Grade IX
Lesson: 10 CIRCLES

Objective Type Questions
I. Multiple choice questions 10.1,2,3

1. Given a circle of radius r and with center O, \mathcal{A} point \mathcal{P} lies in a plane such that $O P<r$. Then point P lies
a) in the interior of the circle
6) on the circle
c) in the exterior of the circle
d) cannot say
d) cannot say

Sol: Let a point \mathcal{A} lies on the circle as shown in the figure
Then $O \mathcal{A}=r$ and $O \mathscr{P}<r$
$\Rightarrow \quad O \mathcal{P}<O \mathcal{A}$

This shows that point \mathcal{P} lies in the interior of the circle.
\therefore Correct option is (a)
2. Given a circle with centre O and chords $\mathcal{A B}, \mathcal{P} Q$ and $X Y$. Points P, Q and O are colfine ar and radius of a circle is 6 cm . Then mark the correct option.
a) $\mathcal{A B}=X \mathcal{Y}=3 \mathrm{~cm}$
6) $\mathcal{A B}=6 c m=X \mathcal{Y}$
c) $P Q=6 c \mathrm{~m}$
d) $P Q=12 \mathrm{~cm}$

SincePoints \mathcal{P}, Q and O are collinear and O is centre of a circle,
PQ is a diameter of a circle
$\Rightarrow P Q=2$ 犭radius
$\Rightarrow P Q=2 \times 6=12 \mathrm{~cm}$

\therefore Correct option is (d)
3. Given a circle with centre O and smallest chord $\mathcal{A B}$ is of length 3 cm , longest chord $\mathcal{C D}$ is of length 10 cm and chord $\mathcal{P Q}$ is of length 7 cm then radius radius of the circle is
a) 1.5 cm
2) 6 cm
c) 5 cm
d) 3.5 cm

Sol.c) 5 cm
4. The region between an arc and the two radii, joining the centre to the end points of the arc is called a/an
a) sector
b) segment
c) semicircle
d) arc

Sol. a) sector
5. In how many parts a plane can divide a circle if it intersect perpendicularly?
a) 2 parts
b) 3 parts
c) 4parts
d) 8 parts

Sol. a) 2 parts
6. Given two concentric circles with centre O, \mathcal{A} line cuts the circles at $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ respectively. If $\mathcal{A B}=10 \mathrm{~cm}$ thenlength $\mathcal{C D}$ is
a) 5 cm
b) 10 cm
c) 7.5 cm
d) 20 cm

Sol. $\operatorname{Draw} O \mathcal{L} \perp \mathcal{A D}$

As $O \mathcal{L} \perp \mathcal{B C}$, so $\mathcal{B L}=\mathcal{L C}$

Similarly, $\mathcal{A L}=\mathcal{L D}$

Subtracting (i) from (ii), we get
$\mathcal{A L}-\mathcal{B L}=\mathcal{L D}-\mathcal{L C}$
$\Rightarrow \mathcal{A B}=\mathcal{C D}$
$\Rightarrow C D=10 \mathrm{~cm}$
\therefore Correct option is (b)
7. Through three colline ar points, a circle can be drawn
a) True
6) $\mathcal{F a t s e}$

Sol. because a circle through two point cannot pass through a point which is collinear to these two points.
8. I ustify the statement: \mathcal{A} circle of radius 4 cm can be drawn through two points \mathcal{A} and \mathcal{B}, such that $\mathcal{A B}=6.2 \mathrm{~cm}$.

Sol:It is true that a circle of radius 4 cm can be passed through two point \mathcal{A} and \mathcal{B}, where $\mathcal{A B}=6.2 \mathrm{~cm}$

If we draw a circle of radius 4 cm , the length of longest chord, i.e. diameter $=8 \mathrm{~cm}$

Such diameter $>\mathcal{A B}=6.2 \mathrm{~cm}$ Hence a chord of 6.2 cm can be drawn in a circle as shown in the figure.
II. Multiple cfroice questions

1. Given a chord $\mathcal{A B}$ of length 5 cm , of a circle with centre O. OL is perpendicular to chord $\mathfrak{A B}$ and $O \mathcal{L}=4 \mathrm{~cm}$. $O \mathscr{M}$ is perpendicular to chord $\mathcal{C D}$ such that $O \mathcal{M}=4 \mathrm{~cm}$. Then $\mathcal{C M}$ is equal to
a) 4 cm
b) 5 cm
c) 2.5 cm
d) 3 cm

(\because Chords equidistant from the centre of a circle are equal in length)
$\Rightarrow \quad C \mathcal{D}=5 \mathrm{~cm}$

Since the perpendicular drawn from the centre of a circle to a chord bisects the chord, so
$\mathcal{C M}=\mathcal{M D}=\frac{1}{2} \mathcal{C D} \Rightarrow \mathcal{C M}=2.5 \mathrm{~cm}$
\therefore Correction option is (c)
2. Iustify your statement
"The angles subtended by a chord at any two points of a circle are equal"

The angles subtended by a chord at any two points of a circle are equal if both the points lie in the same segment (major or minor), otherwise they are not equal.
3. Iustify your statement
"T wo chords of a circle of lengths 10 cm and 8 cm are at the distances 8 cm and 3.5 cm respectively from the centre"

The statement is not correct because the longer chord will be at smaller distance from the centre.
III. Multiple choice questions

1. In the given figure, value of y is

a) 35°
b) 140^{0}
c) $70^{0}+x$
d) 70°

Sol: The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle. So,

$$
\begin{aligned}
& y=\frac{1}{2} \times 70^{0}=35^{0} \\
& \therefore \text { correct option is (a) }
\end{aligned}
$$

2. In figure, O is the centre of the circle. The value of x is
a) 140^{0}
b) 60°
c) 120°
d) 300°

Sol. We have $\angle \mathcal{A O C}+\angle \mathcal{B O C}+\angle \mathcal{A O B}=360^{\circ}$
(\therefore Angle at the centre of a circle)
$\Rightarrow 35^{0}+25^{0}+x=360^{0} \Rightarrow x=300^{0}$
\therefore Correctoption is (d)
3. In the given figure, O is the centre of the $\operatorname{circle}, \angle C \mathcal{B E}=25^{\circ}$ and $\angle \mathcal{D E A}=60^{\circ}$. The measure of $\angle \mathcal{A D B}$ is
a) 90°
b) 85°
c) 95°
d) 120^{0}

Sol. We fave $\angle \mathcal{D E A}=\angle C E B=60^{\circ}$
(Vertically opposite angles)

Uling angle sum property of triangle in \triangle CEB we have
$\angle C E B+\angle C \mathcal{B E}+\angle \mathcal{E C B}=180^{\circ}$
$\Rightarrow 60^{\circ}+25^{\circ}+\angle \mathcal{E} C \mathcal{B}=180^{\circ}$
$\Rightarrow \angle E \mathcal{E} C B=95^{\circ}$
$\mathcal{N}(o w, \angle \mathcal{A D B}=\angle \mathcal{A C B}$
(\because Angles in the same segment of a circle are equal)
$\Rightarrow \angle \mathcal{A D B}=95^{\circ}$
\therefore Correct option is (C)
4. In the given figure, $\angle \mathcal{D B C}=55^{\circ}, \angle \mathcal{B A C}=45^{\circ}$ Then $\angle \mathcal{B C D}$ is
a) 45^{0}

) 55°
c) 100^{0}
d) 80°

Sol: We have $\angle \mathcal{B A C}=\angle \mathcal{B D C}$
(\because Angles in the same segment of a circle are equal)
$\Rightarrow \angle \mathcal{B D C}=45^{\circ}$

Using angle sum property of triangle in $\Delta \mathcal{B D C}$, we get
$\angle \mathcal{D B C}+\angle \mathcal{B D C}+\angle \mathcal{B C D}=180^{\circ}$
$\Rightarrow \angle \mathcal{B C D}=80^{\circ}$
\therefore Correct option is (d)
5. In figure $\angle \mathcal{A O B}=90^{\circ}$ and $\angle \mathcal{A B C}=30^{\circ}$ then $\angle C A O$ is equal to
a) 30^{0}
b) 45^{0}
c) 90°
d) 60^{0}

We fave $\angle \mathcal{A C B}=\frac{1}{2} \angle \mathcal{A O B}$
$=\frac{1}{2} \times 90^{0}=45^{\circ}$

Ulsing angle sum property of triangle in $\Delta C \mathcal{A B}$, we get
$\Delta C A B=105^{0}$

Since $\quad O \mathcal{A}=O \mathcal{B} \quad(\because$ Radii of the circle $)$
$\Rightarrow \angle O \mathcal{B A}=\angle O \mathcal{A B}$

Ulsing angle sum property of $\triangle \mathcal{A O B}$, we get
$\angle O \mathscr{A B}=45^{\circ}$
$\mathcal{N} o w, \angle \mathcal{C A O}=\angle C \mathcal{A B}-\angle O \mathcal{A B}$
$=105^{0}-45^{0}=60^{0}$
\therefore Correct option is (d)

6. Two circles intersect at two points \mathcal{A} and $\mathcal{B}, \mathcal{A D}$ and $\mathcal{A C}$ are diameters of the two circles. Prove that \mathcal{B} lies on the line segment $\mathcal{D C}$.

Given: I wo circles intersect at \mathcal{A} and $\mathcal{B}, \mathcal{A D}$ and $\mathcal{A C}$ are diameters
To prove: \mathcal{B} lies on $\mathcal{D C}$

Construction: I oin $\mathcal{A B}$
Proof: $\mathcal{A D}$ is the diameter of a circle

$$
\therefore \angle \mathcal{A B D}=90^{\circ} \quad \cdots \text { (i) (Angle in a semic ircle) }
$$

$\mathcal{A C}$ is the diameter of another circle
$\therefore \angle \mathcal{A B C}=90^{\circ}$

- (ii) (Angle in a semicircle)
$\mathcal{A d d i n g}$ (i) and (ii)
$\angle \mathcal{A B D}+\angle \mathcal{A B C}=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore These two angles from a liner pair angles
$\Rightarrow \mathcal{D B C}$ is a line, Hence poin \mathcal{B} lies on line segment $\mathcal{D C}$

7. In the given figure, find the value of x and y where O is the centre of the circle

$$
y=\frac{1}{2} \times 70^{0}=35^{0}
$$

(Angle at the centre is double the angle subtended by the same arc at any point on the remaining part of the circle)

I. Sfrort answer Type questions

1. \mathcal{A}, \mathcal{B} and \mathcal{C} are three points on a circle, Prove that perpendicular bisectors of $\mathcal{A B}, \mathcal{B C}$ and $C A$ are concurrent [$\mathcal{N C E R T}$ Exemplar]

Sol. Given: \mathcal{A}, \mathcal{B} and \mathcal{C} are three points on the circle

To prove : Perpendicular bisector of $\mathcal{A B}, \mathcal{B C}$ and $\mathcal{C A}$ are concurrent

Proof: i) Draw the perpendicular bisectors of $\mathfrak{A B}$
ii) Draw perpendicular bisector of $\mathcal{B C}$. Both The Perpendicular Bisectors intersect at a Point ' O 'Tfis point ' O ' is called the centre of the circle.
iii) \mathfrak{N} (ow, draw perpendicular bisector of $\mathcal{A C}$. We observe that perpendicular bisector of $\mathfrak{A C}$ also passes through the same point 0 .
$\mathcal{H e n c e}$, all the three perpendicular bisectors are concurrent, i.e. they pass through the same point.
(Reason: Three or more lines passing through the same point are called concurrent lines).
2. In the given figure $\mathcal{A B}=\mathcal{A C}$ and O is the centre of the circle. If $\angle \mathcal{B O} \mathcal{A}=\mathbf{9 0}^{\mathbf{0}}$, determine $\angle A O C$

Sol. Given: \mathcal{A} circle fiaving centre O and $\mathcal{A B}=\mathcal{A C}$.
$\mathcal{A l s o}, \angle \mathcal{A} O \mathcal{B}=90^{\circ}$

To find $\angle A O C$

Proof: As we know that equalchords of a circle subtend equalangles at the centre of the circle.

$$
\begin{array}{ll}
\therefore \angle \mathcal{A O B}=\angle \mathcal{A O C} & (\text { as } \mathcal{A B}=\mathcal{A C}) \\
\Rightarrow \angle \mathcal{A O C}=90^{\circ} & \left(\text { as } \angle \mathcal{A O B}=90^{\circ}\right)
\end{array}
$$

II. Sfort answer Type questions
3. Two congruent circles with centres O and O 'intersect at two points \mathcal{A} and \mathcal{B}. Then $\angle \mathcal{A O B}=\angle \mathcal{A} O \mathcal{B}$. Write True or false and justify your answer.

Sol: Given: Two circles with centres O and ' O 'are congruent. AB is the commoncford Then $\angle A O B=\angle A O B$ (True)

Construction: I oin $O \mathcal{A}, O \mathcal{B}, O$ 'A and $O \mathcal{B}$
Iustification : In $\triangle \mathcal{A O B}$ and $\triangle \mathcal{A O} \mathcal{B}$
$O \mathcal{A}=O^{\prime} \mathcal{A} \quad$ (Radii of congruent circles)
$O \mathcal{B}=O \mathcal{B} \quad$ (Radii of congruentcircles)
$\mathfrak{A B}=\mathcal{A B}$
(Common)
$\Delta \mathcal{A O B} \cong \triangle \mathcal{A O} \mathcal{B}(\mathcal{B y} \operatorname{SSS}$ congruence rule)
$\Rightarrow \angle \mathcal{A O B}=\angle \mathcal{A O B} \quad(\mathcal{B} y \mathcal{C P C T})$

Hence proved.
Therefore it is true.
4. In the given figure, chord $\mathcal{A B}$ subtends $\angle \mathcal{A O B}$ equal to $\mathbf{6 0}^{\mathbf{0}}$ at the centre O of the circle. If $O \mathcal{A}=5 \mathrm{~cm}$. Then find the length of $\mathfrak{A B}$.

Sol. Given : $\angle \mathcal{A O B}=60^{\circ}, O \mathcal{A}=5 \mathrm{~cm}$. Where O is the centre of the circle. To find: $\mathfrak{A B}$

Proof : In $\triangle \mathcal{A O B}$
$\angle \mathcal{A O B}=60^{\circ}$
$O \mathcal{A}=O \mathcal{B}$
(Give n)
(Equal radii)

$$
\therefore \angle \mathcal{A O B}=\angle O \mathcal{B A}
$$

(Angles opposite to equal sides $O \mathcal{A}$ and $O \mathcal{B}$)

In $\triangle \mathcal{A O B}$

```
\angleOA\mathcal{B}+\angle\mathcal{AOB}+\angleO\mathcal{BA}=18\mp@subsup{0}{}{\circ}
```

(Angle sum property of triangle)
$60^{\circ}+\angle O \mathcal{A B}+\angle O \mathcal{A B}=180^{\circ}$
$(\because \angle O \mathcal{A B}=\angle O \mathcal{B A}$, using (i))
$\Rightarrow 2 \angle O \mathcal{A B}=180^{\circ}-60^{\circ}$
$\Rightarrow \angle O \mathcal{A B}=60^{\circ}$
$\Rightarrow \angle O \mathcal{B A}=60^{\circ}$
$\therefore \triangle \mathcal{A O B}$ is an equilateral triangle

Hence $\quad O \mathcal{A}=O \mathcal{B}=\mathcal{A B}$
$\Rightarrow \mathcal{A B}=5 \mathrm{~cm} \quad(a s \quad O \mathcal{A}=5 \mathrm{~cm})$

III. Sfort answer Type questions

1. If $\mathcal{B C}$ is a diameter of a circle of centre O and $O \mathcal{D}$ is perpendicular to the chord $\mathcal{A B}$ of a circle. Show that $C \mathcal{A}=20 \mathcal{D}$

Given: \mathcal{A} circle of centre O, diameter $\mathcal{B C}$ and $O \mathcal{D} \perp$ chord $\mathcal{A B}$.

To prove : $\mathrm{CA}=20 \mathcal{D}$

Proof: Since $O \mathcal{D} \perp \mathcal{A B}$.
$\therefore \mathcal{D}$ is the mid-point of $\mathfrak{A B}$
(perpendicular drawn from the centre to a chord bisects the chord)
O is centre $\Rightarrow O$ is the mid-point of $B C$

In $\triangle \mathcal{A B C}, O$ and \mathcal{D} are the mid points of $\mathcal{B C}$ and $\mathcal{A B}$ respectively.
$\therefore O \mathcal{D} \| \mathcal{A C}$ and $O \mathcal{D}=\frac{1}{2} \mathcal{A C}$ (mid-point theore m)

$$
\therefore C \mathcal{A}=2 O \mathcal{D}
$$

2. If two chords of a circle are equally inclined to the diameter passing through the ir point of intersection, prove that the chords are equal.

Sol. Given; Two chords $\mathcal{A B}$ and $\mathcal{A C}$ of a circle are equally inclined to diameter $\mathfrak{A O D}$ i.e $\angle \mathcal{D A B}=\angle \mathcal{D A C}$

Construction: $\mathcal{D r a w} O \mathcal{L} \mathcal{A B}$ and $O \mathcal{M} \perp \mathcal{A C}$

Proof : In $\triangle O \mathcal{L A}$ and $\triangle O \mathcal{M A}$
$\angle \mathrm{OLA}=\angle \mathrm{OMA} \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\mathcal{A O}=\mathscr{A O} \quad$ (common)
$\angle O \mathscr{A L}=\angle O \mathscr{A M} \quad$ (given)
$\Delta O \mathcal{L A} \cong \triangle O \mathscr{M A} \quad$ (AAS rule)

$$
\begin{aligned}
& \Rightarrow \quad O \mathcal{L}=O \mathcal{M} \quad(C P C \mathcal{T}) \\
& \Rightarrow \quad \mathcal{A B}=\mathcal{A C}
\end{aligned}
$$

(chords equidistant from the centre are equal)

```
IV. Sfort answer Type questions
```

3. Two equal chords $\mathcal{A B}$ and $\mathcal{C D}$ of a circle when produced intersect at point p. Prove that $P \mathcal{B}=P \mathcal{D}$

Sol. Given: $\mathfrak{A B}=\mathcal{C D}$ chords $\mathcal{A B}$ and $\mathcal{C D}$ when produced meet at point \mathcal{P}

To Prove : $\mathscr{P B}=\mathscr{P D}$

Construction : $\mathcal{D r a w} O \mathscr{M} \perp \mathcal{A B}$ and $O \mathcal{N} \perp \mathcal{C D} \operatorname{I}$ oin $O \mathscr{P}$

Where O is the centre of circle
Proof: In $\triangle \mathcal{P O M}$ and $\triangle P O \mathcal{N}$
$O \mathcal{M}=O \mathcal{N}$ (Equalchords of a circle are equidistant from the centre)
$\angle O \mathcal{M} P=\angle O \mathcal{N} P=90^{\circ}$ (6y construction)
$O P=O P \quad$ (common)
$\therefore \triangle O \mathcal{M P} \cong \triangle O \mathcal{N} P \quad(6 y \mathcal{R H S})$
$\therefore P M=P \mathcal{N} \quad(6 y C P C T) \cdots(i)$

As $\quad \mathcal{A B}=\mathcal{C D} \quad$ (give n)
$\frac{1}{2} \mathcal{A B}=\frac{1}{2} \mathcal{C D}$
$\mathcal{B M}=\mathcal{D N}$
(Perpendicular drawn from the centre on the chord bisects the chord)

Subtracting (ii) from (i)
$P \mathcal{M}-\mathcal{B M}=\mathcal{P N}-\mathcal{D N}$
$\Rightarrow \quad \mathcal{P B}=\mathcal{P D}$

V. Sfort answer Type questions

1. Find \boldsymbol{x} in the adjoining figure

Sol: Here O is the centre of the circle
$\therefore \angle \mathcal{B A C}=\frac{1}{2} \angle \mathcal{Y}$
(By degree measure theorem)
$\Rightarrow \quad 50=\frac{1}{2} \angle \mathcal{Y}$
$\Rightarrow \angle Y=100^{\circ}$
Also $\angle x+\angle y=360^{\circ}$
(Angle at the centre of a circle)
$\Rightarrow \angle x+100^{0}=360^{\circ}$
$\Rightarrow \angle x=360^{\circ}-100^{\circ}=260^{\circ}$
2. In the given figure, O is the centre of the circle $\angle \mathcal{A O C}=\mathbf{5 0}^{\mathbf{0}}$ and $\angle \mathcal{B O C}=\mathbf{3 0}{ }^{\mathbf{0}}$. Find the measure of $\angle \mathcal{A D B}$

Sol: Here $\angle \mathcal{A O C}=50^{\circ}$ and $\angle \mathcal{B O C}=30^{\circ}$
$\angle \mathcal{A O B}=\angle \mathcal{A O C}+\angle \mathcal{B O C}$
$=50^{0}+30^{0}=80^{0}$
$\angle \mathcal{A O B}==80^{\circ}$
$\angle \mathcal{A D B}=\frac{1}{2} \angle \mathcal{A O B} \quad(\mathcal{B y}$ degree measure the ore $m)$
$\therefore \angle \mathcal{A D B}=\frac{1}{2} \quad$ Х $80^{0}=40^{\circ}$
3. In the given figure $\triangle \mathcal{A B C}$ is Equilateral. Find $\angle \mathcal{B D C}$ and $\angle \mathcal{B E C}$

Sol: $\angle \mathcal{B A C}=60^{\circ}$
$[\because \Delta \mathcal{A B C}$ is Equilateral triangle)
$\therefore \angle \mathcal{B A C}=\angle \mathcal{B D C}$
$[\because$ Angles in the same segment of a circle are equal)
$\Rightarrow \angle \mathcal{B D C}=60^{\circ}$
\mathcal{N} ow,$\mathcal{D B E C}$ is a cycle quadrilateral
$\therefore \angle \mathcal{B D C}+\angle \mathcal{B E C}=180^{\circ}$
[\because Opposite angles of a cycle quadrilateral are supplementary]
$60^{\circ}+\angle \mathcal{B E C}=180^{\circ} \Rightarrow \angle \mathcal{B E C}=180^{\circ} \cdot 60^{\circ}=120^{\circ}$
4. If $\angle \mathcal{B O C}=\mathbf{1 0 0}^{\mathbf{0}}$ then find \boldsymbol{x} from the given figure.

Sol: Here O is the centre of the circle
$\therefore \angle \mathcal{B A C}=\frac{1}{2} \angle \mathcal{B O C}=\frac{1}{2} \chi 100^{0}=50^{0}$
Also $\angle x+\angle \mathcal{B A C}=180^{\circ}$
(Sum of Opposite angles of cyclic quadrilateral)
$\Rightarrow \angle x+50^{\circ}=180^{\circ} \Rightarrow x=130^{\circ}$

V. Short answer Type questions

1. $\mathcal{A B C D}$ is a parallelogram. The circles through \mathcal{A}, \mathcal{B} and \mathcal{C} intersect $\mathcal{C D}$ Iproduced, if necessaryl at \mathcal{E}. Prove that $\mathcal{A E}=\mathcal{A D}$

Sol. Given $\mathcal{A B C D}$ is a parallelogram. \mathcal{A} circle passes through \mathcal{A}, \mathcal{B} and \mathcal{C} intersect side CD produced at \mathcal{E}

To Prove : $\mathcal{A E}=\mathcal{A D}$

Construction: I oin $\mathcal{A E}$

Proof: $\mathcal{A B C D}$ is a $\|$ gm
$\therefore \quad \angle \mathcal{A D C}=\angle \mathcal{A B C}$ [Opposite angels of parallelogram]
$\angle \mathcal{A D C}+\angle \mathcal{A D E}=180^{\circ}$
[Angles on straight [ine]
$\mathfrak{A l s}$ o, $\angle \mathcal{A B C}+\angle \mathcal{A E C}=180^{0}$
(Angles of cyclic quadrilateral $\mathcal{A B C E} \mathcal{B y}$ construction)
On equating (ii) and (iii)
$\angle \mathcal{A D C}+\angle \mathcal{A D E}=\angle \mathcal{A B C}+\angle \mathcal{A E C}$
$\Rightarrow \quad \angle \mathcal{A D E}=\angle \mathcal{A E C} \quad$ [ASS $\angle \mathcal{A D C}=\angle \mathcal{A B C}$ opposite angles of $\| \mathrm{gm}$]
$\Rightarrow \quad \mathcal{A D}=\mathcal{A E} \quad$ [S ides opposite to equalangles are equal]
2. $\mathcal{A B C D}$ is a cyclic quadrilateral, $\mathcal{B A}$ and $\mathcal{C D}$ produced meet at \mathcal{E}. Prove that the triangles $\mathcal{E B C}$ and $E \mathcal{D A}$ are equiangular.

Sol. Given: $\mathcal{A B C D}$ is a cyclic quadrilateral. $\mathcal{B A}$ and $\mathcal{C D}$ are produced to meet at \mathcal{E}.
To prove : Δs EBC and $\mathcal{E D A}$ are equiangular
Proof: $\because \mathcal{A B C D}$ is cyclic quadrilateral.
$\therefore \angle \mathcal{B A D}+\angle \mathcal{B C D}=180^{\circ}$
[S um of opposite angles of a cyclic quadrilateral.]
$\mathcal{B} u t \angle \mathcal{B A D}+\angle \mathcal{E A D}=180^{\circ}$ [Line ar pair]
(ii)

From (i) and (ii)
$\angle \mathcal{B C D}=\angle \mathcal{E A D}$

Similarly, $\angle \mathcal{A B C}=\angle \mathcal{E D A}$
and $\angle \mathcal{B E C}=\angle \mathcal{A E D}$

Hence, Δs EBC and EDA are equiangular
3. $\mathcal{A B C}$ is an isosceles triangles in which $\mathcal{A B}=\mathcal{A C}$. A circle passing through \mathcal{B} and \mathcal{C} intersects $\mathcal{A B}$ and $\mathcal{A C}$ at \mathcal{D} and Erespectively. Prove that $\mathcal{B C} \| \mathcal{D E}$

Given: $\mathcal{A n}$ isosceles triangle $\mathcal{A B C}$ in which intersecting $\mathcal{A B}$ and $\mathcal{A C}$ at \mathcal{D} and Erespectively.

To Prove : $\mathcal{D E} \| \mathcal{B C}$

$\mathcal{A B}=\mathcal{A C}$ and a circle through \mathcal{B} and \mathcal{C}

Proof: In $\Delta \mathcal{A B C}, \mathcal{A B}=\mathcal{A C} \Rightarrow \angle 3=\angle 4$
[Angles opposite to equal sides are equal](i)

Also, $\mathcal{D B C E}$ is a cyclic quadrilateral
$\Rightarrow \angle 2=\angle 4=180^{\circ} \quad$ [Opposite angles of a cyclic quadrilateralare supplementary]
$\Rightarrow \angle 2=\angle 3=180^{\circ} \quad$ [From (i)] $\cdots \cdots$. (ii)
$\mathcal{B} u t \angle 2=\angle 3$ are co-interior angles on the same side of transversal $\mathcal{B D}$
$\therefore \mathcal{D E} \| \mathcal{B C}$
4. O is the circumcentre of the triangle $\mathcal{A B C}$ and $O \mathcal{D}$ is perpendicular to $\mathcal{B C}$. Prove

$$
\text { that } \angle \mathcal{B O D}=\angle \mathcal{A}
$$

Construction: I oin $O \mathcal{B}$ and $O \mathcal{C}$

Proof: Here O is the centre of circle
$\therefore \angle \mathcal{B O C}=2 \angle \mathcal{A}$
(By degree measure theorem)
$\mathcal{A l s o}$, in $\triangle \mathcal{B O D}$ and $\triangle \mathcal{C O D}$
$O \mathcal{B}=O C \quad$ (radii of circle)
$O \mathcal{D}=O \mathcal{D} \quad$ (common)
$\angle O \mathcal{D B}=\angle O \mathcal{D C}=90^{\circ} \quad(O \mathcal{D} \perp \mathcal{B C}$ give $n)$
$\Rightarrow \Delta O \mathcal{B D} \cong \Delta O \mathcal{C D} \quad(6 y \mathcal{R H S})$
$\Rightarrow \angle \mathcal{B O D}=\angle C O D \quad(C P C \mathcal{D}) \cdots \cdot(i i)$
$\Rightarrow \angle \mathcal{B O C}=\angle \mathcal{B O D}+\angle \mathcal{C O D}$

$=\angle \mathcal{B O D}+\angle \mathcal{B O D} \quad[$ Ulsing (ii)]
$\Rightarrow \angle \mathcal{B O C}=2 \angle \mathcal{B O D} \quad \cdots(i i i)$

Equating (i) $\mathcal{A N} \mathcal{N D}$ (iii)
$2 \angle \mathcal{A}=2 \angle \mathcal{B O D}$
$2 \angle \mathcal{B O C}=\angle \mathcal{B O D}$
$\Rightarrow \angle \mathcal{B O D}=\angle \mathcal{A}$
I. Long answer Type questions

1. In the given figure, O is the centre of a circle and $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and \mathcal{E} are points on the circle such that $\mathcal{A B}=\mathcal{B C}=\mathcal{C D}=\mathcal{D E}=\mathcal{E A}$. Find the value of $\angle \mathcal{A} O \mathcal{B}$.

Sol: Given : O is centre of circle and $\mathcal{A B}=\mathcal{B C}=\mathcal{C D}=\mathcal{D E}=\mathcal{E} \mathcal{A}$

Construction : Ioin $O C, O \mathcal{D}, \mathcal{D E}$

To find $\angle \mathscr{A} O \mathcal{B}$.

Proof: $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and \mathcal{E} are the points which lie on the circle

$\mathcal{A l s o} \quad \mathcal{A B}=\mathcal{B C}=\mathcal{C D}=\mathcal{D E}=\mathcal{E} \mathcal{A}$

All are the chords of the circle
As we know that equalchords subtend equal angle at the centre of circle.
$\therefore \angle \mathcal{A O B}=\angle \mathcal{B O C}=\angle C O D$

$\mathcal{A l s o} \angle \mathcal{A O B}+\angle \mathcal{B O C}+\angle \mathcal{C O D}+\angle \mathcal{D O E}+\angle \mathcal{A} O \mathcal{E}=360^{\circ}$
(sum of angles at the centre of circle)

Ulsing (i)
$\angle \mathcal{A O B}+\angle \mathcal{A O B}+\angle \mathcal{A} O \mathcal{B}+\angle \mathcal{A} O \mathcal{B}+\angle \mathcal{A} O \mathcal{B}=360^{\circ}$
$\Rightarrow \quad 5 \angle \mathcal{A O B}=360^{\circ}$
$\therefore \angle \mathcal{A O B}=72^{\circ}$
2. $\mathcal{P Q}$ and $\mathcal{R S}$ are two parallelchords of a circle on the same side of centre O and radius is $10 \mathrm{~cm} . \quad$ If $P Q=16 \mathrm{~cm}$ and $R S=12 \mathrm{~cm}$, find the distance between the chords.

Sol: Given: \mathcal{A} circle with centre O and two chords $\mathcal{P Q}$ and $\mathcal{R S}$, such that $\mathcal{P Q} \| \mathcal{R} S$ To find : $\mathcal{L M}$

Construction: $\operatorname{Draw} O \mathcal{M} \perp \mathcal{R S}$ which intersects $P Q$ and \mathcal{L}

Proof: $O \mathcal{M} \perp \mathcal{R S}$
$\therefore \quad O L \perp P Q$
$(\because \mathcal{P Q} \| \mathcal{R} S)$

$\therefore \quad \mathcal{P L}=\frac{1}{2} \mathcal{P Q}$ and $\mathcal{R M}=\frac{1}{2} \mathcal{R S}$
$\mathcal{N o w}, \quad \mathcal{P L}=8 \mathrm{~cm}$ and $\mathcal{R M}=6 \mathrm{~cm}$

Let $\quad \mathcal{L M}=x c m$
$O \mathscr{P}=O \mathcal{R}=10 \mathrm{~cm}$

In $\triangle O P \mathcal{L}$,

$$
O \mathcal{L}=\sqrt{(10)^{2}-(8)^{2}} c m=6 c m
$$

$\mathfrak{A l s o}$, In $\Delta O \mathcal{R} \mathcal{M}, O \mathcal{M}=\sqrt{(10)^{2}-(6)^{2}} c m=8 c m$
$\therefore x=O \mathcal{M}-O \mathcal{L}=8 c m-6 \mathrm{~cm}=2 \mathrm{~cm}$
$\Rightarrow \quad$ Distancebetweenthe chords $=\mathcal{L} \mathcal{M}=2 \mathrm{~cm}$
3. \boldsymbol{O}_{1} and \boldsymbol{O}_{2} are the centres of two congruent circles intersecting eachother at points \mathcal{C} and \mathcal{D}. The line joining their centres intersects the circles in points \mathcal{A} and \mathcal{B} such that $\mathcal{A B}>\boldsymbol{O}_{\mathbf{1}} \boldsymbol{O}_{\mathbf{2}}$. If $\mathcal{C D}=6 \mathrm{~cm}$ and $\mathcal{A B}=12 \mathrm{~cm}$ determine the radius of either circle.

Sol: Let radius of each circle $=r \mathrm{~cm}$

$$
\mathcal{A B}=12 \mathrm{~cm}
$$

$\therefore \quad O_{1} O_{2}=12-2 r$
\mathcal{N} ow, CD is the common chord of the two circles and $O_{1} O_{2}$ is the line segment that joins the centres [Radii of congruent circles]

As we know that line joining the centres of two circles is perpendicular bisector of the common chord.
$\therefore O_{1} O_{2} \perp \mathcal{C D} O_{1} O_{2}$ bisects $\mathcal{C D}$
$\therefore \quad C P=\frac{1}{2} x C \mathcal{D}=3 \mathrm{~cm}$
and $\quad O_{1} \mathcal{P}=\frac{1}{2}\left(O_{1} O_{2}\right)=\frac{1}{2}(12-2 r)$

$$
=(6-r) \mathrm{cm}
$$

\mathcal{N} ow in right $\triangle \mathcal{C P O}_{1}$

$$
\begin{aligned}
& \left(O_{1} C\right)^{2} \\
\Rightarrow & =\left(O_{1} P\right)^{2}+(P C)^{2} \\
\Rightarrow & r^{2}=(6-r)^{2}+(3)^{2} \\
\Rightarrow & r^{2}=36+r^{2}-12 r+9 \\
\Rightarrow & 12 r=45 \\
\Rightarrow & r=\frac{45}{12} \\
\Rightarrow & r=3.75 \mathrm{~cm}
\end{aligned}
$$

II. Long answer Type questions

1. Prove that the line segment joining the mid-points of two equal chords of a circle make equal angles with the chords.

Sol: Given: $\mathcal{A} \operatorname{circle} \mathcal{C}(O, r) \mathcal{A B}$ and $\mathcal{C D}$ are two equalchords of a circle. \mathcal{L}, \mathcal{M} are the mid-points of $\mathcal{A B}$ and $\mathcal{C D}$ respectively.

To Prove: i) $\angle \mathcal{A L M}=\angle \mathcal{C M L}$

$$
\text { ii) } \angle \mathcal{B L \mathcal { M }}=\angle \mathcal{D M L}
$$

$\mathcal{L M}, O \mathcal{L}, O \mathcal{M}$ are joined
Proof: (i) $O \mathcal{L} \perp \mathcal{A B}$ and $O \mathscr{M} \perp \mathcal{C D}$
(As the line joining the centre to the mid-point of the chord is perpendicular to the chord)
$\mathcal{N o w}, \quad O \mathcal{L}=O \mathcal{M}$
[Equalchords are equidistant from the centre]
In $\triangle O L \mathcal{M} \quad O \mathcal{L}=O \mathscr{M} \quad$ [Proved above]
$\Rightarrow \angle O \mathcal{L M}=\angle O \mathcal{M L}$
[angles opposite to equal sides are equal]......(i)
$\angle O L \mathcal{A}=\angle O \mathcal{M C}$ [Each 90°]
$\Rightarrow \angle \mathrm{OLA}-\angle O \mathcal{L M}=\angle O \mathcal{M C} \cdot \angle O \mathcal{M L}$
$\left[\because \angle O L \mathcal{A}=\angle O M C=90^{\circ}\right]$
$\Rightarrow \angle \mathcal{M L A}=\angle \angle \mathcal{L M C}$
$\mathfrak{A g a i n}$ from (i)
$\angle O L \mathcal{M}+O \mathcal{L B}=\angle O \mathcal{M L}+\angle O \mathcal{M D}$

$$
\left[\because \angle O L \mathcal{B}=\angle O \mathcal{M D}=90^{\circ}\right]
$$

$\Rightarrow \angle \mathrm{MLB}=\angle \mathrm{LMD}$
2. In The given figure $\mathcal{A B} \| \mathcal{C D}, \mathcal{A D}$ is a diameter of circle whose centre is O. Prove that $\mathfrak{A B}=\mathcal{C D}$

Sol: Given: $\mathcal{A B} \| \mathcal{C D}, \mathcal{A O D}$ is a diameter of circle, where O is the centre of circle,
To prove : $\mathfrak{A B}=\mathcal{C D}$

Proof: In $\triangle \mathcal{D O Q}$ and $\triangle \mathcal{A O P}$

$$
O \mathcal{D}=\mathcal{D A} \quad(\text { radii of angle })
$$

$\angle \mathcal{D O Q}=\angle \mathcal{A O P}$
(Vertically opposite angle)
$\angle Q \mathcal{D O}=\angle P A O$
[alternate angles as $\mathcal{C D} \| \mathcal{A B}($ given $n)]$
$\Rightarrow \triangle \mathcal{D O Q} \cong \triangle \mathcal{A O P}$
$\Rightarrow O Q=O \mathscr{P}$
$(\mathcal{B} \mathcal{Y} \mathcal{C P C T})$
$\Rightarrow \quad \mathcal{C D}=\mathcal{A B} \quad$ (chords equidistant from the centre of a circle are equal)
III. Long answer Type questions

1. Prove that the angle bisectors of the angles formed by producing opposite sides of a cyclic quadrilateral [provided they are not parallel] intersect at right angle.

Sol: Given $\mathfrak{A B C D}$ is a cyclic quadrilateral whose opposite sides are produced to meet at \mathcal{E} and \mathcal{F}.

To Prove : Bisectors of $\angle \mathcal{E}$ and $\angle \mathcal{F}$ intersect at right angle.

Proof: In $\triangle \mathcal{F E L}$ and $\triangle \mathcal{F B N}$.
$\angle 2=\angle 1 \quad[\because F N$ is the bisector of $\angle F]$
$\angle 3=\angle 4$ [Exterior angle of cycle quadrilateral is equal to interior opposite angle
\therefore Tfird $\angle \mathcal{F} L \mathcal{D}=\mathcal{T}$ fird $\angle 6$

But $\quad \angle F L D=5$ [Vertically opposite angles]
$\therefore \quad \angle 5=\angle 6$
$\Rightarrow \quad \mathcal{E N}=\mathcal{E} \mathcal{L}$
[S ides opposite to equal angles are equal]
\mathcal{N} ow in $\triangle \mathcal{E L S M}$ and $\triangle \mathcal{E N} \mathcal{N}$

$$
\begin{array}{ll}
\mathcal{E L}=\mathbb{E N} & \text { [Proved above] } \\
\mathcal{E M}=\mathcal{E M} & \text { [Common] } \\
\angle 7=\angle 8 & \text { [Given as } \mathcal{E M} \text { is the bisector of } \angle E \text {] }
\end{array}
$$

$\therefore \quad \Delta \mathcal{E L M} \cong \triangle \mathcal{E N} \mathcal{N}$ [SAS congruence rule]
$\therefore \quad \angle E M L=\angle E M N$
[Common]

But $\angle E M L+\angle E M N=180^{\circ} \quad$ [Line ar Pair]
$\Rightarrow \quad \angle E M L=\angle E M N=90^{\circ}$

Hence, $\quad \mathcal{E M} \perp \mathcal{F M}$.
$\mathcal{H e n c e}$, bisectors of $\angle \mathcal{E}$ and $\angle \mathcal{F}$ intersect at right angle
2. Prove that the angle subtended by an arc at the centre is double the angle subtended $6 y$ it at any point on the remaining part of the circle.

Sol. Given an are $P Q$ of a circle subtending angles $P O Q$ at the centre O and $\angle P A Q$ at a point \mathcal{A} on the remaining part of the circle.

To prove : $\angle P \mathcal{P O}=2 \angle P \mathcal{A} Q$

Construction: I oin $\mathcal{A O}$ and extends it to \mathcal{B}

Proof: Consider three cases

Case (i) When are $\mathcal{P Q}$ is a minor are

Case (ii) When are $\mathcal{P Q}$ is a semicircle

Case (iii) When are $\mathcal{P Q}$ is a major are.
In all the three cases

Taking $\triangle \mathcal{A O Q}$
$\angle \mathcal{B O Q}=\angle O \mathcal{A} Q+\angle O Q \mathcal{A}[$ Exterior angle of \triangle is equal to the sum of interior opposite angles]

$$
\begin{array}{ll}
\text { Also } \quad O \mathscr{A}=O Q & \text { [radii of circle] } \\
\Rightarrow \quad \angle O A Q=\angle O Q A & \text { [Angles opposite to equal sides] } \\
\Rightarrow \quad \angle B O Q=\angle O A Q+\angle O A Q \\
\Rightarrow \quad \angle B O Q=2 \angle O A Q \quad \text {........ (i) }
\end{array}
$$

Similarly $\angle B O P=2 \angle O A P$
$\mathcal{A d d i n g}$ (i) and (ii) we have
$\angle B O Q+\angle B O P=2 \angle O A Q+2 \angle O A P$

$$
\begin{aligned}
& =2(\angle O A Q+\angle O A P) \\
\Rightarrow \quad \angle P O Q & =2 \angle P A Q
\end{aligned}
$$

Specially for case (iii) we can write reflex $\angle \mathcal{P O Q}=2 \angle \mathcal{P A} Q$
3. Prove that the quadrilateral formed [if possible] by the internal angle bisectors of any quadrilateral is cyclic.

Sol. Given $\mathcal{A B C D}$ is a quadrilateral, $\mathcal{A H}, \mathcal{B F}, \mathcal{C F}$ and $\mathcal{D H}$ are the angle bisectors of internal angles $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} these bisectors form a quadrilateral $\mathcal{E} \mathcal{F} \mathcal{G} \mathcal{H}$

To Prove: $\triangle \mathcal{E} \mathcal{F} \mathcal{G H}$ is cyclic

Proof: In $\triangle \mathcal{A E B}$.
$\angle E \mathcal{A B}+\angle \mathcal{A B E}+\angle \mathcal{A E B}=180^{\circ}$
$\Rightarrow \quad \angle \mathcal{A E B}=180^{\circ}-(\angle \mathrm{EAB}+\angle \mathrm{ABE})$
$\mathcal{A l s o} \quad \angle \mathcal{A E B}=\angle \mathcal{F E H}$
.......(ii) [Vertically opposite angle]
$\mathcal{B y}$ equating (i) and (ii)

$$
\angle \mathcal{F E \mathcal { H }}=180^{\circ}-(\angle \mathrm{EAB}+\angle \mathrm{ABE}) \ldots . . \text { (iii) }
$$

Similarly, in $\Delta \mathcal{G} \mathcal{D C}$

$$
\angle \mathcal{F G \mathcal { H }}=180^{\circ}-(\angle \mathrm{GDC}+\angle \mathrm{GDC}) \ldots . .(i v)
$$

$\mathcal{A d}$ ding (iii) and (iv)

```
\angleFE\mathcal{H}+\angle\mathcal{FGH}
```

$$
\begin{aligned}
& =360^{\circ} \cdot(\angle E A B+\angle \mathrm{ABE}+\angle D \mathrm{DC}+\angle G \mathrm{CD} \\
& =360^{\circ} \cdot \frac{1}{2}(\angle \mathrm{BAD}+\angle \mathrm{ABC}+\angle \mathrm{ADC}+\angle \mathrm{BCD})
\end{aligned}
$$

[$\mathcal{A s} \mathcal{A H}, \mathcal{B F}, \mathcal{C F}$ and $\mathcal{H D}$ are bisectors of $\angle \mathcal{A}, \angle \mathcal{B}, \angle C, \angle \mathcal{D}$]
$=360^{\circ}-\frac{1}{2} \times 360^{\circ} \quad$ [Sum of angles of quadrilateral, $\mathcal{A B C D}$]
$\angle \mathcal{F E H}+\angle \mathcal{F} G \mathcal{H}=360^{\circ}-180^{\circ}=180^{\circ}$
$\Rightarrow \mathcal{F E H G}$ is a cyclic quadrilateral.
[If the sum of opposite angles of quadrilateral is 180°, then it is cyclic]
4. In the given figure, O is the centre and $\mathcal{A E}$ is the diameter of the semicircle $\mathcal{A B C D E}$. If $\mathcal{A B}=\mathcal{B C}$ and $\angle \mathcal{A E C}=\mathbf{5 0}^{\mathbf{0}}$ then find (i) $\angle C \mathcal{B E}$ (ii) $\angle C D E$ (iii) $\angle \mathcal{A O B}$, Prove that $\mathcal{B O} \| \mathcal{C E}$.

Sol. Given: O is the centre of circle and $\mathcal{A E}$ is the diameter of the semicircle $\mathcal{A B C D E}$.
$\mathcal{A l s}$ o, $\mathcal{A B}=\mathcal{B C}, \mathcal{A E C}=50^{\circ}$

To find (i) $\angle \mathcal{C B E}$ (ii) $\angle C D E$ (iii) $\angle \mathcal{A O B}$, Prove that $\mathcal{B O} \| C E$.

Construction: Ioin $O C$ and $\mathcal{B E}$

Proof: $\angle \mathcal{A O C}=2 \angle \mathcal{A E C}$
[By degree measure theorem]

$$
\angle A O C=2 \times 50^{\circ}=100^{0}
$$

$\mathcal{A l s o}$
$\angle \mathcal{A O B}=\angle \mathcal{B O C}$ [Equalchords subtend equalangle at the centre of circle]
\therefore

$$
\angle A O B=\frac{1}{2} \angle A O C \quad[\mathcal{U} \operatorname{sing}(i)]
$$

$$
\angle A O B=\frac{1}{2} 100^{\circ}=50^{0}
$$

\mathcal{N} ow

$$
\angle \mathcal{A O B}=\angle \mathcal{A E C}
$$

[These are corresponding ange [s]
\mathcal{B} ut these are corresponding angles and are equal.
$\therefore \quad$ Line $O \mathcal{B} \| C E \quad \mathcal{H e n c e}$ proved
(i) $\angle \mathcal{A O C}+\angle C O E=180^{\circ}$ [Line ar pair angles]
$100^{\circ}+\angle C O E=180^{\circ}$

$$
\begin{aligned}
\angle C O E & =180^{\circ}-100^{\circ}=80^{\circ} \\
\angle \mathrm{CBE}= & \frac{1}{2} \angle C O \mathcal{E} \\
& =\frac{1}{2} \times 80^{\circ}=40^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{CBE}=\frac{1}{2} \angle \mathrm{COE} \quad[\mathcal{B} y \text { degree measure theorem] }
$$

(ii) $\mathcal{N}(o w, \boxtimes C B E D$ is cyclic quadrilateral.
$\angle C B E+\angle C D E=180^{\circ} \quad$ [S um of opposite angles of cyclic quadrilateral

$$
\begin{aligned}
\Rightarrow & 40^{\circ}+\angle C D E=180^{\circ} \\
\Rightarrow & \quad \angle C D E=180^{\circ}-40^{\circ}=140^{\circ}
\end{aligned}
$$

(iii) $\angle \mathcal{A O B}=50^{\circ} \quad$ (Proved above)
5. In the given figure, If $y=\mathbf{3 2}^{\mathbf{0}}$ and $z=\mathbf{4 0}^{\mathbf{0}}$ determine \boldsymbol{x}, If $y+z=\mathbf{9 0}^{\mathbf{0}}$, Prove that $x=45^{0}$

Sol. Given $y=32^{\circ}$ and $z=40^{\circ}$

Proof: Let the line segments $\mathcal{A D}$ and $\mathcal{C E}$ cut each other at \mathcal{P}.

Since, $\quad \angle \mathcal{A P E}=\angle C P D$
[Vertically opposite angles]
[Exterior angle]
[Exterior angle]
and $\quad \angle P \mathcal{A B}=x+z$

Since $\mathcal{A B C P}$ is a cyclic quadrilateral
$\therefore \quad \angle \mathcal{B C P}+\angle P \mathcal{A B}=180^{\circ}$
$\Rightarrow x+y+x+z=180^{0}$
or $2 x+(y+z)=180^{\circ}$
or $2 x+\left(40^{0}+32^{0}\right)=180^{0}$
or $2 x=180^{0}-72^{0}=108^{0}$ or $x=54^{0}$

Since from (iii), we get $2 x(y+z)=180^{\circ}$ and $y+z=90^{\circ}$ (Given)
$\therefore \quad 2 x+90^{\circ}=180^{\circ}$ or $2 x=90^{\circ}$
$\therefore \quad x=45^{0}$

