```
LESSON-11 [CONSTRRUCTIONS]
```

Objective Type Questions
I. Multiple choice questions

1. With the help of a ruler and a compass it is not possible to construct an angle of:
a) 37.5^{0}
б) 40^{0}
c) 22.5^{0}
d) 67.5^{0}

Sol. As $40^{\circ}=\frac{1}{2} \times 80^{\circ}$ and 80° cannot be constructed with the help of a ruler and a compass.
\therefore Correct option is (b)
2. The construction of a triangle $\mathcal{A B C}$ in which $\mathcal{A B}=4 \mathrm{~cm} . \angle \mathcal{A}=45^{\circ}$ is not possible when difference of $\mathcal{B C}$ and $\mathcal{A C}$ is equal to:
Sol. a) 3.5 cm
b) 4.5 cm
c) 3 cm
d) 2.5 cm
\therefore Correct option is (b)
3. Is it possible to construct the angle of 37.5° with the help of ruler and compass?

Sol. Yes it is possible because by constructing 75° angle and bisecting it, we can obtain 37.5^{0} angle.
4. Do you agree with the statement, ' $\triangle X Y Z$ can be constructed, if $\angle \mathscr{Y}=90^{\circ}, \angle Z=75^{\circ}$ and $X \mathcal{Y}+\mathscr{Y} Z+Z X=11.5^{\circ} \mathrm{cm}^{\prime}$

Sol: yes, because two base angles and perimeter is given and

$$
\angle Y+\angle Z=90^{\circ}+75^{\circ}=165^{\circ}<180^{\circ}
$$

5. Can you construct a $\Delta \mathcal{A B C}$, if $\mathcal{A B}=6.5 \mathrm{~cm}, \mathcal{A B}=60^{\circ}$ and $\mathcal{B C}+\mathcal{A C}=11 \mathrm{~cm}$

Sol: Yes, with the given dimensions, we can construct to $\triangle \mathcal{A B C}$ because $\mathcal{B C}+\mathcal{A C}>\mathcal{A B}$

1. Using protractor, draw an angle of 52° can you divide this angle into two equal parts. Show

Sol. Yes, we can divide $\mathfrak{A B C}=52^{\circ}$ into two equal parts by bisecting it as shown in the figure.

2. Construct a triangle whose sides are in the ration $1: 3: 5$ and whose perimeter is 18 cm

Sol. Given ratio of sides of a triangle $=1: 3: 5$
Let the length of sides of a triangle 6 e $x, 3 x$ and $5 x$ respectively

Perimeter of triangle $=18 \mathrm{~cm}$
$\Rightarrow \quad x+3 x+5 x=18$
$\Rightarrow \quad 9 \chi=18$
$\Rightarrow \quad x=2 c m$
\therefore Sides of triangle are $2 \mathrm{~cm}, 6 \mathrm{~cm}$ and 10 cm
$\mathcal{H e r e}$, we find that $2 \mathrm{~cm}+6 \mathrm{~cm}<10 \mathrm{~cm}$

So, construction of given triangle would not be possible
3. Draw an angle of an equilateral triangle, using protractor. Bisect it using compass

Eack angle of an equilateraltriangle is 60°
\therefore According to qestions $\angle A O B=60^{\circ}$
$\Rightarrow O C$ is the bisector of $\angle \mathcal{A O B}$.
4. Draw any obtuse angle. Bisect it using compass.

Draw the bisector $\mathcal{B D}$ of $\angle \mathcal{A B C}$ as shown in the figure.

5. Is it possible to construct a triangle of given sides as $44 \mathrm{~mm}, 9.5 \mathrm{~cm}$ and 46 mm ? gustify your answer.

Sol. Let

$$
\mathcal{A B}=44 \mathrm{~mm}=4.4 \mathrm{~cm}
$$

$$
\mathcal{B C}=9.5 \mathrm{~cm}
$$

$$
\mathcal{A C}=46 \mathrm{~mm}=4.6 \mathrm{~cm}
$$

$\mathcal{H e r e} \mathcal{A B}+\mathcal{A C}=4.4 \mathrm{~cm}+4.6 \mathrm{~cm}=9 \mathrm{~cm}$
$\Rightarrow \quad \mathcal{A B}+\mathcal{A C}<\mathcal{B C}$
$\therefore \mathcal{N}$ o such triangle would be constructed because sum of two sides of a triangle is never less than the third side.
6. Construct an equilateral triangle, given its one side is 5 cm
[CBSE2012]

Sol. We know that all sides of an equilateral triangle are equal \therefore In $\mathcal{A B C}, \mathcal{A B}=\mathcal{B C}=\mathcal{C A}=5 \mathrm{~cm}$ Steps of construction:

(i) Draw a line segment, $\mathcal{B C}=5 \mathrm{~cm}$
(ii) Taking \mathcal{B} and C as centres and radius equal to $5 c m$, drawarcs which intersect each otfier at \mathcal{A}
(iii) I oin $\mathcal{A B}$ and $\mathcal{A C}$.

Thus $\triangle \mathcal{A B C}$ is the required equilateral triangle.
II. Sfort answer type questions
7. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=5 \mathrm{~cm}, \angle \mathcal{B}=75^{\circ}$ and $\mathcal{A B}+\mathcal{A C}=9 \mathrm{~cm}$.
[CBS E2 0 12]

Sol.S teps of construction:

(i) $\mathcal{D r a w}$ a line segment, $\mathcal{B C}=5$ cm, At point \mathcal{B}, construct as $\angle X \mathcal{B C}=75^{\circ}$
(ii) Cut a line segment $\mathcal{B D}=\mathcal{A B}+\mathcal{A C}=9$ cm from the ray $\mathcal{B X}$
(iii) Ioin $\mathcal{C D}$
(iv) Drawthe perpendicular bisector $\mathcal{P Q}$ of $\mathcal{C D}$ which intersects $\mathcal{B D}$ at \mathcal{A}
(v) Ioin $A C$.
(vi) Then, $\triangle \mathcal{A B C}$ is the required triangle. This is because point \mathcal{A} lies on the perpendicular bisector of $\mathcal{C D}$

$$
\begin{aligned}
& \therefore \mathcal{A D}=\mathcal{A C} \\
& \Rightarrow \mathcal{B D}=\mathcal{A B}+\mathcal{A D}=\mathcal{A B}+\mathcal{A C}
\end{aligned}
$$

8. Construct a right triangle in which one side is 3.5 cm and sum of the other side and fypotenuse is 5.5 cm

Sol. We are given one side $=3.5 \mathrm{~cm}$ and sum of other side and fypotenuse $=5.5 \mathrm{~cm}$ Steps of Construction:

1. Draw a ray $\mathcal{B X}$ and cut off a line segment $\mathcal{B C}=3.5 \mathrm{~cm}$ from it.
2. Construct $\angle X \mathcal{B Y}=90^{\circ}$
3. From \mathcal{B}, cut off a line segment $\mathcal{B D}=5.5 \mathrm{~cm}$
4. I oin CD
5. Draw the perpendicular bisector of $\mathcal{C D}$ intersecting $\mathcal{B D}$ at a point \mathcal{A}
6. I oin $\mathcal{A C}$

So $\triangle \mathcal{A} \mathcal{B C}$ is the required triangle
9. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=4.5 \mathrm{~cm}, \angle \mathcal{B}=45^{\circ}$ and $\mathcal{A B}-\mathscr{A C}=2.5 \mathrm{~cm}$

Sol. We are given $\mathcal{B C}=4.5 \mathrm{~cm} \angle \mathcal{B}=45^{\circ}$ and $\mathcal{A B}-\mathcal{A C}=2.5 \mathrm{~cm}$
Steps of Construction:

1. Draw a ray $\mathcal{B X}$ and cut off a line segment $\mathcal{B C}=4.5 \mathrm{~cm}$ from it
2. Construct $\angle X \mathcal{B Y}=45^{\circ}$
3. Cut off a line segment $\mathcal{B D}=2.5 \mathrm{~cm}$ from $\mathcal{B Y}$.
4. Ioin CD
5. Draw the perpendicular bisector of $\mathcal{C D}$ cutting $\mathcal{B Y}$ at a point \mathcal{A}
6. I $\operatorname{oin} \mathcal{A C}$

So $\triangle \mathcal{A B C}$ is the required triangle
10. Construct a triangle $\mathcal{A B C}$ whose perimeter is $12 \mathrm{~cm}, \angle \mathcal{B}=60^{\circ}$ and $\angle C=45^{\circ}$ Steps of Construction:

1. Draw a ray $\mathcal{P X}$ and cut off a line segment $\mathcal{P Q}=12 \mathrm{~cm}$ from it
2. At \mathcal{P}, construct $\angle \mathscr{Y} P Q=30^{\circ}\left(=\frac{1}{2} \times 60^{\circ}\right)$
3. At Q, construct $\angle Z Q P=22.5^{\circ}\left(=\frac{1}{2} \times 45^{0}\right)$
4. Let the ray $P \mathcal{Y}$ and $Q Z$ intersect at \mathcal{A}
5. Draw the perpendicular bisector of $\mathcal{A P i n t e r s e c t i n g ~} \mathcal{P Q}$ at a point \mathcal{B}.
6. Draw the perpendicular bisector of $\mathcal{A Q}$ intersecting $P Q$ at a point \mathcal{C}.
7. I oin $\mathfrak{A B}$ and $\mathcal{A C}$

So $\triangle \mathcal{A B C}$ is the required triangle
11. Construct a triangle $\mathcal{A B C}$ in which $\angle \mathcal{B}=60^{\circ} \angle C=75^{\circ}$ and perpendicular from the vertex \mathcal{A} to the base $\mathcal{B C}$ is 5 cm .

Sol. $\triangle \mathcal{A B C}, \angle \mathcal{A}+\angle \mathcal{B}+\angle C=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle A+60^{\circ}+75^{\circ}=180^{\circ} \Rightarrow \angle \mathcal{A}+180^{\circ}-135^{\circ}=45^{\circ}$

Step of construction

(i) Draw a line $\mathcal{B} X$
(ii) At point \mathcal{B}, construct $\mathcal{B}=60^{\circ}$ i.e., $\angle X \mathcal{B} Y=60^{\circ}$
(iii) $\mathcal{D r a w}$ tow arcs \mathcal{R} and S with radius equal to 5 cm from point \mathcal{B} and from any other point \mathcal{D} on $\mathcal{B X}$ as shown.
(iv) $\mathcal{D r a w}$ a ray $\mathcal{P Q}$ touches the \mathcal{R} and S in such a way that, $\mathcal{R S} \| \mathcal{B X}$ and distance between them is $\mathcal{B R}=\mathcal{D S}=5 \mathrm{~cm}$
(v) Let $\mathcal{B Y}$ intersect $\mathcal{P Q}$ at \mathcal{A}
(vi) At point \mathcal{A}, construct $\angle Z \mathcal{A B}=90^{\circ}$
(vii) Bisect $\angle Z \mathcal{A B}$ to get $\angle \mathcal{B A C}=45^{\circ}$. Bisector line intersects $\mathcal{B X}$ at point \mathcal{C}
(viii) I sin $\mathcal{A C}$, then $\triangle \mathcal{A B C}$ is the required triangle.
12. Draw a line segment $P Q=8.4 \mathrm{~cm}$. Divide it into four equal parts using a ruler and a compass.
$[C \mathcal{B S}$ E $014,2015, \mathcal{H O T S}]$
Sol. Steps of construction

(i) Draw a line segment $\mathcal{P Q}=8.4 \mathrm{~cm}$
(ii) \mathcal{T} aking P and Q as centres and radius more than $\frac{1}{2} \mathcal{P Q}$ draw arcs above and be low the line segment $P Q$ intersecting at \mathcal{R} and S respectively as shown.
(iii) Ioin $\mathcal{R S}$. Let it intersect $\mathcal{P Q}$ at \mathcal{M}. The ray $\mathcal{R S}$ divides the line segment $\mathcal{P Q}$ into two equal parts $P M$ and $Q \mathcal{M}$
(iv) In a similar way, draw perpendicular bisectors of $\mathcal{P M}$ and $Q \mathcal{M}$ which divides each $P \mathcal{M}$ and $Q \mathcal{M}$ into two equal parts again as shown.

So, the four equal parts of line segment $\mathcal{P Q}$ are $\mathcal{P D} \mathcal{N}=\mathcal{N} \mathcal{M}=\mathcal{M T}=\mathcal{T} Q$, On measuring them. They all are equal to 2.1 cm
I. Long answer type questions

1. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=5.8 \mathrm{~cm} \angle \mathcal{B}=45^{\circ}$ and $\angle \mathcal{C}=60^{\circ}$. Construct angle bisectors of $\angle \mathcal{B}$ and $\angle C$ and intersect them at point O, Measure $\angle \mathcal{B O C}$ [CBSE2016]

Sol. Steps of construction:

(i) Draw a line segment $\mathcal{B C}=5.8 \mathrm{~cm}$
(ii) At \mathcal{B} and \mathcal{C}, draw $\angle X \mathcal{B C}=45^{\circ}$ and $\angle \mathscr{Y C B}=60^{\circ}$
(iii) The rays $X \mathcal{B}$ and $\mathscr{Y C}$ intersect at \mathcal{A}, Therefore, $\triangle \mathcal{A B C}$ is the required triangle
(iv) Taking \mathcal{B} as centre, and with some radius, drawarcs intersecting $X \mathcal{B}$ and $\mathcal{B C}$ at \mathcal{E} and \mathcal{D} respectively
(v) \mathcal{T} aking \mathcal{D} and \mathcal{E} as centres with radius greater than $\frac{1}{2} \mathcal{D E}$ draw arcs intersecting each otfer at \mathcal{F}.
(vi) Draw the ray $\mathcal{B F}$. It is the angle bisector of $\angle \mathcal{B}$
(vii) Similarly, construct angle bisector $\mathcal{C} G$ of $\angle C$
(viii) Let $\mathcal{B F}$ and $\mathcal{C G}$ intersecteach other at O.
(ix) On measuring $\angle B O C$, we get $\mathcal{B O C}=127^{\circ}$.
2. Construct a triangle $\mathcal{P Q} \mathcal{R}$ in which $\angle \mathcal{R}=45^{\circ} \angle Q=60^{\circ}$ and $P Q+Q \mathcal{R}+\mathcal{R} \mathcal{P}=11 \mathrm{~cm}$ Sol.S teps of construction:

(i) Draw a line segment $X \mathscr{Y}=\mathcal{P} Q+Q \mathcal{R}+\mathcal{R} P=11 \mathrm{c} m$
(ii) At X, construct an angle of 45° and \mathscr{Y}, construct an angle of 60°
(iii) Bisect these angles. Let the bisectors of $\angle X$ and $\angle \mathcal{Y}$ intersect each other at a point P
(iv) Draw perpendicular bisector $\mathcal{D E}$, of $\mathcal{P X}$ to intersect $X \mathcal{Y}$ at $\mathcal{R} \mathcal{N} o w$, draw perpendicular bisector $\mathcal{F G}$ of $\mathcal{P Y}$ to intersect $X \mathcal{Y}$ at Q.
(v) Ioin $\mathcal{P Q}$ and $P R$ as shown in the figure. Then, $\triangle \mathcal{P Q} \mathcal{R}$ is the required triangle.
3. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=8 \mathrm{~cm}, \angle \mathcal{B}=30^{\circ}$ and $\mathcal{A B}-\mathcal{A C}=3.5 \mathrm{~cm}$

Sol. Here $\mathcal{A B}>\mathcal{A C}$, i.e., $\mathcal{A B}-\mathcal{A C}$ is given

Steps of construction:

(i) Draw the base $\mathcal{B C}=8 \mathrm{~cm}$ and at point \mathcal{B}, make an angle $\angle X \mathcal{B C}=30^{\circ}$
(ii) Cut a line segment $\mathcal{B D}=\mathcal{A B}-\mathcal{A C}=3.5 \mathrm{~cm}$ from the ray $\mathcal{B X}$
(iii) Ioin $\mathcal{D C}$ and draw the perpendicular bisector $\mathcal{P Q}$ of $\mathcal{D C}$
(iv) Let $\mathcal{P Q}$ intersect $\mathcal{B X}$ at a point \mathcal{A}. Ioin $\mathcal{A C}$ as shown in the figure.
4. Draw any acute angle. Divide it into four equal parts using a ruler and a compass. Measure them using protractor. [CBS E 2014]

Sol. Steps of construction:

(i) Draw an angle $\angle \mathscr{A B C}=60^{\circ}$ (say)
(ii) Bisect $\angle \mathcal{A B C}$. Ioin $\mathcal{B D}$. Then

$$
\angle \mathcal{A B D}=\angle C \mathcal{B D}=\frac{1}{2} \angle \mathcal{A B C}=\frac{1}{2} X 60^{\circ}=30^{\circ}
$$

(iii) $\mathcal{A g}$ ain bisect $\angle \mathcal{A B D}$ join $\mathcal{B F}$ as sfown then.

$$
\angle \mathcal{A B F}=\angle \mathcal{F B D}=\frac{1}{2} \angle \mathcal{A B D}=\frac{1}{2} X 30^{\circ}=15^{\circ}
$$

(iv) Again bisect $\angle C \mathcal{B D}$. I oin $\mathcal{B E}$. Then

$$
\angle D B E=\angle E \mathcal{B C}=\frac{1}{2} \angle C \mathcal{B D}=\frac{1}{2} X 30^{\circ}=15^{\circ}
$$

Thus $\angle \mathcal{A B C}$ fas been divided into four equal parts
$\therefore \quad \angle A B F=\angle \mathcal{F B D}=\angle \mathcal{D B E}=\angle \mathcal{E B C}$
$=\frac{1}{4} \angle \mathcal{A B C}=\frac{1}{4} \chi 60^{\circ}=15^{\circ}$
On measuring them, we also got each angle equals to 15°

