Grade IX
Lesson: 8 [Quadrilaterals]

Objective Type Questions
I. Multiple choice questions

1. The value of x in the given figure is

a) 10^{0}
b) 20^{0}
c) 30°
d) 40^{0}

Sol: 6
2. Which of the following is not a parallelogram?
a) trapezium
6) square
c) rectangle
d) rhombus
Sol: a
3. In the given figure, $\mathcal{A B C D}$ is a parallelogram. If $\angle C=65^{\circ}$, then $(\angle B+\angle D)$ is equal to

a) 180°
b) 115^{0}
c) 155°
d) 230°

Sol: Since $\mathcal{A B C D}$ is a parallelogram, so opposite angles are equal,
Thus $\angle B=\angle D$ and $\angle A=\angle C=65^{\circ}$
using angle sum property of a quadrifateral, we fiave
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow 65^{0}+\angle B+65^{\circ}+\angle D=360^{\circ}$
$\Rightarrow \angle B+\angle D=360^{\circ}-130^{\circ}=230^{\circ}$
\therefore Correct option is (d)
4. In the given figure, $\mathfrak{A B C D}$ is a rhombus, $\mathcal{A O}=4 \mathrm{~cm}$ and $\mathcal{D O}=3 \mathrm{~cm}$. Thenthe perimeter of the rfombus is

a) 18 cm
b) 20 cm
c) 21 cm
d) 22 cm

Sol: Since $\mathcal{A B C D}$ is a rhombus, so diagonals $\mathcal{A C}$ and $\mathcal{B D}$ bisect eachother right angles
at O.
so $\angle \mathcal{A} O \mathcal{D}=90^{\circ}$
$\mathcal{N} o w, A D^{2}=A O^{2}+O D^{2}$
$[\because$ Pythagora theorem $]$
$\Rightarrow A D^{2}=(4)^{2}+(3)^{2}$
$\Rightarrow A D^{2}=16+9$
$\Rightarrow A D^{2}=25$
$\Rightarrow A D=5 \mathrm{~cm}$

Since all sides of a rfombus are equal, so $\mathcal{A B}=\mathcal{B C}=\mathcal{C D}=\mathcal{D A}=5 \mathrm{~cm}$
So, perimeter of rhombus $=\mathcal{A B}+\mathcal{B C}+\mathcal{C D}+\mathcal{D A}$

$$
=5+5+5+5=20 \mathrm{~cm}
$$

\therefore Correct option is (b)
5. Given a trapezium $\mathcal{A B C D}$, in which $A B \| C D$ and $\mathcal{A D}=\mathcal{B C}$. If $\angle D=70^{\circ}$, then $\angle C$ will be
a) 70^{0}
b) 110^{0}
c) 20°
d) none of these

Sol: $\operatorname{Draw} \mathcal{A} X \perp \mathcal{D C}$ and $\mathcal{B} \mathcal{Y} \perp \mathcal{D C}$

In $\triangle \mathcal{A X D}$ and $\triangle \mathcal{B Y C}$, we fiave

$$
\mathcal{A D}=\mathcal{B C}
$$

[Give n]

$$
\angle \mathcal{A} X \mathcal{D}=\angle \mathcal{B} Y C \quad\left[E a c \hbar 90^{\circ}\right]
$$

$$
\mathcal{A} X=\mathcal{B} \mathcal{Y} \quad \text { [Distance between parallelsides] }
$$

So, $\triangle \mathcal{A} X \mathcal{O} \cong \triangle \mathcal{B} Y C$,
[$\mathcal{R H S}$ congruence rule]
Thus $\angle \mathcal{D}=\angle \mathcal{C}$
[CPCT]
Hence, $\angle \mathrm{C}=70^{\circ}$
\therefore Correct option is (a)
6.Three angles of quadrilateral are $75^{\circ}, 90^{\circ}, 75^{\circ}$, Find the fourth angle [$\mathcal{N C E R T}$ Exe mplar]

Sol: As we know that sum of four angles of quadrilateral is 360°
Let fourth angle be x.
$\therefore 75^{\circ}+90^{\circ}+75^{0}+x=360^{\circ}$
$\Rightarrow \quad x=360^{\circ}-240^{\circ}=120^{\circ}$
\therefore Fourth angle $=120^{\circ}$
7. Diagonals $\mathcal{A C}$ and $\mathcal{B D}$ parallelogram $\mathcal{A B C D}$ intersect at O. If $\angle \mathcal{B O} \mathcal{C}=90^{\circ}$ and $\angle \mathcal{B D C}=50^{\circ}$ find $\angle O \mathscr{A} \mathcal{B}$

Sol: In a parallelogram $\mathcal{A B C D}, O$ is point of intersection of diagonals $\mathcal{A C}$ and $\mathcal{B D}$.

We have $\angle \mathcal{B O C}=\angle O \mathcal{B A}+\angle O A B$
[Exterior angle is equal to sum of two interior opposite angles]
$\Rightarrow 90^{\circ}=50^{\circ}+\angle O A \mathcal{A B}$
$\Rightarrow \angle O A B=90^{\circ}-50^{\circ}=40^{\circ}$
8. Can all the angles of a quadrilateral be acute angles? Give reason for your answer.
[$\mathcal{N C E R T}$ Exemplar]

Sol: \mathcal{N} o, all the angles of quadrilateralcannot be acute angles. If all the angles of quadrilateral will be acute. The sum of all the four angles will be less than 360° which is not possible
II. Multiple crioice questions

1. In the given figure, find $\mathcal{B D}$, if $\boldsymbol{D} \boldsymbol{E} \mid \boldsymbol{B C}$

a) 2 cm
6) 1 cm
c) 3 cm
d) none of these

Sol: a) by the converse of the Mid-point the orem.
2. In a parallelogram $\mathcal{A B C D}, \mathcal{E}$ and \mathcal{F} are the mid-points of sides $\mathcal{A B}$ and $\subset \mathcal{D}$ respectively. $\mathcal{A F}$ and $\mathcal{C E}$ meet the diagonal $\mathcal{B D}$ of length 12 cm at \mathcal{P} and Q, then length of $\mathcal{P Q}$ is
a) 6 cm
b) 4 cm
c) 3 cm
d) 5 cm

Sol. In a parallelogram $\mathcal{A B C D}$, we know that if \mathcal{E} and \mathcal{F} are the mid-points of sides $\mathcal{A B}$ and $\mathcal{C D}$ respectively, then the line segments $\mathcal{A F}$ and $\mathcal{E C}$ trisect the diagonal $\mathcal{B D}$.

3. \mathcal{A} In $\triangle \mathcal{A B C}$, right angled at \mathcal{B}, Side $\mathcal{A B}=6 \mathrm{~cm}$ and side $\mathcal{B C}=8 \mathrm{~cm}$. \mathcal{D} is mid-point of $\mathcal{A C}$. Then length of $\mathcal{B D}$ is
a) 10 cm
b) 4 cm
c) 3 cm
d) 5 cm

Sol: $\mathcal{B y}$ converse of mid-point the orem, we get \mathcal{E} is mid-point of $\mathcal{B C}$.

Also
\mathcal{N} ow,

$$
\angle \mathcal{D E C =} \angle \mathcal{A B C}=90^{\circ} \quad \text { |Corresponding Angle }
$$

$\triangle \mathcal{C E D} \cong \triangle \mathcal{B D E}$ [SAS Congruence rule]

So,
$\mathcal{C D}=\mathcal{B D}$
[CPCT]
$\Rightarrow \quad \mathrm{CD}=\mathrm{BD}=\frac{1}{2} A C$
$[\because \mathcal{D}$ is mid-point of $\mathcal{A C}]$
$\Rightarrow \quad \mathrm{BD}=\frac{1}{2} \times 10=5 \mathrm{~cm}$
$\left[\because A C=\sqrt{(A B)^{2}+(B C)^{2}}\right.$, Pythagoras theorem]

\therefore Correct option is (d)

4. \mathcal{D} and \mathcal{E} are the mid-points of the sides $\mathcal{A B}$ and $\mathcal{A C}$ of $\triangle \mathcal{A B C}$ and O is any point on side $\mathcal{B C}$. O is joined to \mathcal{A}. If \mathcal{P} and Q are the mid-points of $O \mathcal{B}$ and $O C$ respectively, then $\mathcal{D E Q} \mathcal{P}$ is [$\mathcal{N C R I}$ Examplar]
a) a square
6) a rectangle
c) a rfombus
d) a parallelogram

Sol: Ulsing mid-point theorem, we have

$$
D P \| E Q
$$

And

$$
\mathcal{D} \mathcal{P}=\mathcal{E} Q=\frac{1}{2} A O
$$

So, $\mathcal{D E Q} \mathcal{P}$ is a paralle logram,
\therefore Correct option is (d)

I. Short answer questions

1. If one angle of a parallelogram is $\mathbf{3 6}^{\mathbf{0}}$ less than twice its adjacent angle, then find the angles of paralle logram [CBSE 2016]

Sol: Let one angle of parallelogram be x.
Its adjacent angle is $\left(180^{\circ}-x\right)$
As per question,

$$
\begin{array}{cc}
& x=2\left(180^{0}-x\right) \cdot 36^{0} \\
& \\
\Rightarrow & x=360^{\circ}-2 x=36^{\circ} \\
\Rightarrow & 3 x=324^{0} \\
\Rightarrow & x=\frac{324^{0}}{3}=108^{\circ} \\
\Rightarrow & \text { Adjacent angle }=180^{\circ} \cdot 108^{\circ}=72^{\circ}
\end{array}
$$

Hence, the angles of paralle logram are $108^{\circ}, 72^{0}, 108^{0}, 72^{\circ}$.
2. In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles.

Sol: Given: $\mathfrak{A B C D}$ is a parallelogram such that angle bisectors of adjacent angles \mathcal{A} and \mathcal{B} intersect at point \mathcal{P}.

To prove: $\angle \mathcal{A P B}=90^{\circ}$

Proof: we have

$$
\angle \mathcal{A}+\angle \mathcal{B}=180^{\circ}
$$

$[A D \| B C$ and $\angle \mathcal{A}$ and $\angle \mathcal{B}$ are consecutive interior angles]
$\frac{1}{2} \angle A+\frac{1}{2} \angle B=90^{\circ}$
But $\frac{1}{2} \angle \mathcal{A}+\frac{1}{2} \angle B+\angle \mathcal{A P B}=180^{\circ}$ [S um of angles of a triangle is 180°]
$\Rightarrow \quad 90^{\circ}+\angle \mathcal{A P B}=180^{\circ}$
$\Rightarrow \quad \angle \mathcal{A P B}=90^{\circ} \quad$ Hence proved
3. In the given figure, $P Q R S$ is a parallelogram. Find the values of x and y.

Sol: Here, $\mathcal{P Q} \mathcal{R S}$ is a parallelogram
As $P Q \| R S$
$\therefore \quad 8 x=32^{\circ}$ [Alternate interior angles]

As $P S \| Q R$

And

$$
9 y=27^{0} \text { [Alternate interior angles] }
$$

$$
\Rightarrow \quad x=\frac{32^{0}}{8} \text { and } y=\frac{27^{0}}{9}
$$

$$
\Rightarrow \quad x=4^{0} \text { and } y=3^{0}
$$

II. Sfort answer questions

1. In the given figure, $\mathcal{A B C D}$ is a quadrilateral in which $\mathcal{A D}=\mathcal{B C}$ and $\angle \mathcal{D A B}=\angle C \mathcal{B A}$

Prove that: (i) $\triangle \mathcal{A B D} \cong \triangle \mathcal{B A C}$
(ii) $\mathcal{B D}=\mathcal{A C}$

Sol: Given: $\mathcal{A B C D}$ is a quadrilateral in which $\mathcal{A D}=\mathcal{B C}$ and $\angle \mathcal{D A B}=\angle C \mathcal{B A}$

To prove:

$$
\text { (i) } \triangle \mathcal{A B D} \cong \triangle \mathcal{B A C}
$$

(ii) $\mathcal{B D}=\mathcal{A C}$

Proof: (i) In $\triangle \triangle \mathcal{A B D}$ and $\triangle \mathcal{B A C}$
$\mathcal{A D}=\mathcal{B C}$
$\angle \mathcal{D A B}=\angle C \mathcal{B A}$
$\mathcal{A B}=\mathcal{A B}$
$\therefore \quad \triangle \mathcal{A B D} \cong \triangle \mathcal{B A C}$
(ii) $\mathcal{B D}=\mathcal{A C}$

Hence proved
2. In the given figure, $\mathcal{A B C D}$ is a square, \mathcal{A} line $\mathcal{B M}$ intersects $\mathcal{C D}$ at \mathcal{M} and diagonal $\mathcal{A C}$ at O such that $\angle \mathcal{A O B}=\mathbf{8 0}^{\mathbf{0}}$. Find the value of x.

Sol. As diagonal of a square bisects the opposite angles,


```
III. Sfort answer questions
```

1. $\mathcal{A B C D}$ is a parallelogram. $\mathcal{A B}$ is produced to \mathcal{E} so that $\mathcal{B E}=\mathcal{A B}$. Prove the $\mathcal{E D}$ bisects $\mathcal{B C}$.

Sol: Given: $\mathcal{A B C D}$ is a parallelogram. $\mathcal{A B}$ is produced to \mathcal{E} such that $\mathcal{B E}=\mathcal{A B}$

To prove: $\mathcal{E D}$ bisects $\mathcal{B C}$.

ie.

$$
\mathcal{B F}=\mathcal{F} \mathcal{C}
$$

Construction: Join \mathcal{D} to \mathcal{E} which intersects $\mathcal{B C}$ at \mathcal{F}.

Proof: We fave

In $\Delta \mathcal{B E F}$ and $\triangle \mathcal{C D F}$,

	$\mathcal{B E}=\mathcal{D C}$
	$\angle \mathcal{B E F}=\angle \mathcal{C D F}$
$\therefore \quad$	$\angle \mathcal{B E F}=\angle \mathcal{C F D}$
$\therefore \quad$	$\Delta \mathcal{B E F} \cong \Delta \mathcal{C D F}$,
	$\mathcal{B F}=\mathcal{F} C$

$\therefore E D$ bisects $B C$.
[Opposite sides of parallelogram]
[Give n]
[Proved above]
[Alternative interior angles]
[Vertically opposite angles]
[AAS congruence rule]
[CPCT]

Hence proved.
2. In the given figure, $\boldsymbol{D E \| B C}$ Find $\mathcal{B D}$.

Sol: $\mathfrak{A s} \mathcal{A E}=\mathcal{E C}=4 \mathrm{~cm}$
$\therefore \mathcal{E}$ is mid-point of $\mathcal{A C}$

Also
$\mathcal{D E} \| \mathcal{B C}$
(give n)
$\therefore \quad \mathcal{B y}$ the converse of mid-point theorem, we have \mathcal{D} is mid-point of $\mathfrak{A B}$
$\Rightarrow \mathcal{A D}=\mathcal{B D}$
$\Rightarrow \mathcal{B D}=2 \mathrm{~cm}$
[As given $\mathfrak{A D}=2 \mathrm{~cm}$]
$I V . S$ fort answer questions

1. In the given figure, $\mathcal{A B C D}$ and $\mathcal{P Q R C}$ are rectangles and Q is the mid-point of $\mathcal{A C}$. Prove that :
i) $\mathcal{D} \mathcal{P}=\mathcal{P} C$
ii) $\mathcal{P R}=\frac{1}{2} \mathscr{A} C$

Given: $\mathcal{A B C D}$ and $\mathcal{P Q} \mathcal{R C}$ are two rectangle and Q is the mid-point of $\mathfrak{A C}$
To prove: i) $\mathcal{D} \mathcal{P}=\mathcal{B C}$
ii) $P \mathcal{R}=\frac{1}{2} \mathcal{A C}$

Proof: (i) In $\triangle \mathcal{A C D}$,

Q is the mid-point of $\mathcal{A C}$
$\angle \mathcal{A D C}=\angle Q P C=90^{\circ}$
(Each angle of rectangle is right angle)
\mathcal{B} ut these are corresponding angles.
$\Rightarrow P Q \| \mathcal{D A}$
$\therefore \quad \mathcal{P}$ is the mid-point of $C \mathcal{D}$
i.e. $\quad \mathcal{D} P=P C$
ii) We have $Q C=\mathscr{P R}$
and $Q C=\frac{1}{2} \mathcal{A C}$
$\therefore \quad P \mathcal{R}=\frac{1}{2} \mathcal{A C}$
(Diagonals of rectangle are equal)
(Give n)

Hence proved
2. $\mathcal{A B C D}$ is a trapezium in which $\mathcal{A B} \| \mathcal{D C}$. \mathcal{M} and \mathcal{N} are the mid-points of $\mathcal{A D}$ and $\mathcal{B C}$ respectively. If $\mathcal{A B}=12 \mathrm{~cm}$ and $\mathcal{M A}=14 \mathrm{~cm}$, find $C \mathcal{D}$. [$\mathcal{H O} \mathcal{T S}$]
Sol: $\mathcal{H e r e}, \mathcal{A B C D}$ is a trapezium in which, $\mathcal{A B} \| \mathcal{D C}$ and \mathcal{M} and \mathcal{N} are the mid-point of $\mathcal{A D}$ and $\mathcal{B C}$ respectively.

Since the line segment joining the mid-points of non-parallel sides of trapezium is falf of the sum of the lengths of its parallel sides,

$$
\begin{aligned}
& \Rightarrow \mathcal{M N}=\frac{1}{2}(\mathcal{A B}+\mathcal{C D}) \\
& \Rightarrow 14=\frac{1}{2}(12+\mathcal{C D}) \\
& \Rightarrow 28=12+\mathcal{C D} \\
& \Rightarrow \mathcal{C D}=28-12=16 \mathrm{~cm}
\end{aligned}
$$

I. Long answer questions

1. Two parallellines l and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Sol. Given $\mathcal{B A}, \mathcal{B C}, \mathcal{D C}, \mathcal{D A}$ are bisectors of $\angle \mathcal{P A C}, \angle Q C \mathcal{A}, \angle \mathcal{A C R}$ and $\angle S \mathcal{A C}$ respectively.

To prove : $\mathfrak{A B C D}$ is a rectangle.
Proof: We fave

$$
\angle P A C=\angle \mathcal{A C R}
$$

[Alternate interior angles as $\boldsymbol{l l | m}$ and p is transversal]

$$
\frac{1}{2} \angle P A C=\frac{1}{2} \angle \mathcal{A C R}
$$

$\Rightarrow \quad \angle \mathcal{B A C}=\angle \mathcal{A C D}$
[$\mathcal{A s} \mathcal{B A}$ and $\mathcal{D C}$ are bisectors of $\angle P \mathcal{A C}$ and $\angle \mathcal{A C R r e s p e c t i v e ~ [y] ~}$
$\mathcal{B} u t$ these are alternate angles. This shows that $\boldsymbol{A B} \| \boldsymbol{C D}$

Similarly, $\boldsymbol{B C} \| \boldsymbol{A D}$
\Rightarrow Quadrilateral $A B C D$ is a parallelogram
\mathcal{N} ow, $\angle \mathcal{P A C}+\angle \mathcal{C A S}=180^{\circ}$
[Line ar pariaxiom]
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{PAC}+\frac{1}{2} \angle \mathrm{CAS}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAC}+\angle \mathrm{CAD}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAD}=90^{\circ}$
From (i) and (ii) we can say that $\mathcal{A B C D}$ is a rectangle

Hence proved.
2. $\mathcal{A B C D}$ is a rfombus and $\mathcal{A B}$ is produced to \mathcal{E} and \mathcal{F} such that $\mathcal{A E}=\mathcal{A B}=\mathcal{B F}$. Prove that $\mathcal{E D}$ and $\mathcal{F C}$ are perpendicular to each other.

Sol. Given : $\mathcal{A B C D}$ is a riombus, $\mathcal{A B}$ produced to \mathcal{E} and \mathcal{F} such that $\mathcal{A E}=\mathcal{A B}=\mathcal{B} \mathcal{F}$ Construction: Ioin $\mathcal{E D}$ and $\subset \mathcal{F}$ and produce it to meet at \mathcal{G}.
To prove $\mathcal{E D} \perp \mathcal{F C}$
Proof : $\mathcal{A B}$ is produced to points \mathcal{E} and \mathcal{F} such that

$$
\begin{equation*}
\mathcal{A E}=\mathfrak{A B}=\mathcal{B} \mathcal{F} \tag{i}
\end{equation*}
$$

\mathcal{A} so, since $\mathcal{A B C D}$ is a rhombus
$\mathcal{A B}=\mathcal{C D}=\mathcal{B C}=\mathcal{A D}$
\mathcal{N} ow, in $\triangle \mathcal{B C F}$,

$$
\begin{align*}
& \mathcal{B C}=\mathcal{B F} \\
& \Rightarrow \quad \angle 1=\angle 2 \\
& \angle 3=\angle 1+\angle 2 \\
& \angle 3=2 \angle 2 \tag{iii}\\
& \text { Similarly, } \quad \mathcal{A E}=\mathcal{A D} \\
& \angle 5=\angle 6 \\
& \Rightarrow \quad \angle 4=\angle 5+\angle 6=2 \angle 5 \tag{iv}\\
& \mathcal{A d d i n g} \text { (iii) and (iv), we get } \\
& \angle 4+\angle 3=2 \angle 5+2 \angle 2 \\
& \Rightarrow \quad 180^{\circ}=2(\angle 5+\angle 2)
\end{align*}
$$

[From (i) and (ii)]
[Exterior angle]
[$\because \angle 4$ and $\angle 3$ are consecutive interior angles]
$\Rightarrow \angle 5+\angle 2=90^{\circ}$
$\therefore \mathcal{E G} \perp \mathcal{F} \mathcal{C}, \mathcal{N}$ ow in $\triangle \mathcal{E} \mathcal{G F}$
$\angle 5+\angle 2+\angle E G F=180^{\circ}$
$\Rightarrow \quad \angle E G F=90^{\circ} \quad$ Hence proved.

I. Long answer questions

1. In $\triangle \mathcal{A B C}$ is isosceles with $\mathcal{A B}=\mathcal{A C}, \mathcal{D}, \mathcal{E}$ and \mathcal{F} are the mid-point of sides $\mathcal{B C}, \mathcal{C A}$ and $\mathcal{A B}$ respectively. Show that the line segment $\mathcal{A D}$ is perpendicular to the line segment $\mathcal{E F}$ and is bisected by it.

Sol: Given $\triangle \mathcal{A B C}$ is isosceles with $\mathcal{A B}=\mathcal{A C}, \mathcal{D}, \mathcal{E}$ and \mathcal{F} are the mid-point of $\mathcal{B C}, \mathcal{C A}$ and $\mathcal{A B}$ respectively.

To Prove : $\mathfrak{A D} \perp \mathcal{E F}$ and is bisected byit.

Construction: Ioin \mathcal{D}, \mathcal{E} and \mathcal{F} and $\mathcal{A D}$

Proof: we have
$\mathcal{D E} \| \mathcal{A B}$ and $\mathcal{D E}=\frac{1}{2} A B$
$\mathcal{A n d} \mathcal{D F} \| \mathcal{A C}$ and $\mathcal{D F}=\frac{1}{2} A C$
(Line segment joining mid-points of two sides of a triangle is parallel to the third side and is half of it.)

$$
\begin{equation*}
\mathscr{A B}=\mathcal{A C} \tag{iii}
\end{equation*}
$$

$\therefore \quad \mathcal{A F}=\frac{1}{2} \mathcal{A} \mathcal{B}, \mathcal{A E}=\frac{1}{2} \mathcal{A} \mathcal{C}$

From (i), (ii), (iii), and (iv), we get

$$
\mathcal{D E}=\mathcal{D F}=\mathcal{A F}=\mathcal{A E}
$$

$\mathcal{A n d}$ atso, $\mathcal{D F} \| \mathcal{A E}$ and $\mathcal{D E} \| \mathcal{A F}$
\Rightarrow DEAF is a rfombus.
Since diagonals of a rhombus bisect each other at right angles,
$\therefore \mathcal{A D} \perp \mathcal{E F}$ and is bisected 6y it.
2. In the given figure, $\mathcal{B X}$ and $\mathcal{C Y}$ are perpendicular to a line through the vertex \mathcal{A} of $\triangle \mathcal{A B C}$ and Z is the mid-point of $\mathcal{B C}$. Prove that $X Z=\mathscr{Z} Z$ [$\mathcal{H O T S}, \quad$ CBS E 2015]

Sol: Given $\mathcal{B X}$ and $C \mathcal{Y}$ are perpendiculars to a line $X \mathcal{A} \mathcal{Y}$

To prove : $X Z=\mathscr{Y} Z$

Construction : Draw $Z Q \perp X \mathcal{Y}$

Proof: We have
$\mathcal{B} X \perp X \mathcal{Y}$

And $C Y \perp X Y$
$\mathcal{A l s o}, Z Q \perp X \mathcal{Y}$
$\mathcal{B} X\|Z Q\| \mathcal{C Y}$
[Given]
[Given]
[By construction]
(Perpendiculars on same line are parallelto each other)
$\mathcal{N o w}, \mathcal{A s} \mathcal{B} X\|Z Q\| \mathcal{C Y}$ and Z is mid-point of $\mathcal{B C}$
$\mathcal{B} y$ mid-point theore m, we have Q is mid-point of $X Y$.
In $\triangle X Q Z$ and $\triangle \mathscr{Y} Q Z$,

$$
\begin{aligned}
& X Q=Q Y \\
& \angle X Q Z=\angle Y Q Z=90^{\circ} \\
& Q Z=Q Z \\
\therefore \quad & \Delta X Q Z \cong \Delta Y Q Z \\
\Rightarrow & x Z=Y Z
\end{aligned}
$$

[Q is mid-point of $X Y$]
[By construction]
[Common]
[S AS congruence rule]
[CPCT]

Hence proved.

