$\mathcal{L E S S O N}-9$ Areas of Parallelograms and Triangles

Objective Type Questions
I. Multiple choice questions

1 Two figures are congruent, if they have the
a) same size
6) same shape
c) same area
d) same shape and size
(d)
2. If \mathcal{A} and \mathcal{B} are two congruent figures, then
a) $\operatorname{ar}(\mathcal{A})>\operatorname{ar}(\mathcal{B})$
6) $\operatorname{ar}(\mathcal{A})=\operatorname{ar}(\mathcal{B})$
c) $\operatorname{ar}(\mathcal{A})<\operatorname{ar}(\mathcal{B})$ d) none of the se

6)

3. Given parallelogram $\mathcal{A B C D}$ and $\mathcal{E B C F}$ on the same base $\mathcal{B C}$ and between the same parallels $\mathcal{B C}$ and $\mathcal{A F}$. Given ar $(\mathcal{E B C F})=15$ square $c m$, then ar $(\mathcal{A B C D})$ is
a) $30 \mathrm{sq.cm}$
b) 7.5 sq.cm
c) $15 \mathrm{sq} . \mathrm{cm}$
d) 5 sq.cm

Sol: Parallelograms on the same base and between the same parallels are equal in area.
$\Rightarrow \quad \operatorname{ar}(\mathcal{A B C D})=\operatorname{ar}(\mathcal{E B C F})$

Since $\operatorname{ar}(\mathcal{E B C F})=15$ sq.cm, so
$\operatorname{ar}(\mathfrak{A B C D})=15$ sq.cm
\therefore Correct option is (c)
4. If ar (Parallelogram $\mathcal{A B C D})=25 \mathrm{~cm}^{2}$ and on same base $\mathcal{C D}$ a $\triangle \mathcal{B C D}$ is given such that ar $(\triangle \mathcal{B C D})=x \mathrm{~cm}^{2}$ then value of x is
a) $25 \mathrm{~cm}^{2}$
b) $12 \mathrm{~cm}^{2}$
c) $12.5 \mathrm{~cm}^{2}$
d) $50 \mathrm{~cm}^{2}$

Sol: If a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to half the area of the parallelogram.
$\Rightarrow \quad \operatorname{ar}(\triangle \mathcal{B C D})=\frac{1}{2} \operatorname{ar}(A B C D)$
$\Rightarrow \quad x=\frac{1}{2} \times 25 \Longrightarrow x=12.5 \mathrm{~cm}^{2}$
\therefore Correct option (c)
5. Two parallelograms are on equal bases and between the same parallels. The ratio of the ir areas is
[N (CERT Exe mplar]
a) $1: 2$
b) $1: 1$
c) $2: 1$
d) $3: 1$

Sol:(6)
6. $\mathcal{A B C D}$ is a quadrilateral whose diagonal $\mathcal{A C}$ divides it into two parts, equal in area, then $\mathfrak{A B C D}$

[N (CERT Exemplar]

a) is a rectangle
6) is always a rfombus
c) is a parallelogram
d) need not be any of (a), (b), or (c)
(d)
7. In the given figure, $\mathfrak{A B C D}$ is parallelogram. Calculate the area of parallelogram $\mathfrak{A B C D}$.

Sol:Area of parallelogram $\mathfrak{A B C D}$
$=$ Gase χ altitude $=\mathcal{A B} \chi \mathcal{D B}$
$=5 \times 7=35 \mathrm{~cm}^{2}$
8. Find the area of a rhombus, the length of whose diagonals are 16 cm and 12 cm respectively.

Sol: Area of rfombus $\quad=\frac{1}{2} \chi d_{1} \chi d_{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 16 \times 12 \mathrm{~cm}^{2} \\
& =96 \mathrm{~cm}^{2}
\end{aligned}
$$

9. In paralle logram $\mathcal{A B C D}, \mathcal{A B}=8 \mathrm{~cm}$ and the altitudes corresponding to sides $\mathcal{A B}$ and $\mathcal{A D}$ are $\mathcal{D M}=6 \mathrm{~cm}$ and $\mathcal{B N}=10 \mathrm{~cm}$ respective $\{y$. Find $\mathcal{A D}$.

Sol: \quad Area of paralle logram = 6ase x altitude
$\therefore \mathscr{A D} \times \mathcal{B N}=\mathscr{A} \mathcal{B} \times \mathcal{D M}$

$$
\begin{aligned}
\mathcal{A D} \times 10 & =8 \times 6 \\
\mathscr{A D} & =\frac{8 \times 6}{10}=\frac{48}{10}=4.8 \mathrm{~cm}
\end{aligned}
$$

II. Multiple choice questions

1. Given a triangle $\mathcal{A B C}$ and \mathcal{E} is mid-point of me dian $\mathcal{A D}$ of $\Delta \mathcal{A B C}$. If ar $(\Delta \mathcal{B E D})=20 \mathrm{~cm}^{2}$. Then $\operatorname{ar}(\triangle \mathcal{A B C})$ is.
a) $10 \mathrm{~cm}^{2}$
b) $5 \mathrm{~cm}^{2}$
c) $60 \mathrm{~cm}^{2}$
d) $80 \mathrm{~cm}^{2}$

Sol: Since $\mathcal{B E}$ is the median of $\Delta \mathcal{A B D}$, so

$$
\begin{aligned}
& \operatorname{ar}(\Delta \mathcal{B E D})=\frac{1}{2} \operatorname{ar}(\Delta A \mathcal{B D}) \\
\Rightarrow & 20=\frac{1}{2} \operatorname{ar}(\Delta A \mathcal{B D}) \\
\Rightarrow & \operatorname{ar}(\Delta A B D)=40 \mathrm{~cm}^{2}
\end{aligned}
$$

Since $\mathcal{A D}$ is the median of $\triangle \mathcal{A B C}$, so

$$
\operatorname{ar}(\triangle A B C)=2 \operatorname{ar}(\triangle A B D)
$$

$$
\Rightarrow \quad \operatorname{ar}(\triangle A B C)=2 \times 40=80 \mathrm{~cm}^{2}
$$

\therefore Correct option is (d)
2. The mid-point of the sides of a triangle along with any of the vertices as fourth point make a paralle logram of area equal to half are a of triangle
a) Tr ue
b) $\mathcal{F a l s e}$

Sol: We fave
$\operatorname{ar}(\Delta \mathcal{D E F})=\frac{1}{4} \operatorname{ar}(\Delta \mathcal{A B C})$
$\mathcal{N}(o w, \operatorname{ar}(\mathcal{B D E F})=\operatorname{ar}(\Delta \mathcal{D E F})+\operatorname{ar}(\Delta \mathcal{F B D})$

$$
\begin{aligned}
& =2 \operatorname{ar}(\Delta \mathcal{D E \mathcal { F })} \\
& =2 \times \frac{1}{4} \operatorname{ar}(\triangle \mathcal{A B C}) \\
& \quad=\frac{1}{2} \operatorname{ar}(\triangle A B C)
\end{aligned}
$$

\therefore correct option is (a).
3. In the given figure, $\mathcal{A B C D}$ is a parallelogram in which diagonals $\mathcal{A C}$ and $\mathcal{B D}$ intersect at O. If $\operatorname{ar}(\| g m \mathcal{A B C D})$ is $68 \mathrm{~cm}^{2}$, then find $\operatorname{ar}(\triangle O \mathcal{A B})$.

Sol: We have $\operatorname{ar}(\triangle O \mathcal{A B})=\frac{1}{4} \times \operatorname{ar}(\| g m \mathcal{A B C D})$

$$
=\frac{1}{4} \times 68 \mathrm{~cm}^{2}=17 \mathrm{~cm}^{2}
$$

4. $\mathcal{A B C}$ and $\mathcal{B D E}$ are two equilateraltriangles such that \mathcal{D} is the mid-point of $\mathcal{B C}$. Prove that $\operatorname{ar}(\Delta \mathcal{B D E})=\frac{1}{4} \operatorname{ar}(\Delta \mathcal{A B C})$

$$
\Rightarrow \mathcal{B D}=\frac{a}{2}
$$

$\therefore \operatorname{ar}(\Delta \mathcal{B D E}) \quad=\frac{\sqrt{3}}{4}\left(\frac{a}{2}\right)^{2}=\frac{\sqrt{3}}{4} \Varangle \frac{a^{2}}{4}$

$$
=\frac{1}{4}\left(\frac{\sqrt{3}}{4} \not x a^{2}\right)
$$

$\therefore \operatorname{ar}(\Delta \mathcal{B D E})=\frac{1}{4} \operatorname{ar}(\Delta \mathcal{A B C})$.
I. Sfort answer questions

1. Diagonals $\mathcal{A C}$ and $\mathcal{B D}$ of a quadrilateral $\mathcal{A B C D}$ intersect each other at P.S fow that $\operatorname{ar}(\triangle \mathcal{A P B}) \chi \operatorname{ar}(\Delta \mathcal{C P D})=\operatorname{ar}(\triangle \mathcal{A P D}) \chi \operatorname{ar}(\Delta \mathcal{B P C})$

2. If \mathcal{P} is any point in the interior of a parallelogram $\mathcal{A B C D}$, then prove that area of $(\triangle \mathcal{A P B})$ is less than half the area of the parallelogram

Sol. Given: \mathcal{P} is any point in the interior of parallelogram $\mathfrak{A B C D}$
To prove : $\operatorname{ar}(\Delta \mathcal{A} \mathcal{B})<\frac{1}{2}(\operatorname{ar} \| g m \mathcal{A B C D})$
Construction: $\operatorname{Draw} \mathcal{D N} \perp \mathcal{A B}$ and $P \mathcal{M} \perp \mathcal{A B}$.

Proof: $\operatorname{ar}(\| \operatorname{gm} \mathcal{A B C D})=\mathcal{A B} \chi \mathcal{D N}$

$$
\operatorname{ar}(\triangle \mathcal{A P B B})=\frac{1}{2}(\mathcal{A B} X \mathcal{P M})
$$

\mathcal{N} ow,
$P \mathcal{M}<\mathcal{D N}$
$\Rightarrow \mathcal{A B} \not \subset \mathcal{P M}<\mathcal{A B} \chi \mathcal{D N}$
$\Rightarrow \frac{1}{2}(\mathcal{A B} X P \mathcal{P M})<\frac{1}{2}(\mathcal{A B} X \mathcal{D N})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathcal{A P P B})<\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
Hence proved
II. Sfort answer questions

1. $\mathcal{A B C D}$ is a parallelogram. E is a point on $\mathcal{B A}$ sucf that $\mathcal{B E}=2 \mathcal{E A}$ and \mathcal{F} is a point on $\mathcal{D C}$ such that $\mathcal{D F}=2 \mathcal{F C}$. Prove that $\mathcal{A E C \mathcal { F }}$ is a parallelogram whose area is one-third of the area of parallelogram $\mathcal{A B C D}$.

Sol. Given: \mathcal{A} parallelogram $\mathcal{A B C D}$. \mathcal{E} is a point on $\mathcal{B A} \ni \mathcal{B E}=2 \mathcal{E A}$ and \mathcal{F} is a point on $\mathcal{D C}$ such that $\mathcal{D F}=2 \mathcal{F} C$.

To prove: (i) $\mathfrak{A E C F}$ is a parallelogram.
(ii) $\operatorname{ar}(\|$ gm AECF $)=\frac{1}{3} a r(\| \operatorname{gm~ABCD})$

Proof: $\mathcal{B E}=2 \mathcal{E A}$ and $\mathcal{D F}=2 \mathcal{F C}$
$\Rightarrow \quad \mathcal{A B}-\mathcal{A E}=2 \mathcal{A E}$ and $\mathcal{D C}-\mathcal{F C}=2 \mathcal{F C}$
$\Rightarrow \quad \mathcal{A B}=3 \mathcal{A E}$ and $\mathcal{D C}=3 \mathcal{F C}$

$$
\begin{array}{ll}
\Rightarrow & \mathcal{A E}=\frac{1}{3} \mathcal{A B} \text { and } \mathcal{F} C=\frac{1}{3} \mathcal{D C} \\
\Rightarrow & \mathcal{A E}=\mathcal{F} C \quad(\because \mathcal{A B}=\mathcal{C D})
\end{array}
$$

$\therefore \mathcal{A E} \| \mathcal{F C}$ such that $\mathcal{A E}=\mathcal{F C}$
$\therefore \mathscr{A E F C}$ is a parallelogram.
Parallelograms $\mathcal{A B C D}$ and $\mathcal{A E C F}$ five the same altitude and $\mathcal{A E}=\frac{1}{3} \mathcal{A B}$
$\therefore \operatorname{ar}(\| \mathrm{gm} \mathrm{AECF})=\frac{1}{3} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$ Hence proved.
3. $\mathcal{A B C D}$ and $\mathcal{P Q} \mathcal{R C}$ rectangles. Q is mid-point of $\mathcal{A C}$. Show that \mathcal{P} is the mid-point of $\mathcal{D C}$ and \mathcal{R} is the mid-point of $\mathcal{B C}$. Also, fine the ratio of $\operatorname{ar}(\mathcal{A B C D})$ and ar ($\mathcal{P Q} \mathcal{R C)}$

Sol. Given: $\mathcal{A B C D}$ and $\mathcal{P Q} \mathcal{R C}$ are rectangles. Q is mid-point of $\mathcal{A C}$

To prove : \mathcal{P}, \mathcal{R} are mid-points of $\mathcal{D C}, \mathcal{B C}$ respectively and find ar $(\mathcal{A B C D})$: ar ($\mathcal{P Q} \mathcal{R C})$
Proof : In $\Delta \subset \mathcal{A B}, Q$ is the mid-point of $\mathcal{A C}$.
$Q \mathcal{R} \| \mathcal{A B}$
$(\because \mathcal{A B C D}$ and $\mathcal{P Q} \mathcal{R C}$ both are rectangles)
$\Rightarrow \mathcal{R}$ is the mid-point of $\mathcal{B C}$.
(By converse of mid-point theorem)
$\mathfrak{A g}$ ain in $\triangle \subset \mathcal{A B}, Q$ and \mathcal{R} are the mid-points of $\mathcal{A C}$ and $\mathcal{B C}$ respectively.
$\Rightarrow \quad Q \mathcal{R}=\frac{1}{2} \mathcal{A B}(\mathcal{B} y$ mid-point theore $m)$
$\Rightarrow \quad Q \mathcal{R}=\frac{1}{2} \mathcal{D C}$
$(\because \mathcal{A B}=\mathcal{D C}$, Opposite sides of a rectangle $)$
In $\Delta \subset \mathcal{A D}, Q$ is the mid-point of $\mathcal{A C}$.
$\mathfrak{A g a i n}, \mathcal{P Q} \| \mathcal{D A}$
$\Rightarrow \mathscr{P}$ is the mid-point of $\mathcal{D C}$
(By converse of mid-point theorem)
$\mathcal{A g}$ ain in $\triangle \mathcal{C A D}, Q$ and P are the mid-points of $\mathcal{A C}$ and $\mathcal{D C}$ respectively

$$
\begin{array}{lc}
\Rightarrow & \mathcal{P Q}=\frac{1}{2} \mathcal{D A}(\mathcal{B} y \text { mid-point theorem) } \\
\Rightarrow & \mathcal{P Q}=\frac{1}{2} C \mathcal{B} \tag{ii}
\end{array}
$$

$(\because \mathcal{D A}=\mathcal{C B}$, opposite sides of a rectangle)
$\mathcal{N o w}, \operatorname{ar}(\mathcal{A B C D})=\mathcal{D C} X \subset \mathcal{B}$

$$
\begin{align*}
& \operatorname{ar}(\mathcal{P Q} \mathcal{R C})=Q \mathcal{R} X \mathcal{P Q}=\left(\frac{1}{2} D C\right) \times\left(\frac{1}{2} C B\right) \tag{iii}\\
&=\frac{1}{4} \mathcal{D C} \times C \mathcal{B}=\frac{1}{4}(\operatorname{ar} \mathcal{A B C D}) \\
& \Rightarrow \quad \frac{\operatorname{ar}(\mathrm{PQRC})}{\operatorname{ar}(\mathrm{ABCD})}=\frac{1}{4} \text { i.e. }=1: 4 \\
& \mathcal{H e n c e}, \operatorname{ar}(\mathcal{P Q} \mathcal{R C}): \operatorname{ar}(\mathcal{A B C D})=1: 4
\end{align*}
$$

III. Short answer questions

1. \mathcal{D} and E are the mid-points of $\mathcal{B C}$ and $\mathcal{A D}$ respectively of $\triangle \mathcal{A B C}$. If area of $\triangle \mathcal{A B C}=20 \mathrm{~cm}^{2}$ find area of $\Delta \mathcal{E B D}$.

Sol. $\because \mathcal{D}$ is the mid-point of $\mathcal{B C}$
$\therefore \mathscr{A D}$ is the median of $\triangle \mathcal{A B C}$
$\Rightarrow \operatorname{ar}(\Delta \mathcal{A B D})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B C})$
(\because Median of a triangle divides it into two triangles of equal areas)
$\Rightarrow \operatorname{ar}(\Delta \mathcal{A B D})=\frac{1}{2} \times 20 \mathrm{~cm}^{2}=10 \mathrm{~cm}^{2}$
$\mathcal{A l s o}, \mathcal{B E}$ is the median of $\triangle \mathcal{A B D}$.
$\operatorname{ar}(\Delta \mathcal{E B D})=\frac{1}{2}$ ar $(\Delta \mathcal{A B D})=\frac{1}{2} \quad$ $10=5 \mathrm{~cm}^{2}$
2. The medians $\mathcal{B E}$ and $\mathcal{C F}$ of a $\Delta \mathcal{A B C}$ intersect at \mathcal{G}. Prove that ar $(\Delta \mathcal{G} \mathcal{B C})=\operatorname{ar}(\mathcal{A F} \mathcal{G E})$

Sol. Given: $\mathcal{M e}$ dians $\mathcal{B E}$ and $\mathcal{C F}$ of $\triangle \mathcal{A B C}$ intersect at \mathcal{G}.
To prove : $\operatorname{ar}(\Delta \mathcal{G} \mathcal{B C})=\operatorname{ar}(\mathcal{A F} \mathcal{G E})$
Proof: We have ar $(\Delta \mathcal{F B C})=\frac{1}{2}$ ar $(\Delta \mathcal{A B C})$
(\because Median $\mathcal{C F}$ divides $\triangle \mathcal{A B C}$ into two triangles of equal areas)
$\operatorname{Simifar}\left(y, \operatorname{ar}(\Delta \mathcal{E B C})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B C})\right.$ \qquad
(ii)

From (i) and (ii) we get

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathcal{F B C})=\operatorname{ar}(\Delta E \mathcal{B C}) \tag{iii}
\end{equation*}
$$

Subtracting ar $(\triangle \mathcal{B G C})$ from both sides of (iii), we get
$\operatorname{ar}(\Delta \mathcal{F B C}) \cdot \operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta E \mathcal{B C}) \cdot \operatorname{ar}(\Delta \mathrm{BGC})$
$\Rightarrow \operatorname{ar}(\Delta \mathcal{F} \mathcal{G B})=\operatorname{ar}(\Delta \mathcal{E} \mathcal{G C}) \quad \cdots(i v)$
\mathcal{A} so, $\operatorname{ar}(\triangle \mathcal{A B E})=\operatorname{ar}(\Delta \mathcal{B E C})$
$(\because \mathcal{B E}$ is me dian of $\triangle \mathcal{A} \mathcal{B C})$
$\Rightarrow \operatorname{ar}(\Delta \mathcal{B F G})+\operatorname{ar}(\mathcal{A F G \mathcal { G }})=\operatorname{ar}(\Delta \mathrm{BGC})+\operatorname{ar}(\Delta \mathrm{GEC})$
$\Rightarrow \operatorname{ar}(\mathcal{A F} \mathcal{G E})=\operatorname{ar}(\Delta \mathrm{BGC})$
Hence proved
 $=\mathscr{O} \mathcal{N}$. Through X, a line is drawn parallel to $\mathcal{L M}$ to meet $\mathcal{M N}$ at Z. Prove that $\operatorname{ar}(\triangle \mathcal{L} \mathcal{Y})=\operatorname{ar}(\mathcal{M} Z \mathcal{Y} X)$

Sol. Given : $\angle \mathcal{X}=X \mathcal{Y}=\mathcal{Y} \mathcal{N}$. And \quad X $Z \| \angle \mathcal{M}$

To prove : $\operatorname{ar}(\triangle \mathcal{L} \mathcal{Y})=\operatorname{ar}(\mathcal{M} Z \mathcal{Y} X)$

Proof : $X Z \| \angle \mathcal{M}$
$\triangle \mathcal{L} Z$ and $\triangle X \mathcal{M Z}$ are on the same Gase $X Z$ and 6 etwe n the same paralle $\mathcal{X} X Z$ and $\angle \mathcal{M}$.
$\therefore \operatorname{ar}(\triangle \mathcal{X} Z)=\operatorname{ar}(\triangle X \mathcal{M Z})$

Adding ar ($\triangle X Y Z$) onboth sides we get
$\operatorname{ar}(\Delta \angle X Z)+\operatorname{ar}(\Delta X \mathcal{M} Z)$
Adding ar ($\triangle X Y Z)$ on 6oth sides, we get
$\operatorname{ar}(\Delta \mathcal{L} Z)+\operatorname{ar}(\Delta X Y Z)=\operatorname{ar}(\Delta X \mathcal{M} Z)+\operatorname{ar}(\Delta X Y Z)$
$\therefore \operatorname{ar}(\triangle \mathcal{Z Z Y})=\operatorname{ar}(\triangle \mathcal{M} Z \mathcal{Y} X)$
$I \mathcal{V} . S$ fort answer questions
4. In $\triangle \mathcal{A B C}, \mathcal{D}$ is the mid point of $\mathcal{A B}$ and \mathscr{P} is any point on $\mathcal{B C}$. If $\mathcal{C Q} \| \mathcal{P D}$ meets $\mathcal{A B}$ in Qin the given figure, then prove that $\operatorname{ar}(\triangle \mathcal{B P Q})=\frac{\mathbf{1}}{\mathbf{2}} \operatorname{ar}(\triangle \mathcal{A B C})$ [$\mathcal{N C E R T}$ Exemplar]

Sol: Given $\mathcal{A} \triangle A B C, D$ is the mid-point of $\mathcal{A B}$ and \mathcal{P} is any point on $\mathcal{B C}$ and $\mathcal{C Q} \| P D$ meets $\mathcal{A B}$ in Q

To prove: $\operatorname{ar}(\Delta \mathcal{B} P Q)=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A} \mathcal{B C})$
Construction: I oin \mathcal{D} and \mathcal{C}

Proof: since $\mathcal{C D}$ is the median of $\triangle \mathcal{A B C}$.
$\therefore \quad \operatorname{ar}(\Delta \mathcal{B C D})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B C})$
(\because Me dian of a triangle divides it into triangles of equal areas)
$\mathcal{D} \mathcal{P} \| C Q$
$\therefore \quad \operatorname{ar}(\triangle \mathcal{D} \mathcal{P})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{D} \mathcal{P} \mathcal{C})$
$[\mathcal{T}$ riangles are on the same base $\mathcal{D P}$ and between the same paralle [s $\mathcal{D} \mathcal{P}$ and $C Q]$
$\mathcal{A d d i n g} \operatorname{ar}(\Delta \mathcal{D B P})$ on both sides, we get
$\operatorname{ar}(\Delta \mathcal{D P Q})+\operatorname{ar}(\Delta \mathcal{D B} \mathcal{P})=\operatorname{ar}(\Delta \mathcal{D P C})+\operatorname{ar}(\Delta \mathcal{D B P})$
$\Rightarrow \operatorname{ar}(\Delta \mathcal{B} P Q)=\operatorname{ar}(\Delta \mathcal{B C D})$

From (i) and (ii), we get
$\operatorname{ar}(\Delta \mathcal{P Q B})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B C})$ Hence proved.
5. In the given figure. $\mathfrak{A B C D}$ is a parallelogram in which $\mathcal{B C}$ is produced to \mathcal{E} such that $\mathcal{C E}=\mathcal{B C}, \mathcal{A E}$ intersects $\mathcal{C D}$ at \mathcal{F}, If area of $\triangle \mathcal{B D F}=3 \mathrm{~cm}^{2}$ Find the area of paralle Logram $\mathcal{A B C D}$

Sol. In $\triangle \mathcal{A D F}$ and $\mathcal{E C F}$,
$\angle \mathcal{A D F}=\angle \mathcal{E C F} \quad$ [Alternate interior angles]
$\mathcal{A D}=\mathcal{C E}(\because \mathcal{A D}=\mathcal{B C}$ and $\mathcal{B C}=\mathcal{C E})$
$\angle \mathcal{D F A}=\angle \mathcal{F F E}$ (Vertically opposite angles)
$\Delta \mathcal{A D F} \cong \Delta \mathfrak{E C F}$ (AAS congruence rule)
$\Rightarrow \operatorname{ar}(\Delta \mathcal{A D F})=\operatorname{ar}(\Delta \mathcal{E} C \mathcal{F})$
$\mathcal{A l s o} \mathcal{D F}=\mathcal{C F} \quad(\mathcal{C P C T})$
$\therefore \mathcal{F}$ is the mid-point of $\mathcal{D C}$
$\Rightarrow \mathcal{B F}$ is the median in $\triangle \mathcal{B C D}$
$\Rightarrow \operatorname{ar}(\Delta \mathcal{B C D})=2 \operatorname{ar}(\Delta \mathcal{B D F})$
(\because Median of a triangle divides it into two triangles of equal areas)
$\Rightarrow \operatorname{ar}(\triangle \mathcal{B C D})=2 \times 3 \mathrm{~cm}^{2}=6 \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}(\| g m \mathcal{A B C D})=2 \operatorname{ar}(\Delta \mathcal{B C D})$

$$
=(2 \times 6) \mathrm{cm}^{2}=12 \mathrm{~cm}^{2}
$$

6. \mathcal{D} is the mid-point of side $\mathcal{B C}$ of $\triangle \mathcal{A B C}$ and \mathcal{E} is the mid-point of $\mathcal{B D}$. If O is the mid-point of $\mathcal{A E}$ then prove that $\operatorname{ar}(\triangle \mathcal{B O E})=\frac{\mathbf{1}}{\mathbf{8}} \operatorname{ar}((\Delta \mathcal{A B C})$

Sol. Given: \mathcal{D}, \mathcal{E} and O are mid-points of $\mathcal{B C}, \mathcal{B D}$ and $\mathcal{A E}$ respectively To prove : $\operatorname{ar}(\triangle \mathcal{B O E})=\frac{1}{8} \operatorname{ar}((\Delta \mathcal{A B C})$

Proof : since $\mathcal{A D}$ and $\mathcal{A E}$ are the medians of $\triangle \mathcal{A B C}$ and $\triangle \mathcal{A B D}$ respectively.
$\therefore \operatorname{ar}(\triangle \mathcal{A B D})=\frac{1}{2} \operatorname{ar}(\triangle \mathcal{A B C})$
and $\operatorname{ar}(\Delta \mathcal{A B E})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B D})$
$\mathcal{A l s o}, O \mathcal{B}$ is the median of $\triangle \mathcal{A B E}$
$\therefore \operatorname{ar}(\Delta \mathcal{B O E})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B E})$
From (i), (ii) and (iii) we get ar $(\Delta \mathcal{B O E})=\frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B E})$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\Delta \mathcal{A B D}) \\
& =\frac{1}{4} \operatorname{ar}(\Delta \mathcal{A B \mathcal { B }})
\end{aligned}
$$

(5) $\begin{aligned} & =\frac{1}{4} \times \frac{1}{2} \operatorname{ar}(\triangle \mathcal{A B C}) \\ & =\frac{1}{8} \operatorname{ar}(\triangle \mathcal{A B C}) \mathcal{H e n c e} \text { proved }\end{aligned}$
7. In the given figure, $\mathcal{A B C D}$ and $\mathcal{A E F D}$ are two parallelogram. Prove that
i) $\mathscr{P E}=\mathcal{F} Q$
ii) $\operatorname{ar}(\triangle \mathcal{P E A})=\operatorname{ar}(\Delta Q \mathcal{F D})$
iii) $\operatorname{ar}(\triangle \mathcal{A P E}): \operatorname{ar}(\Delta \mathcal{P F \mathcal { A }})=\operatorname{ar}(\Delta Q \mathcal{F D}): \operatorname{ar}(\Delta \mathcal{P F D})$

Sol. Given: $\mathcal{A B C D} \mathcal{A n d} \mathcal{A E F \mathcal { F }}$ are two parallelograms

To prove :
i) $\mathcal{P E}=\mathcal{F} Q$
ii) $\operatorname{ar}(\triangle P E \mathcal{A})=\operatorname{ar}(\Delta Q \mathcal{F D})$
iii) $\operatorname{ar}(\triangle \mathcal{A P E}): \operatorname{ar}(\triangle \mathcal{P F \mathcal { A }})=\operatorname{ar}(\Delta Q \mathcal{F D}): \operatorname{ar}(\Delta \mathcal{P F D})$

Proof: i) In $\triangle \mathcal{A P E}$ and $\triangle \mathcal{D Q \mathcal { F }}$
$\angle \mathcal{A P E}=\angle \mathcal{D Q \mathcal { F }} \quad$ (Corresponding angles)
$\mathcal{A E}=\mathcal{D F}$
(Opposite sides of a parallelogram)
$\angle \mathcal{A E P}=\angle \mathcal{D F} \mathcal{F}($ Corresponding angles $)$
$\triangle \mathcal{A P E} \cong \triangle \mathcal{D Q F}(\mathcal{A A S}$ congruencerule)
$\Rightarrow P E=Q \mathcal{F} \quad(\mathcal{C P C T})$
(ii) $\operatorname{ar}(\triangle \mathcal{P E \mathcal { A }})=\operatorname{ar}(\Delta Q \mathcal{F D})$
(i)
(\therefore Congruent triangles are equal in areas)
(iii) $\triangle P \mathcal{F A}=\triangle \mathcal{P F D}$ are on the same base $\mathcal{P F}$ and between the same parallels $\mathcal{P Q}$ and $\mathcal{A D}$
$\therefore \operatorname{ar}(\Delta \mathcal{P F A})=\operatorname{ar}(\Delta \mathcal{P F D})$
Dividing (i) 6y (ii), we get
$\frac{\operatorname{ar}(\triangle \mathrm{APE})}{\operatorname{ar}(\triangle \mathrm{PFA})}=\frac{\operatorname{ar}(\triangle \mathrm{QFD})}{\operatorname{ar}(\triangle \mathrm{PFD})}$

```
\(\Rightarrow \operatorname{ar}(\triangle \mathcal{A P E}): \operatorname{ar}(\triangle \mathcal{P F A})\)
```

$=\operatorname{ar}(\Delta Q \mathcal{F D}): \operatorname{ar}(\Delta \mathcal{P F D})$

Hence proved

```
I. Long answer questions
```

1. In the given figure, $\mathcal{A B C D}$ is a parallelogram. O is any point on $\mathcal{A C} \cdot \mathcal{P Q} \| \mathcal{A B}$ and $\mathcal{L M} \| \mathcal{A D}$. Prove that $\operatorname{ar}(\| g m \mathcal{D L O P})=\operatorname{ar}(\| g m \mathcal{B M O})$

Sol. Given: $\mathcal{A B C D}$ is a parallelogram and point O lies on $\mathcal{A C}, P Q\|\mathcal{A B a n d} L M\| \mathcal{A D}$
To prove : ar (parallelogram $\mathcal{D L O \mathcal { P }) ~}$

$$
=\operatorname{ar}(\text { parallelogram } \mathcal{B M O} Q)
$$

Proof : \because Diagonal of a ar parallelogram divides it into two triangles of equal are as
$\therefore \operatorname{ar}(\Delta \mathcal{A D C})=\operatorname{ar}(\Delta \mathcal{A} \mathcal{B C})$
$\Rightarrow \operatorname{ar}(\triangle \mathcal{A P O})+\operatorname{ar}(\| g m \mathcal{D L O \mathcal { P }) + \operatorname { a r } (\Delta \mathcal { L O C }) , ~ (1)}$

$$
=\operatorname{ar}(\triangle \mathcal{A} O \mathcal{M})+\operatorname{ar}(\| g m \mathcal{B M O} Q)+\operatorname{ar}(\triangle O Q C) \quad \cdots(i)
$$

$\because \mathcal{A O}$ and $O C$ are diagonals of parallelogram
$\mathcal{A M O} \mathcal{P}$ and $O Q C L$ respectively
$\therefore \quad \operatorname{ar}(\triangle \mathcal{A} \mathcal{P O})=\operatorname{ar}(\triangle \mathcal{A M} O)$
-(ii)
$\operatorname{ar}(\triangle O \subset C)=\operatorname{ar}(\triangle O Q C)$

Subtracting (ii) and (iii) from (i) we get
$\operatorname{ar}(\| g m \mathcal{D L O P})=\operatorname{ar}(\| g m \mathcal{B M O} Q)$
Hence proved
2. The diagonals of a parallelogram $\mathcal{A B C D}$ intersect at a point O. Through O, a line is drawn to intersect $\mathcal{A D}$ at \mathcal{P} and $\mathcal{B C}$ at Q. Show that $\mathcal{P Q}$ divides the parallelogram into two parts of equal area.
[N CERT Exemplar]

Sol. Given: \mathcal{A} parallelogram $\mathcal{A B C D}$ in which diagonals $\mathcal{A C}$ and $\mathcal{B D}$ intersect at O. Through O, a line is drawn to intersect $\mathcal{A D}$ at \mathcal{P} and $\mathcal{B C}$ at Q.

To prove : $\operatorname{ar}(\mathcal{A P Q} \mathcal{B})=\operatorname{ar}(\mathcal{P Q} \mathcal{C D})$

$$
=\frac{1}{2}(\| g m \not A B C D)
$$

Proof: Diagonals of a parallelogram divides it into two triangles of equal area.
$\operatorname{ar}(\Delta \mathcal{A B C})=\operatorname{ar}(\Delta \mathcal{A C D})$
$\operatorname{ar}(\mathcal{A B Q O})+\operatorname{ar}(\mathcal{C O Q})=\operatorname{ar}(\mathcal{C D P O})+\operatorname{ar}(\triangle \mathcal{A O P}) \ldots(i)$
In $\triangle \mathcal{A O P}$ and $\triangle \mathcal{C O Q}$, we have
$\angle \mathcal{A O P}=\angle \mathcal{C O Q} \quad(V e r t i c a l l y$ opposite angles)
$O \mathcal{A}=O C \quad($ Diagonals of a parallelogram bisecteach other)
$\angle O \mathscr{A} P=\angle O C Q$
(Alternate interior angles)
$\therefore \triangle \mathcal{A O} Q \cong \triangle \mathcal{C O Q}$
(ASA congruence rule)

As congruent triangles are equal in areas,
$\Rightarrow \quad \operatorname{ar}(\triangle \mathcal{A O P})=\operatorname{ar}(\Delta \subset O Q)$

From (i) and (ii) we get
$\operatorname{ar}(\mathcal{A B Q O})+\operatorname{ar}(\triangle \mathcal{A O P})=\operatorname{ar}(\mathcal{C D P O})+\operatorname{ar}(\Delta \mathcal{C O Q})$
$\operatorname{ar}(\mathcal{A B Q O})=\operatorname{ar}(\mathcal{C D P Q})$

$\operatorname{ar}(\mathcal{A P Q} \mathcal{B})=\operatorname{ar}(\mathcal{P Q} \mathcal{C D})$
Hence proved.

1. In the given figure, X and \mathcal{Y} are the mid-points of $\mathcal{A C}$ and $\mathcal{A B}$ respectively, $Q \mathcal{P} \| \mathcal{B C}$ and $\mathcal{C Y Q}$ and $\mathcal{B X P}$ are straight lines. Prove that $\operatorname{ar}(\triangle \mathcal{A B P})=\operatorname{ar}(\triangle \mathcal{A C Q})$

Sol. Given: X and \mathcal{Y} are mid-points of $\mathcal{A C}$ and $\mathcal{A B}$ respective ly. $Q P \| \mathcal{B C}$ and $\mathcal{C Y} Q$ and $\mathcal{B X} \mathcal{P}$ are straight lines.

To prove: $\operatorname{ar}(\Delta \mathcal{A B P})=\operatorname{ar}(\triangle \mathcal{A C Q})$

Prove: X and \mathcal{Y} are the mid-points of $\mathcal{A C}$ and $\mathcal{A B}$ respectively.
\therefore Bymid-point the orem $X \mathcal{Y} \| \mathcal{B C}$

Triangles $\mathcal{B Y C}$ and $\mathcal{B} X C$ are on the same base $\mathcal{B C}$ and between the same parallel $X \mathcal{Y}$ and $\mathcal{B C}$.
$\therefore \quad \operatorname{ar}(\Delta \mathrm{BYC})=\operatorname{ar}(\Delta \mathrm{BXC})$

Subtracting $\operatorname{ar}(\triangle \mathrm{BOC})$ from both sides, we get
$\operatorname{ar}(\Delta \mathrm{BYC})-\operatorname{ar}(\Delta \mathrm{BOC})=\operatorname{ar}(\Delta \mathrm{BXC})-\operatorname{ar}(\Delta \mathrm{BOC})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{BOY})=\operatorname{ar}(\Delta \mathrm{COX})$

Adding $\operatorname{ar}(\triangle \mathrm{XOY})$ on 6oth sides, we get
$\operatorname{ar}(\Delta \mathrm{BOY})+\operatorname{ar}(\Delta \mathrm{XOY})=\operatorname{ar}(\Delta \mathrm{COX})+\operatorname{ar}(\Delta \mathrm{XOY})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{BXY})=\operatorname{ar}(\Delta \mathrm{CXY})$
\because Paralle logram $X \mathcal{A} \mathcal{P}$ and Parallelogram $X \mathcal{A} \mathcal{A}$ are on the same base $X \mathcal{Y}$ and Getween the same parallels $X Y$ and between the same paralle ls $X Y$ and $P Q$
$\therefore \operatorname{ar}(\triangle \mathrm{XYAP})=\operatorname{ar}(\Delta \mathrm{XYQA})$
Adding (i) and (ii), we get
$\operatorname{ar}(\triangle B X Y)+\operatorname{ar}(X Y A P)=\operatorname{ar}(\triangle C X Y)+\operatorname{ar}(X Y Q A)$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ABP})=\operatorname{ar}(\triangle A C Q) \quad$ Hence proved.
2. In the given figure, $\mathcal{A B C D E}$ is any pentagon. $\mathcal{B} P$ drawn parallel to $\mathcal{A C}$ meets $\mathcal{D C}$ produced at \mathcal{P} and $\mathcal{E Q}$ drawn parallel to $\mathcal{A D}$ meets $\mathcal{C D}$ produced at Q. Prove that $\operatorname{ar}(\mathcal{A B C D E})=\operatorname{ar}(\triangle \mathbf{A P Q})$
[$\mathcal{N C E R T}$ Examplar]

Sol. Given: $\mathcal{A B C D E}$ is any pentagon, $\mathcal{B P} \| \mathcal{A C}$ and $\mathcal{E Q} \| \mathcal{A D}$

To Prove : $\operatorname{ar}(\mathcal{A B C D E})=\operatorname{ar}(\triangle A \mathrm{PQ})$
Proof: $\triangle A B C$ and $\triangle A P C$ are on the same base $\mathcal{A C}$ and between the same paralle $\operatorname{ls} \mathcal{B} P$ and $\mathcal{A C}$

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A P C) \tag{i}
\end{equation*}
$$

Similarly, $\triangle \mathrm{AED}$ and $\triangle \mathrm{AQD}$ are on the same base $\mathcal{A D}$ and betwe n the same paralle $\mathcal{A D}$ and $E Q$

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle A \mathrm{ED})=\operatorname{ar}(\Delta A \mathrm{QD}) \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\operatorname{ar}(\Delta A B C)=\operatorname{ar}(\Delta A \mathrm{ED})=\operatorname{ar}(\Delta A \mathrm{PC})=\operatorname{ar}(\triangle A \mathrm{QD}) \ldots . \quad \text { (iii) }
$$

$\mathcal{A d}$ ding $\operatorname{ar}(\triangle \mathrm{ACD})$ on both sides of (iii), we get
$\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\Delta A E D)+\operatorname{ar}(\Delta A C D)$

$$
=\operatorname{ar}(\Delta A \mathrm{PC})+\operatorname{ar}(\Delta A \mathrm{QD})+\operatorname{ar}(\Delta A \mathrm{CD})
$$

$$
\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\triangle A \mathrm{PQ})
$$

Hence proved.

3. If the medians of $a(\triangle \mathbf{A B C})$ intersect at \mathcal{G}, show that $\mathbf{a r}(\triangle \mathbf{A G C})=\boldsymbol{\operatorname { a r }}(\triangle \boldsymbol{A G B})=$ $\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3}(\Delta A B C)$.

Sol. Given: $\mathcal{A} \triangle A B C$ in fich medians $\mathcal{A D}, \mathcal{B E}$ and $\mathcal{C F}$ intersecteach other at \mathcal{G}.

To prove : $\operatorname{ar}(\Delta A \mathrm{GC})=\operatorname{ar}(\Delta A \mathrm{~GB})=\operatorname{ar}(\Delta B \mathrm{GC})$

$$
=\frac{1}{3} \operatorname{ar}(\Delta A B C)
$$

Proof: In $\triangle A B C, \mathcal{A D i s}$ the median.

As a median of a triangle divides it into two triangles of equal areas,
$\therefore \quad \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D)$

In $\triangle \mathcal{G} \mathcal{B} C, \mathcal{G D}$ is the median,
$\therefore \quad \operatorname{ar}(\Delta G B D)=\operatorname{ar}(\Delta G C D)$

Subtracting (ii) from (i), we get
$\therefore \quad \operatorname{ar}(\triangle A B D)-\operatorname{ar}(\triangle G B D)=\operatorname{ar}(\triangle A C D)-\operatorname{ar}(\triangle G C D)$ \qquad

$$
\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)
$$

Similarly,

$$
\operatorname{ar}(\Delta A G B)=\operatorname{ar}(\Delta B G C)
$$

From (iii) and (iv), we get
$\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle B G C)$

$$
=\operatorname{ar}(\Delta A G C)
$$

$\mathcal{B} u t \quad \operatorname{ar}(\triangle A G B)+\operatorname{ar}(\triangle B G C)+\operatorname{ar}(\triangle A G C)$

$$
=\operatorname{ar}(\triangle A B C)
$$

(vi)

From (v) and (vi), we get

$$
3 \operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A B C)
$$

$$
\begin{aligned}
\operatorname{ar}(\triangle A G B) & =\frac{1}{3} \operatorname{ar}(\triangle A B C) \\
\text { Hence, } \operatorname{ar}(\triangle A G B) & =\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C) \\
= & \frac{1}{3} \operatorname{ar}(\triangle A B C) \text { Hence proved. }
\end{aligned}
$$

4. In the given figure, $\mathcal{A B C D}$ is a parallelogram. Prove that $\operatorname{ar}(\triangle \boldsymbol{B C P})=\boldsymbol{a r}(\triangle \boldsymbol{D P Q})$,
if $\mathcal{B C}=\mathcal{C} Q$

Sol. Given: \mathcal{A} parallelogram $\mathcal{A B C D}$ in which $\mathcal{B C}=\mathcal{C Q}$
To prove : $\operatorname{ar}(\triangle B C P)=\operatorname{ar}(\triangle D P Q)$,

Construction : Ioin $\mathcal{A C}$

Proof: since $\triangle A P C$ and $\triangle B P C$ are on the same base $P C$ and between the same paralle ls $\mathcal{P C}$ and $\mathcal{A B}$.
$\therefore \quad \operatorname{ar}(\triangle A P C)=\operatorname{ar}(\triangle B P C)$

Since $\mathcal{A B C D}$ is a parallelogram.

$$
\mathfrak{A D}=\mathcal{B C}
$$

$\Rightarrow \quad \mathrm{AD}=\mathrm{CQ}$

$$
(\because \mathcal{B C}=C Q)
$$

\mathcal{N} ow, $\mathcal{A D} \| \mathcal{C Q}$ and $\mathcal{A D}=\mathcal{C} Q$

Thus in quadrilateral $\mathcal{A D Q} C$, one pair of opposite sides is equal and parallel
$\therefore \mathcal{A D C Q}$ is a parallelogram.
$\Rightarrow \quad \mathrm{AP}=\mathrm{PQ}$ and $\mathcal{C P}=\mathcal{D P}$
[Diagonals of a parallelogram bisect each other]
\mathcal{N} ow, in $\triangle \mathcal{A P C}$ and $\mathcal{D P Q}$

$$
\mathcal{A} P=\mathcal{P Q} \quad[\text { Proved above }]
$$

$\angle \mathcal{A P C}=\angle \mathcal{D P Q}[$ Vertically opposite angles]
$P C=P D \quad$ [Proved above]
$\therefore \triangle A P C \cong \triangle D P Q$
[S $\mathcal{A S}$ congruence rule]
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle D \mathrm{PQ})$

From (i) and (ii), we get
(ii)

School

