 6 \times 5 \times 5 \times 4 \times 4}$
$=6 \times 5 \times 4=120 \mathrm{~cm}^{2}$
Hence result is verified.

