

GRADE -9

LESSON - 9 Areas of Parallelograms and Triangles

- 5. Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is [NCERT Exemplar]
 - a) 1 : 2 b) 1 : 1 c) 2 : 1 d) 3 : 1
 - Sol : (b)
- 6. ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD

[NCERT Exemplar]

- a) is a rectangle
- b) is always a rhombus
- c) is a parallelogram
- d) need not be any of (a), (b), or (c)
- (d)
- 7. In the given figure, ABCD is parallelogram. Calculate the area of parallelogram ABCD.

Sol : Area of parallelogram ABCD

- = base x altitude = AB x DB
- $= 5 \times 7 = 35 \ cm^2$
- 8. Find the area of a rhombus, the length of whose diagonals are 16cm and 12cm respectively.

Sol : Area of rhombus
$$= \frac{1}{2} \times d_1 \times d_2$$
$$= \frac{1}{2} \times 16 \times 12 \ cm^2$$
$$= 96 \ cm^2$$
Second School

 In parallelogram ABCD, AB = 8 cm and the altitudes corresponding to sides AB and AD are DM = 6cm and BN = 10cm respectively. Find AD.

Created by Pinkz

2. The mid-point of the sides of a triangle along with any of the vertices as fourth point make a parallelogram of area equal to half area of triangle

- " correct option is (a).
- 3. In the given figure, ABCD is a parallelogram in which diagonals AC and BD intersect at O. If ar ($\|$ gm ABCD) is 68 cm^2 , then find ar (Δ OAB).

Sol: We have $ar(\Delta OAB) = \frac{1}{4} \times ar(\|gm|ABCD)$

$$=\frac{1}{4} \times 68 cm^2 = 17 cm^2$$

4. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Prove that $ar(\Delta BDE) = \frac{1}{4}ar(\Delta ABC)$

Sol. We have

ar(Δ APD) x ar(Δ BPC)

$$= \left(\frac{1}{2} \times AL \times DP\right) \times \left(\frac{1}{2} \times CM \times BP\right)$$
$$= \left(\frac{1}{2} \times BP \times AL\right) \times \left(\frac{1}{2} \times DP \times CM\right)$$

- = $ar(\Delta APB) \times ar(\Delta CPD)$ Hence Proved.
- 2. If P is any point in the interior of a parallelogram ABCD, then prove that area of (ΔAPB) is less than half the area of the parallelogram

Created by Pinkz

Sol. Given: P is any point in the interior of parallelogram ABCD

To prove : $ar(\Delta APB) < \frac{1}{2}$ (ar ||gm ABCD) Construction: Draw DN \perp AB and PM \perp AB. Proof: $ar(\|gm ABCD) = AB \times DN$ $ar(\Delta APB) = \frac{1}{2} (AB \times PM)$ Now, PM <DN $\Rightarrow AB \times PM < AB \times DN$ $\Rightarrow \frac{1}{2} (AB \times PM) < \frac{1}{2} (AB \times DN)$ $\Rightarrow ar(\Delta APB) < \frac{1}{2} ar(\|gm ABCD)$ Hence proved II. Short answer questions

1. ABCD is a parallelogram. E is a point on BA such that BE = 2EA and F is a point on DC such that DF = 2FC. Prove that AECF is a parallelogram whose area is one-third of the area of parallelogram ABCD.

Sol. Given : A parallelogram ABCD. E is a point on $BA \ni BE = 2EA$ and F is a point on DC such that DF = 2FC.

To prove: (i) AECF is a parallelogram.

(ii) ar (|| gm AECF) =
$$\frac{1}{3}$$
ar (|| gm ABCD)
Proof: BE = 2EA and DF = 2FC

 \Rightarrow AB - AE = 2AE and DC - FC = 2FC

 \Rightarrow AB = 3AE and DC = 3FC

 \Rightarrow AE = $\frac{1}{3}$ AB and FC = $\frac{1}{3}$ DC

 $\Rightarrow \qquad AE = FC \quad (:: AB = CD)$

- ∴ AE || FC such that AE = FC
- ∴ AEFC is a parallelogram.

Parallelograms ABCD and AECF have the same altitude and AE = $\frac{1}{2}$ AB

 $\therefore ar(\parallel \text{gm AECF}) = \frac{1}{3}ar(\parallel \text{gm ABCD})$

Hence proved.

3. ABCD and PQRC rectangles. Q is mid-point of AC. Show that P is the mid-point of DC and R is the mid-point of BC. Also, fine the ratio of ar(ABCD) and ar (PQRC)

Sol. Given : ABCD and PQRC are rectangles. Q is mid-point of AC

To prove : P,R are mid-points of DC, BC respectively and find ar(ABCD) : ar (PQRC)

Proof : In Δ CAB, Q is the mid-point of AC.

QR || AB

(: ABCD and PQRC both are rectangles)

 \Rightarrow R is the mid-point of BC. (By converse of mid-point theorem)

Again in Δ CAB, Q and R are the mid-points of AC and BC respectively.

- ⇒ QR = $\frac{1}{2}$ AB (By mid-point theorem)
- \Rightarrow QR = $\frac{1}{2}$ DC

(::AB = DC, Opposite sides of a rectangle)

In Δ CAD, Q is the mid –point of AC.

Again, PQ || DA

 \Rightarrow P is the mid-point of DC

School

(By converse of mid-point theorem)

Again in Δ CAD, Q and P are the mid-points of AC and DC respectively

- $\Rightarrow PQ = \frac{1}{2} DA (By mid-point theorem)$ $\Rightarrow PQ = \frac{1}{2} CB ----(ii)$ (: DA = CB, opposite sides of a rectangle) Now, ar(ABCD) = DC X CB -----(iii) ar (PQRC) = QR X PQ = $(\frac{1}{2} DC) \times (\frac{1}{2} CB)$ $= \frac{1}{4} DC \times CB = \frac{1}{4} (ar ABCD)$ $\Rightarrow \frac{ar (PQRC)}{ar(ABCD)} = \frac{1}{4} i.e. = 1:4$ Hence, ar (PQRC) : ar(ABCD) = 1:4 III. Short answer questions
- 1. D and E are the mid-points of BC and AD respectively of $\triangle ABC$. If area of $\triangle ABC = 20cm^2$ find area of $\triangle EBD$.

- Sol. : D is the mid-point of BC
- \therefore AD is the median of ΔABC
- \Rightarrow ar (\triangle ABD) = $\frac{1}{2}$ ar (\triangle ABC)

Also, BE is the median of $\triangle ABD$.

ar (Δ EBD) = $\frac{1}{2}$ ar (Δ ABD) = $\frac{1}{2}$ x 10 = 5 cm^2 8

2. The medians BE and CF of a \triangle ABC intersect at G. Prove that ar (\triangle GBC) = ar (AFGE)

Sol. Given : LX = XY = YN. And XZ || LM

To prove : ar(ΔLZY) = ar(MZYX)

Proof : XZ || LM

 Δ LXZ and Δ XMZ are on the same base XZ and between the same parallels XZ and LM.

 \therefore ar (Δ LXZ) = ar(Δ XMZ)

Adding ar (Δ XYZ) onboth sides we get

ar (Δ LXZ) +ar (Δ XMZ)

Adding ar (Δ XYZ) on both sides, we get

ar (ΔLXZ) + ar (ΔXYZ) = ar (ΔXMZ) + ar (ΔXYZ)

 \therefore ar (Δ LZY) = ar (Δ MZYX)

Hence proved.

IV. Short answer questions

4. In $\triangle ABC$, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Qin the given figure, then prove that $ar(\triangle BPQ) = \frac{1}{2}ar(\triangle ABC)$ [NCERT Exemplar]

Sol: Given A $\triangle ABC$, *D* is the mid-point of AB and P is any point on BC and CQ ||PD meets AB in Q

To prove: $ar(\Delta BPQ) = \frac{1}{2}ar(\Delta ABC)$

Construction: Join D and C

Proof: since CD is the median of $\triangle ABC$.

 \therefore ar(Δ BCD) = $\frac{1}{2}$ ar(Δ ABC)

(: Median of a triangle divides it into triangles of equal areas)(i)

Created by Pinkz

ion School

DP|| CQ

[Given]

 $\therefore \text{ ar}(\Delta \text{DPQ}) = \frac{1}{2} \text{ ar}(\Delta \text{DPC})$

[Triangles are on the same base DP and between the same parallels DP and CQ] Adding $ar(\Delta DBP)$ on both sides, we get $ar(\Delta DPQ) + ar(\Delta DBP) = ar(\Delta DPC) + ar(\Delta DBP)$ $\Rightarrow ar(\Delta BPQ) = ar(\Delta BCD)$ (ii) From (i) and (ii) , we get $ar(\Delta PQB) = \frac{1}{2}ar(\Delta ABC)$ Hence proved.

5. In the given figure. ABCD is a parallelogram in which BC is produced to E such that CE = BC, AE intersects CD at F, If area of $\triangle BDF = 3cm^2$ Find the area of parallelogram ABCD

Created by Pinkz

(: Median of a triangle divides it into two triangles of equal areas)

$$\Rightarrow$$
 ar (Δ BCD) = 2 x 3 cm^2 = 6cm²

 $= (2 \times 6) \ cm^2 = 12 \ cm^2$

6. D is the mid-point of side BC of \triangle ABC and E is the mid-point of BD. If O is the mid-point of AE then prove that ar (\triangle BOE) = $\frac{1}{8}$ ar ((\triangle ABC)

Sol. Given : D, E and O are mid-points of BC, BD and AE respectively

To prove : ar (Δ BOE) = $\frac{1}{8}$ ar ((Δ ABC))

Proof : since AD and AE are the medians of \triangle ABC and \triangle ABD respectively.

- and ar (ΔABE) = $\frac{1}{2}$ ar (ΔABD) ----(2)

Also, OB is the median of $\triangle ABE$

 \therefore ar (\triangle BOE) = $\frac{1}{2}$ ar (\triangle ABE)

From (i), (ii) and (iii) we get ar $(\Delta BOE) = \frac{1}{2}$ ar (ΔABE)

$$= \frac{1}{2} \times \frac{1}{2} \text{ ar } (\Delta ABD)$$
$$= \frac{1}{4} \text{ ar } (\Delta ABD)$$

 $G_{=\frac{1}{4}} \times \frac{1}{2} \text{ ar (ΔABC)}$ $= \frac{1}{8} \text{ ar (ΔABC) Hence proved}$

<u>(3)</u>

- 7. In the given figure, ABCD and AEFD are two parallelogram. Prove that
 - i) PE = FQii) $ar(\Delta PEA) = ar (\Delta QFD)$ iii) $ar(\triangle APE)$: $ar(\triangle PFA) = ar(\triangle QFD)$: ar (∆PFD) E F Ρ F Sol. Given : ABCD And AEFD are two parallelograms To prove : i) PE = FQii) $ar(\Delta PEA) = ar(\Delta QFD)$ iii) $ar(\Delta APE)$: $ar(\Delta PFA) = ar(\Delta QFD)$: $ar(\Delta PFD)$ **Proof** : i) In $\triangle APE$ and $\triangle DQF$ $\angle APE = \angle DQF$ (Corresponding angles) AE =DF (Opposite sides of a parallelogram) $\angle AEP = \angle DFQ$ (Corresponding angles) $\Delta APE \cong \Delta DQF$ (AAS congruence rule) \Rightarrow PE = QF (CPCT) (ii) ar (Δ PEA) = ar (Δ QFD) ----(i) (: Congruent triangles are equal in areas) (iii) $\Delta PFA = \Delta PFD$ are on the same base PF and between the same parallels PQ and AD \therefore ar (Δ PFA) = ar (Δ PFD) Dividing (i) by (ii), we get $\frac{ar (\Delta APE)}{ar (\Delta PFA)} = \frac{ar (\Delta QFD)}{ar (\Delta PFD)}$

 \Rightarrow ar (Δ APE) : ar (Δ PFA)

=ar (Δ QFD) : ar (Δ PFD)

Hence proved

2. The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area. [NCERT Exemplar]

Sol. Given : A parallelogram ABCD in which diagonals AC and BD intersect at O . Through O, a line is drawn to intersect AD at P and BC at Q.

To prove : ar(APQB) = ar(PQCD)

 $=\frac{1}{2}$ (|| gm ABCD)

Proof: Diagonals of a parallelogram divides it into two triangles of equal area.

ar (ΔABC) = ar (ΔACD)

 $ar(ABQO) + ar(COQ) = ar(CDPO) + ar(\Delta AOP) ----(i)$

In $\triangle AOP$ and $\triangle COQ$, we have

∠AOP = ∠ COQ

(Vertically opposite angles)

(Alternate interior angles)

OA = OC (Diagonals of a parallelogram bisect each other)

∠OAP = ∠ OCQ

 $\therefore \Delta AOP \cong \Delta COQ$

(ASA congruence rule)

lion.

As congruent triangles are equal in areas,

$$\Rightarrow$$
 ar (ΔAOP) = ar (ΔCOQ)

From (i) and (ii) we get

 $ar(ABQO) + ar(\Delta AOP) = ar(CDPO) + ar(\Delta COQ)$

ar(ABQO) =ar(CDPQ)

ar(APQB) =ar(PQCD)

Hence proved.

School

II. Long answer questions

1. In the given figure, X and Y are the mid-points of AC and AB respectively, QP \parallel BC and CYQ and BXP are straight lines. Prove that $ar(\triangle ABP) = ar(\triangle ACQ)$

Sol. Given: X and Y are mid-points of AC and AB respectively. QP || BC and CYQ and BXP are straight lines.

To prove: $ar(\Delta ABP) = ar(\Delta ACQ)$

Prove: X and Y are the mid-pointsof AC and AB respectively.

∴ Bymid-point theorem

XY || BC

Triangles BYC and BXC are on the same base BC and between the same parallel XY and BC.

 \therefore ar(Δ BYC) = ar(Δ BXC)

Subtracting $ar(\Delta BOC)$ from both sides, we get

 $ar(\Delta BYC) - ar(\Delta BOC) = ar(\Delta BXC) - ar(\Delta BOC)$

 $\Rightarrow ar(\Delta BOY) = ar(\Delta COX)$

Adding $ar(\Delta XOY)$ on both sides, we get

 $ar(\Delta BOY) + ar(\Delta XOY) = ar(\Delta COX) + ar(\Delta XOY)$

 $\Rightarrow ar(\Delta BXY) = ar(\Delta CXY)$ (i)

☆ Parallelogram XYAP and Parallelogram XYAQ are on the same base XY and between the same parallels XY and between the same parallels XY and PQ

 $\therefore ar(\Delta XYAP) = ar(\Delta XYQA) \qquad (ii)$ Adding (i) and (ii), we get $ar(\Delta BXY) + ar(XYAP) = ar(\Delta CXY) + ar(XYQA)$

 \Rightarrow ar(\triangle ABP) = ar(\triangle ACQ) Hence proved.

2. In the given figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that $ar(ABCDE) = ar(\Delta APQ)$ [NCERT Examplar]

Sol. Given: ABCDE is any pentagon, BP || AC and EQ || AD

To Prove : $ar(ABCDE) = ar(\Delta APQ)$

Proof: ΔABC and ΔAPC are on the same base AC and between the same parallels BP and AC

 \therefore ar(ΔABC) = ar(ΔAPC) (*i*)

Similarly, ΔAED and ΔAQD areon the same base AD and between the same parallels AD and EQ

 \therefore ar(ΔAED) = ar(ΔAQD).....(ii)

Adding (i) and (ii), we get

$$ar(\Delta ABC) = ar(\Delta AED) = ar(\Delta APC) = ar(\Delta AQD) \dots$$
 (iii)

Adding $ar(\Delta ACD)$ on both sides of (iii), we get

 $ar(\Delta ABC) + ar(\Delta AED) + ar(\Delta ACD)$

$$= ar(\Delta APC) + ar(\Delta AQD) + ar(\Delta ACD)$$

 \Rightarrow ar(ABCDE) = ar(ΔAPQ)

Hence proved.

Next Generation School

3. If the medians of a ($\triangle ABC$)intersect at G, show that $ar(\triangle AGC) = ar(\triangle AGB) = ar(\triangle BGC) = \frac{1}{3}(\triangle ABC)$.

Sol. Given : A ΔABC in hich medians AD, BE and CF intersect each other at G.

To prove: $ar(\Delta AGC) = ar(\Delta AGB) = ar(\Delta BGC)$

 $=\frac{1}{3}ar(\Delta ABC)$

Proof: In $\triangle ABC$, ADis the median.

As a median of a triangle divides it into two triangles of equal areas,

$$\therefore \text{ ar}(\Delta ABD) = \text{ar}(\Delta ACD)$$

In Δ GBC, GDis the median,

$$\therefore \quad \operatorname{ar}(\Delta GBD) = \operatorname{ar}(\Delta GCD)$$

Subtracting (ii) from (i), we get

$$ar(\triangle AGB) = ar(\triangle AGC)$$

Similarly,

$$ar(\Delta AGB) = ar(\Delta BGC)$$
From (iii) and (iv) , we get
$$ar(\Delta AGB) = ar(\Delta BGC)$$

$$= ar(\Delta AGC)$$
But $ar(\Delta AGB) + ar(\Delta BGC) + ar(\Delta AGC)$

$$= ar(\Delta ABC)$$
(vi)

From (v) and (vi) , we get

 $3ar(\Delta AGB) = ar(\Delta ABC)$

18

.....(i)

.....(ii)

$$ar(\Delta AGB) = \frac{1}{3}ar(\Delta ABC)$$

Hence, $ar(\Delta AGB) = ar(\Delta AGC) = ar(\Delta BGC)$

 $=\frac{1}{3}ar(\Delta ABC)$ Hence proved.

4. In the given figure, ABCD is a parallelogram. Prove that $ar(\Delta BCP) = ar(\Delta DPQ)$, if BC = CQ [CBSE 2016]

Sol. Given : A parallelogram ABCD in which BC = CQ

To prove: $ar(\Delta BCP) = ar(\Delta DPQ)$,

Construction : Join AC

Proof: since $\triangle APC$ and $\triangle BPC$ are on the same base PC and between the same parallels PC and AB.

Since ABCD is a parallelogram.

AD =BC

 \Rightarrow AD = CQ

(∵ BC = CQ)

Now, AD || CQ and AD= CQ

Thus in quadrilateral ADQC, one pair of opposite sides is equal and parallel

: ADCQ is a parallelogram.

$$\Rightarrow$$
 AP = PQ and CP = DP

[Diagonals of a parallelogram bisect each other]

Now, in ΔAPC and DPQ

AP = PQ

[Proved above]

School

