Grade IX

Lesson :3 [COORDINATE GEOMETRY]

Objective Type Questions

I. Multiple choice questions

1. The point $(0,5)$ lies
a) on the x-axis
b) on the y-axis
c) in the II quadrant
d) in the I quadrant

Sol : (b)
2. A point which lies in third quadrant have sign
a),++
b) - , +
c) + ,
d),--

Sol: (d)
3. Does the line $y=x$ pass through origin?
a) yes
b) $n o$

Sol: The coordinates of the origin are $(0,0)$. Putting this in they line $y=x$, we have
$0=0$, which is true
\therefore Correctoption is (a)
4. If coordinate of a point is zero, then this point always lies [NCERT Exemplar]
a) in I quadrant
b) in II quadrant
c) on x - $a x i s$
d) on y-axis

Sol: (c)
5. If we join the points $(-2,0)(0,1),(2,0)$ and $(0,-1)$, then name the figure formed.
a) square
b) rectangle
c) rhombus
d) trapezium

Sol :

Clearly, the figure formed is rhombus
\therefore Correctoption is (c)
6. The equation of x-axis is
a) $x=0$
b) $y=0$,
c) $x=0, y=0$
d) none of these

Sol : (b)
7. The ordinate of the point $(4,-5)$ is
a) 4
b) 5
c) -5
d) none of these

Sol : (c)
8. The point $(2,4)$ lies in the quadrant
a) I
b) II
c) III
d) IV

Sol : (a)
9. Abscissa of all the points on the x-axis is
[NCERT Exemplar]
a) 0
b) 1
c) 2
d) any number

Sol: (d)
10. If the perpendicular distance of a point from x-axis is 7 units and foot of the perpendicular lies on the negative direction of x-axis, then the point has
a) x - coordinate $=-7$
b) y - coordinate $=7$ only
c) y - coordinate $=-7$ only
d) y - coordinate $=7$ or -7

Sol. We know that the perpendicular distance of a point from x-axis gives y-coordinate of that point. Also the foot of the perpendicular lies on the negative direction of x-axis. So, the perpendicular distance can be measured in the second or third quadrant, Hence, the point has y-coordinate $=7$ or -7
\therefore Correction option is (d)
11. While writing the coordinates of a point, which coordinate comes first: y-coordinate or x-coordinate?
[CBSE 2014]
Sol. x - coordinate?
12. A policeman and a thief are equidistant from the jewel box, Upon considering jewel box as origin, the position of policeman is $(0,5)$, If the ordinate of the position of thief is zero, then write the coordinates of the position of thief.
[CBSE 2013]
Sol : Since both policeman and thief are equidistant from the jewel box (origin), so coordinates of the position of thief are (5.0), or $(-5,0)$
13. Write two points lying on the x-axis, which are at equal distances from the origin, [CBSE 2014]

Sol : $P(5,0)$ and $Q(-4,0)$ or $P(5,0)$ and $Q(-5,0)$
Note: Answer may differ
14. If $(a, b)=(0,22)$, then find the value of a and b,
[CBSE 2016]
Sol. Here the ordered pairs are equal
$\therefore a=0$ and $b=22$
15. What do you mean by the ordinate of a point?
[CBSE 2015]
Sol: Ordinate of a point is equal to the perpendicular distance from the x-axis measured along the y-axis.
16. In which quadrant, the points $P(2,-3)$ and $Q(-3,2)$ lie?

Sol : $P(2,-3)$ live in $I V^{\text {th }}$ quadrant and $Q(-3,2)$ lies in $I I^{\text {nd }}$ quadrant.
17. Find the perpendicular distance of the point $P(5,7)$ from the y-axis [CBSE 2016]

It is equal to 5 units
18. The point $P(a, b)$ lies in the $I V^{\text {th }}$ quadrant. Which is greater: a or b ?
[CBSE 2016]
It is equal to 5 units
19. The point $P(a, b)$ lies in the IV the quadrant, which is greater a or b ? [CBSE 2016]

In the IV $^{\text {th }}$ quadrant, abscissa (x-coordinate) is positive and ordinate (y-coordinate) is negative. Hence, abscissa>ordinate, i.e. $a>b$.
19. Write any two points lying in the second quadrant.

Sol : P $(-4,5), Q(-3,8)$,
Note: Answer may be differ
20. Write the coordinate of a point whose abscissa is -7 and ordinate is 2 .

Sol : $(-7,2)$ as abscissa represents x-coordinate, while ordinate is y-coordinate.

I. SHORT ANSWER TYPE

1. In which quadrant, will the point lies, if
[CBSE 2014]
i. the ordinate is 2 and the abscissa is -3
ii. the abscissa is - 4 and the ordinate is -2
iii. the ordinate is -3 and the abscissa is 4
iv. the ordinate is 3 and the abscissa is -2

Sol : i. Here abscissa is negative and ordinate is positive, so the point is $(-3,2)$. Hence it lies in IInd quadrant.
ii. Here abscissa and ordinate both are negative, the point is $(-4,-2)$. Which lies in IIIrd quadrant.
iii. Here abscissa is positive and ordinate is negative. Therefore, the point is $(4,-3)$. lies in IVth quadrant.
iv. Here abscissa is negative and ordinate is positive. Therefore, the point $(-2,3)$ lies in IInd quadrant.
2. A point is at a distance of 4 units from the x-axis and 5 units from the y-axis. Represent the position of the point in the Cartesian plane and also write its coordinates
[CBSE 2015]
Sol :

The position of point is shown in the above graph. Two points are observed in the Cartesian plane, Hence, coordinates of points are $P(5,4)$ and $Q(-5,4)$ respectively.
3. If the coordinates of two points are $P(-2,3)$ and $Q(-3,5)$, then find (abscissa of P) - (abscissa of Q)
[CBSE 2016]
Sol : The abscissa (x-coordinate) of point P is (-2) and that of Q is (-3)
\therefore (Abscissa of $P)-($ abscissa of $Q)=(-2)-(-3)=-2+3=1$ unit
4. Find the distance of the following points from the y-axis $P(3,0), Q(0,-3)$, $R(22,-5), S(-3,-1)$.

Sol: Distance of the point from the y-axis is the x-coordinate of the given point, So, the distances of points P, Q, R and S from the y-axis and 3 units, 0 unit, 22 units and -3 units (negative sign indicates that the distance is measured along negative x-axis)

II. SHORT ANSWER TYPE

5. (i) Plot the points $A(0,4), B(-3,0), C(0,-4), D(3,0)$,
(ii) Name the figure obtained by joining the points A, B, C and D.
(iii) Also, name the quadrants in which sides $A B$ and $A D$ lie. [CBSE-2011]

Sol :
(i)

(ii) Rhombus
(iii) IInd ,Is \dagger
6. Locate the points $A(-4,2), B(2,2), C(3,-4), D(2.5,1.5) E(0,3.5) F\left(\frac{9}{2}, 0\right)$, $G\left(0, \frac{-3}{2},\right)$ and $H(-7,-3)$ in the Cartesian plane.

Sol:

7. Write the coordinates of the following points,
(i) lying on neither axes at a distance of 3 units from the x-axis and 5 units from the y-axis
(ii) lying on y-axis with the y-coordinate (-3)
(iii) lying on the x-axis with x-coordinate 4 .
Sol:
(ii) $(0,-3)$
(iii) $(4,0)$
8. Point A is chosen on y-axis in such a way that $\triangle A B C$ is an equilateral triangle. The base $B C$ of the $\triangle A B C$ is shown in the figure. Find the coordinates of (i) the mid-point of $B C$ (ii) the area of the triangle (iii) the vertices of a triangle. [HOTS] \qquad

Sol: i) O is the mid-point of $B C$, but lies at the intersecting point of the coordinates axis Hence, coordinates of mid-point of $B C$ is $(0,0)$
(ii) Given $\triangle A B C$ is an equilateral triangle
$A B=B C=C A=6$ Units
O is the perpendicular bisector of $B C$
$\therefore O B=\frac{1}{2} B C=\frac{1}{2} \times 6=3$ units
Using Pythagoras theorem, in right - angled $\triangle A O B$ with $\angle O=90^{\circ}$, we have

$$
\begin{aligned}
A B^{2} & =O B^{2}+A O^{2} \\
\Rightarrow \quad A O^{2} & =A B^{2}-O B^{2} \\
& =6^{2}-3^{2}=36-9=27
\end{aligned}
$$

$\therefore A O=\sqrt{27}=3 \sqrt{3}$ Units
So, area of $\triangle A B C=\frac{1}{2} \times$ Base \times Altiude

$$
\begin{aligned}
& =\frac{1}{2} \times B C \times A O \\
& =-\frac{1}{2} \times 6 \times 3 \sqrt{3} \\
& =9 \sqrt{3} \text { sq.units }
\end{aligned}
$$

(iii) The coordinates of vertices of $\triangle A B C$ are $A(0,3 \sqrt{3}), B(-3,0)$, and $C(3,0)$.

I. LONG ANSWER TYPE

1. (i) Plot the following points in the coordinate plane : $A(-4,4), B(-6,0)$, $C(-4,-4), D(-2,0)$,
(ii) Name the figure formed by joining the points A, B, C and D also find its area.

Sol. (i)

(ii) Rhombus

Area of rhombus $A B C D$
$=\frac{1}{2} \times$ (Product of its two diagonals)
$=\frac{1}{2} \times B D \times A C$
$=\frac{1}{2} \times 4 \times 8=16$ sq.units

2. Given area $(\triangle O A B)=$ area $(\triangle O P Q)$. Find the ordinate of point A

[CBSE 2011, HOTS]

Sol: Coordinates of point P are $(-2,6)$
\therefore In $\triangle O P Q, O Q=2$ units and

$$
P Q=6 \text { units }
$$

In $\triangle O A B, O B=3$ units
and $\quad A B=(a+1)$ units
Given: $\operatorname{area}(\triangle O A B)=\operatorname{area}(\triangle O P Q)$
$\Rightarrow \frac{1}{2} \times O B \times A B=\frac{1}{2} \times O Q \times P Q$
[Area of triangle $=\frac{1}{2} \times$ base \times height]

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2} \times 3 \times(a+1)=\frac{1}{2} \times 2 \times 6=6 \\
\Rightarrow & a+1=\frac{6 \times 2}{3}=4
\end{array}
$$

\therefore Ordinate of point $A=a+1=4$

