GRADE - 9

$\mathcal{P R O B A B I L I \mathcal { T }}$ - $\mathcal{A N} \mathcal{E} X P E R I \mathcal{M E N} \mathcal{A} \mathcal{A} \mathcal{A} P P R O \mathcal{A H}$

$\mathcal{N u m b e r}$ of Experiments
(i) When a coin is tossed
$\mathcal{P}(g e t t i n g ~ a ~ h e a d), \quad \quad \mathcal{P}(\mathcal{H})=\quad \frac{\text { Number of heads }}{\text { Total number of trials }}$
And $\mathcal{P}($ getting a tail $), \quad \mathcal{P}(\mathcal{T})=\quad \frac{\text { Number of tails }}{\text { Total number of trials }}$

Also $\mathcal{P}(\mathcal{H})+\mathcal{P}(\mathcal{T})=1$
i) When a die is tossed, $\mathcal{P}(\mathcal{E})=\frac{\text { Number Number of outcomes having a particular number of die }}{\text { Total number of times the die is rolled (thrown) }}$
and $\mathcal{P}\left(E_{1}\right)+\mathcal{P}\left(E_{2}\right)+\mathcal{P}\left(E_{3}\right)+\mathcal{P}\left(E_{4}\right)+\mathcal{P}\left(E_{5}\right)+\mathcal{P}\left(E_{6}\right)=1$

Where $\mathcal{P}\left(E_{1}\right)=$ Probability of an event of getting outcome 1 .
$\mathcal{P}\left(E_{2}\right)=$ Probability of an events of getting outcome 2 and so on.

Note:

- In the similar way, one can find the probability of other experiments
- Probability of anevent can be any fraction from 0 to 1
$\mathcal{P}(\mathcal{E})+\mathcal{P}(\operatorname{not} \mathcal{E})=1$
- The empirical (or experimental) probability depends on the number of trials undertaken and the number of times the outcomes occurs in these trials.

```
Objective Type Questions
```

I. Multiple choice questions

1. Probability of an event can be
a) -0.7
b) $\frac{11}{9}$
c) 1.001
d) 0.6

Sol. (d) Probability of an event lies Getween 0 and 1 [Goth inclusive]
2. The probability of happening of an event is 45%. The probability of an event is
a) 45
b) 4.5
c) 0.45
d) 0.045

Sol. (c) 45% means 45 out of 100
Therefore probabiity $=\frac{45}{100}=0.45$
3. In a class of 40 students, there are 110% girls. Then the number of g ir $l s$ is
a) 44
b) 22
c) 30
d) None of these

Sol. (d) Maximum is 100%. So 110% is not valid
4. Which of the following words represent uncertainty?
a) Probability
6) Value
c) event
d) None of these

Sol. (a) Probability
5. Probability represents
a) uncertainty
6) certainty
c) numericalmeasure of uncertainty
d) numerical measure of certainty
Sol. (c) numerical measure of uncertainty
6. In an experiment, probability of anevent is better approximated, when an experiment is performed.
a) 10 times
6) 20 times
c) 30 times
d) Carge number of times

Sol. (d) Carge number of times
7. Empiricalprobability of an event is also known as
a) an experimental probability
6) a theoretical probability
c) theoreticalexpectation of a chance
Sol.a) an experimental probability
8. An experiment is performed and probability of an event \mathcal{A} is recorded, probability of anevent \mathcal{A} canbe
a) 0.001
b) 1.999
c) 1.001
d) -0.999

Sol.a) 0.001 because $0 \leq \mathbb{P}$ (E) ≤ 1
9. Anexperiment is performed 350 times and there are three possible events \mathcal{A}, \mathcal{B} and \mathcal{C} in an experiment. Possible occurrence of three events are recorded, which records are possible?
a) $\mathcal{A}: 166, \mathcal{B}: 80, \mathcal{C}: 94$
6) $\mathcal{A}: 90, \mathcal{B}: 0, \mathcal{C}: 250$
C) $\mathcal{A}: 200, \mathcal{B}: 100, \mathcal{C}: 50$
d) $\mathfrak{A}: 110, \mathcal{B}: 110, \mathcal{C}: 110$

Sol.c) $\mathcal{H e r e} \mathcal{A}=200, \mathcal{B}=100, \mathcal{C}=50$

As possible occurrence of three events are shown

Totalpossible outcomes
$=\mathcal{A}+\mathcal{B}+\mathcal{C}=200+100+50=350$

These are equal to number of trials
$\operatorname{Or} \mathcal{P}(\mathcal{E})=\frac{350}{350}=1$

Hence, this combination is possible.
10. In an experiment, the sum of probabilities of different events is
a) 1
b) 0.5
c) -2
d) $\frac{16}{15}$
Sol.a) 1
11. Write the formula for finding the empirical probability of an event

Sol. The empirical (or experimental) probability $\mathcal{P}(\mathcal{E})$ of an event \mathcal{E} is given $6 y$
$\mathcal{P}(E)=\frac{\text { Number of trials in which the event }(E) \text { has happened }}{\text { Total number of trials }}$
12. Find the probability of he ad coming up when a coin is tossed once

Sol.Totaloutcomes $=2$
$\mathcal{N u m b e r}$ of head coming up=1
\therefore Probability (head coming up) $=\frac{1}{2}$
13. Write the sample space of a coin tossed three times.

Sol. $\mathcal{S}(\mathcal{E})=\{\mathcal{H} \mathcal{H} \mathcal{H}, \mathcal{T} \mathcal{T}, \mathcal{H H \mathcal { H }}, \mathcal{H} \mathcal{T H}, \mathcal{T H} \mathcal{H}, \mathcal{T} \mathcal{T H}, \mathcal{T H} \mathcal{H}, \mathcal{H} \mathcal{T} \mathcal{T}\}$
\therefore Totalnumber of sample space $=\mathcal{S}$
14. \mathcal{A} card is drawn at random from a well shuffled pack of 52 cards. Find the probability that the card drawn is a red card

Totalnumber of red cards in a well shuffled packof 52 cards $=26$
$\therefore \mathcal{P}(d r$ awing a red card $) \frac{26}{52}=\frac{1}{2}$

I. Short answer type questions

15. There Are 13 girls and 15 boys in a line. If one student is chosen at random, then find the probability that he is a boy.

Sol. Totalnumber of students $=13+15=28$
\mathcal{N} umber of boys $=15$
$\therefore P(a b o y)=\frac{15}{28}$
16. 1000 families with 2 children were surveyed and the following data were recorded

$\mathcal{N} u m b e r$ of girls in a family	0	1	2
$\mathcal{N u m b e r}$ of families	111	614	275

If a family is chosen at random, compute the probability that it fas :
i) exact 1 girl
ii) exactly 2 girls

Sol. Totalnumber of families $=1000$
i) $\mathfrak{N u m b e r}$ of families that have exactly one girl $=614$
$\therefore P$ (a family that fas exactly one girl)

$$
=\frac{614}{1000}=0.614
$$

(ii) \mathcal{N} umber of families that fave exactly 2 girls $=275$
$\therefore \mathcal{P}$ (a family that fas exactly 2 girls)
$=\frac{275}{1000}=0.275$
17. On One page of a telephone directory, there were 200 telephone numbers. The frequency distribution of their unit place digit is given in the following table

Digit	0	1	2	3	4	5	6	7	8	9
Frequency	22	26	22	22	20	10	14	28	16	20

What is the probability of a number chosen at random, that the digit in its unit place is 4?

Sol. P [digit 4 in the unit place of a telephone number]
$=\frac{\text { Frequency of } 4}{\text { Total number of selected telephone numbers }}$
$=\frac{20}{200}=\frac{1}{10}=0.1$
18. If the probability of winning a game is 0.4. What is the probability of losing it?
[CBSE2015]

Sol. We know that $\mathcal{P}(\mathcal{E})+\mathcal{P}($ not $\mathcal{E})=1$
i.e., $\mathcal{P}(\mathcal{W}$ inning a game $)+\mathcal{P}($ losing a game $)=1$
$\mathcal{P}($ losing a game $)=1-\mathcal{P}(\mathcal{W}$ inning a game $)$

$$
=1-0.4=0.6
$$

Hence, probability of losing the game $=0.6$
19. Two coins are tossed simultaneously 200 times and the following outcomes are recorded:

$\mathcal{H H}$	$\mathcal{H T} / \mathcal{T H}$	$\mathcal{T} \mathcal{T}$
56	110	34

What is the empirical probability of occurrence of at least one head in the above case?

Sol. Totalnumber of possible outcomes with at le ast one fead = 56 + $110=166$

Total number of outcomes $=200$
$\therefore \mathcal{P}($ getting at le ast one he ad $)=\frac{166}{200}=0.83$
II. Short answer type questions

1. A bag contains 12 balls out of which x balls are white. If one ball is taken out from the 6ag. Find the probability of getting a white ball. If 6 more white balfs are added to the bag and the probability now for getting a white ball is double the previous one, find the value of x.

Sol. TotalNumber of balls $=12$
\mathcal{N} umber of white balls $=x$
$\therefore P(g e t t i n g$ a white $6 a l l)=\frac{x}{12}=P\left(E_{1}\right)$
\mathcal{N} ow, 6 more white balls are added in that 6 ag
\therefore Totalnumber of 6 alls $=12+6=18$
$\therefore \mathcal{P}($ getting a white $6 a l l)=\frac{6+x}{18}=P\left(E_{2}\right)$

According to the given condition,

$$
\begin{aligned}
& P\left(E_{2}\right)=2 P\left(E_{1}\right) \\
& \frac{6+x}{18}=2 \times \frac{x}{12} \\
\Rightarrow & \frac{6+x}{18}=\frac{x}{6} \\
\Rightarrow \quad & 6+x=3 \chi \\
\Rightarrow \quad & 2 x=6 \\
\Rightarrow \quad & x=3
\end{aligned}
$$

2. \mathcal{A} die is rolled 300 times and following outcomes are recorded

Outcomes	1	2	3	4	5	6
Frequency	42	60	55	53	60	30

Find the probability of getting a number (i) more than 4 (ii) less than 3
Sol. (i) Number of possible outcomes to get a number more than $4=60+30=90$

Total number of time die rolled $=300$
$\therefore P($ getting a numbermore than 4)
$=\frac{90}{300}=\frac{3}{10}=0.3$
.(ii) \mathcal{N} umber of possible outcomes to get a number less than $3=42+60=102$
$\therefore \mathcal{P}($ getting a number less than 3$)$
$=\frac{102}{300}=\frac{51}{150}=0.34$
3. A purse contains a number of $\mathcal{R s} .1, \mathcal{R s} .2$ and $\mathcal{R s} .5$ coins as given below.

$R s .1$	$R s .2$	$R s .5$
10	14	14

If from the purse a coin is taken out at random, then find the probability that the coin
(i) is not a Rs. 1 coin
(ii) is a Rs. 3 coin
[CBSE 2013]

Sol. Totalnumber of coins $=10+14+14=38$
(i) Total number of Rs. 1 coin $=10$
$\therefore P(R s .1$ coin $)=\frac{10}{38}$
$\mathcal{B u t} \mathcal{P}($ not $a \operatorname{Rs} .1$ coin $)=1-\mathcal{P}(\mathbb{R s} .1$ coin $)$

$$
=1-\frac{10}{38}=\frac{28}{38}=\frac{14}{19}
$$

(ii) Since there is no outcome favourable to choose Rs. 3 coin
$\therefore \mathcal{P}(a \mathcal{R} s .3 \operatorname{coin})=\frac{0}{38}=0$
4. A box has 4 red balls and 12 black balls. Find the probability that the selected ball is (i) a red ball (ii) a black ball, chosen at random from the box. Also prove that sum of these two probabilities is 1.

Sol. Total number of balls in the 6 ox $=4+12=16$
(i) Nomber of red balls $=4$

$$
\therefore P(\operatorname{ared} 6 a l l)=\frac{4}{16}=\frac{1}{4}
$$

(ii) Nomber of 6lack balfs =12
$\therefore \mathcal{P}(a b l a c k b a l l)=\frac{12}{16}=\frac{3}{4}$

Consider $P($ ared $6 a l l)+\mathcal{P}(a 6$ Lack $6 a l l)$
$=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1 \quad$ Hence proved
I. Long answer type questions

1. The daily cost of milk (in Rs) supplied to 25 fouses in a locality are given below

Cost (in Rs.)	Number of houses
$40-50$	4
$50-60$	5
$60-70$	3
$70-80$	5
$80-90$	2
$90-100$	6

If one house is chosen at random, find the probability that
(i) The milk bill of the house lies between Rs. 60 and Rs. 80
(ii) fouse is paying at most Rs.69, for the milk bill.
(iii) the milk bill of the frouse is below Rs. 50
[CBSE 2013]

Sol. Total number of houses $=25$
(i) Totalnumber of houses paying the milk bill between Rs. 60 and $\mathcal{R s} .80=3+5=8$
$\therefore \mathcal{P}\left(\right.$ milk bill be twe en Rs. 60 and Rs.80) $=\frac{8}{25}$
(ii) Totalnumber of houses paying at most Rs. 69 for milk $=4+5+3=12$
$\therefore \mathcal{P}$ (milk bill at most $\mathcal{R s . 6 9)}=\frac{12}{25}$
(iii) Totalnumber of houses paying the bill for milk below Rs. $50=4$
$\therefore \mathcal{P}($ milk bill below Rs. 50$)=\frac{4}{25}$
2. A parent has collected data of number of schools based on the monthly fees, so that the can choose the schoolfor admission of his child. The data is as follows.

Monthly fees of	Number of schools
schools (in Rs)	14
$250-500$	16
$500-750$	18
$750-1000$	12
$1000-1250$	14
$1250-1500$	8
$1500-1750$	8

If a school is selected at random, find the probability that the school is having
(i) minimum fee
(ii) maximum fee
(iii) fee lessthan Rs. 1000
(iv) fee Rs. 1000 or more but less than Rs. 1500
[CBSE2015 ANN 2016]
Sol. Total number of schools
$=14+16+18+12+14+8+8=90$
(i) \mathcal{N} (umber of schools having minimum fee
(in the range Rs. $250-\mathcal{R s} .500$) $=14$
$\therefore \mathcal{P}(S$ chool having minimum $f e e)=\frac{14}{90}=\frac{7}{45}$
(ii) Number of schools having maximum fee
(in the range Rs. $1750-\mathcal{R s . 2 0 0 0)}=8$
$\therefore \mathcal{P}(S$ chool having maximum $f e e)=\frac{8}{90}=\frac{4}{45}$
(iii) Number of schools having fee less than Rs. $1000=14+16+18=48$
$\therefore \mathcal{P}(S$ chool having fee less than Rs. 1000$)$

$$
=\frac{48}{90}=\frac{24}{45}=\frac{8}{15}
$$

(iv) Number of schools fraving fees Rs. 1000 or more Gut less than Rs. $1500=12+14=26$ $\therefore \mathcal{P}(S$ chool having fee $\mathcal{R s} .1000$ or more but less than Rs.1500)

$$
=\frac{26}{90}=\frac{13}{45}
$$

3. The given table shows the marks obtained by 50 students out of 100 in fistory examination.

Marks obtained	\mathcal{N} (umber of Students
$0-25$	9
$25-50$	8
$50-75$	23
$75-100$	10
Total	50

\mathcal{A} students is chosen at random
(i) Find the probability that he has obtained 75 or more marks.
(ii) If 50% are passing marks, Find the probability of the students failing in fistory examination
(iii) Find the probability that the student fas obtained less than 75 marks
[CBS E 2016]

Sol. Totalnumber of students $=50$
(i) $\mathcal{N} u m b e r$ of $\operatorname{students}$ who has obtained 75 or more marks $=10$
$\therefore \mathcal{P}(a \operatorname{students}$ has obtaine 75 or more marks)
$=\frac{10}{50}=\frac{1}{5}$
(ii) $\mathcal{N u m b e r}$ of students who has obtained less than 50% marks $=9+8=17$
$\therefore \mathcal{P}$ (a students filing in fistory examination)
$=\frac{17}{50}$
(iii) \mathcal{N} (umber of students who has obtained less than 75 marks $=9+8+23=40$
$\therefore \mathcal{P}(a \operatorname{stud}$ nts has obtaine d le ss than 75 marks)
$=\frac{40}{50}=\frac{4}{5}$
4. Two coins are tossed 729 times and the outcomes are recorded below

Outcomes	Frequency
\mathcal{N} o tails	189
One tails	297
Two tails	243

Find the probability of each event. Also, find the probability that at least one tails will come.
[CBSE 2015]

Sol. Total number of outcomes $=729$
The probability of eachevent is given by

$$
\begin{aligned}
& \mathcal{P}(\text { no } \text { tail })=\frac{\text { Frequency of no tail }}{\text { Total number of trials }} \\
& =\frac{189}{729}=\frac{7}{27} \\
& \mathcal{P}(\text { one tail })=\frac{\text { Frequency of one tail }}{\text { Total number of trials }} \\
& =\frac{297}{729}=\frac{11}{27} \\
& \mathcal{P}(\text { two tail })=\frac{\text { Frequency of two tail }}{\text { Total number of trials }} \\
& =\frac{243}{729}=\frac{1}{3}
\end{aligned}
$$

$\mathcal{N u m b e r}$ of possible outcomes forgetting at le ast one tail $=297+243=540$
$\therefore \mathcal{P}($ getting at least one tail $)=\frac{540}{729}=\frac{20}{27}$

