

$\mathcal{T H R Z L S} \mathcal{T}$

Force $\mathfrak{A c t i n g}$ on an object perpendicular to the surface is called thrust. The SI unit of thrust is same as force, i.e. ne wton

Pressure

Thrust acting per unit are a is called pressure (P) S I unit: pascal (Pa) or ne wton/ meter $^{2}\left(\mathrm{~N} / \mathrm{mr}^{2}\right)$

Pressure $=1$ pascal (Pa)
$=$ Thrust of $1 \mathcal{N}$ is exerted on unit area

Pressure on liquids/gases

Pressure is inversely proportional to the area on which thrust

Upthrust is independent of the shape of the container Upthrust is independent of the volume of a fluid in the Container
Volume of fluid displaced $=$ volume of body immersed

Properties
of upthrust

When a body is partially or
fully immersed in a fluid (i.e. liquid or a gas) it experiences an upward force due to fluid displaced by it. This is called Guouancu or unthrust.

Arcfimedes 'Principle

I t states that if a body is partially or fully immersed in a fluid at rest, it experiences an upthrust (U) which is equal to weight of the fluid (W) displaced by it.

i.e.	$\mathcal{U}=\mathcal{W}$
	$\mathcal{W}=m g$
If	$\begin{aligned} & \mathcal{V}=\mathcal{V} \text { olume of fluid displaced } \\ & \rho=\mathcal{D e n s i t y ~ o f ~ f l u i d ~} \end{aligned}$
Then	$m=\mathcal{V} \rho$
Or	$\mathcal{W}=\mathcal{V} \rho \mathcal{g}$
\Rightarrow	$\mathcal{U}=\mathcal{V} \rho \mathcal{G}$

S fip de signing and making sub
macfine

Making
hydrometer to measure density

Making lactometer to measure purity of milk

Principe of floatation

If a body of weight ' W ' is immersed in a fluid and an upthrust 'U'acts on it, then

The body sinks in fluid

The body floats wfile Geing comple tely immersed in fluid.
\qquad

Relative density of a substance is the ratio of density of a substance to the density of water It has no unit as it is a ratio

If relative density >1, the body sinks in water If relative density <1, the body floats in water If relative density $=1$, the body floats while completely immersed in water

Relative de nsity $=\frac{\text { Density of a substance }}{\text { Density of water }}=\frac{\text { Mass of substance }}{\text { Mass of equal volume of water }}$
$=\frac{\text { Weight of substance }}{\text { Weight of equal volume of water }}=\frac{\text { Weight of substance in air }}{\text { loss of weight of substance in water }}$ [Density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{cm}^{3}$]

[4]

Know the terms

Activity/Project 1 :

Aim :To study the impact of density of immersing fluid on the upthrust exerted by it.

Materials required: \mathcal{A} solid metalcube (1cm х 1 cm х1cm), spring balance, inelastic thread, distilled water, saturated salt solution and two beakers.

Method
: 1. Take 100 mleach of distilled water and saturated salt solution in the beakers provided.
2. Check the zero error and least count of spring balance
3. Tie the inelastic thread to the metalcube and suspend it with the spring balance
4. Measure the weight of the solid when suspended freely in air. Record it as W_{a}
5. Now immerse the solid completely (so that it does not touch walls or base) in the beaker containing distilled water. Record the weigftread on spring balance as W_{r}
6. Again immerse the solid completely in salt solution and find its weight $\left(W_{s}\right)$
7. Find loss in weight of solid in botr cases, i.e. $\left(W_{a}-W_{r}\right)$ and $\left(W_{a}-W_{s}\right)$

Conclusion: The density of salty water is more thandistilled water. The solid experiences a greater loss in weight when immersed in salty water. This means an upthrust exerted by a fluid

Activity / Project 2 :

Aim \quad To verify that an upthrust exerted by a fluid depends on the volume of an object immersed.

Materials required :T Two balls of the same size - one hollow and one solid, a stopwatch, feather and a sheet of paper

Method

1. One person stands with all the materials, in the balcony of second / third floor of the building.
2. The other person readies the stopwatch and stands on the ground $\mathcal{F l o o r}$
3. The first object say solid ball is released. Instantly, the stopwatch is started and stopped as soon as the object reaches the ground and the time of the fall of the object is recorded.
4. The same process is repeated for all the given objects and the time of the fall of all objects is compared.

Observation

Conclusion

The solid ball falls the fastest to ground through air. Fe ather and a sheet of paper fall very slowly.

Feather and a sheet of paper have large surface area, so they fall slowly as a greater air resistance acts on them during the course of the ball Hollow ball has air filled with it, so its overall density is less than the solid ball. As a result, the difference between its weight and v upthrust due to air is less than that of solid ball. Thus, solid ball falls the fastest

1. Ulptfrust on a body depends on
a) Density of the liquid
b) volume of the body
c) density of the body
d) 6 oth (6) and (c)
2. School bags fave a broader base to reduce
a) pressure
b) weight
c) air resistance
d) normalreaction
3. If upthrust \mathcal{U} is equal to $\frac{1}{4}$ th the weight of the object in air, then the weight felt in the -iquid
a) $\frac{1}{4} \mathrm{~W}$
b) $\frac{3}{4} W$
c) $\frac{1}{2} \mathrm{~W}$
d) 2 W
4. A mass weighing \mathcal{W} can float if the upthrust \mathcal{U} is related as
a) $\mathcal{U}>\mathcal{W}$
b) $\mathcal{U}=\mathscr{W}$
c) $\mathcal{U}<\mathscr{W}$
d) $\mathcal{U} \geq \mathscr{W}$
5. In a tank having h'feight of liquid, two points at a depth $\frac{3 h}{4}$ from free surface have pressures P_{A} and P_{B} When the point \mathcal{A} is more closer to the wall than \mathcal{B}. Then
a) $P_{A}>P_{B}$
6) $P_{A}<P_{B}$
c) $P_{A}=P_{B}$
d) Depends on density
6. The le ast value of apparent weight of a body in a fluid is
a) >0
b) $=0$
c) <0
d) Depends on the density of solid and fluid
7. A heavy cylinder of length 1 is slowly taken out of a dense liquid. The weight felt as it is taken out of the liquid
a) will remain the same
c) decreases as it comes out
6) increases as it comes out
d) increases till it attains the weight in air
8. An empty closed drum and a filled drum of same dimension will bring
a) same upthrust
6) same volume
c) 6oth (a) and (6)
d) neither (a) nor (b)
9. An object weighs $10 \mathfrak{N}$ in air. When immersed fully in water, It weighs only $\mathcal{B} \mathcal{N}$. The weight of the liquid displaced by the object will be [$\mathcal{N C E R T}$ Exemplar Problem]
a) $2 \mathcal{N}$
6) $8 \mathcal{N}$
c) $10 \mathfrak{N}$
d) $12 \mathfrak{N}$
10. A girl stands on a box having 60 cm length, 40 cm breadth and 20 cm width in three ways. In which of the following cases pressure exerted by the brick will be [$\mathcal{N C E R T}$ Exemplar Prob[em]
a) maximum when length and breadth form the base
6) maximum when breath and width form the 6ase
c) maximum when width and length form the base
d) the same in all the above three cases.

1. a	$2 . a$	3.6	$4 . a$	$5 . c$	6.6	$7 . d$	$8 . c$	$9 . a$	10.6

I. Matcfithe columns
11.

Column I	Column II
1. Relative density	A). Mass per unit volume
2. S.I. unit of uptfrust	B). Newton
3. Density	C). Density of object / density of water
4. Pressure	D). Inversely proportional to are a
5. Arcfimedes'Principle	E). Lactometer

I. Fill in the blanks

12. As contact area between surfaces increases, pressure

13. Thrust is the \qquad force on a surface.
14. If a heavy and light object fiave same momentum than heavier one will have \qquad Kinetic energythanlighter one.

I. True or false

15. Upthrust decreases when a body comes out of liquid.
16. When upthrust is greater than weight, the body floats in inside the liquid
17. Upthrust depends on density of liquid, volume of body immersed and accelerationdue to gravity

15. True	16. Fatse	17. True

Direction (Q. 18 and Q.19) : In the following Questions, the Assertion and Reason fave been put forward. Read the statements carefully and choose the correct alternative from the following.
a. Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion.
6. The Assertionand the Reason arecorrect but the Reason is not the correct explanation of the Assertion.
c. Assertion is true but the Reason is false.
d. The statement of the Assertion is false but the Reason is true.
18. Assertion: It is easier for a camelto run ondesert and than a forse.

Reason: Both cameland horse exert less pressure on the sand as pressure does not depend upon the feet area of both animals.
(c) Assertion is true but the Reason is false.
19. Assertion: A piece of corkpressed into water comes back to surface once released.

Reason: When a solid is immersed in a fluid, it experiences a buoyant force due to the fluid.
(a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion
20. Define thrust
[CBSE 2010]

The force acting on an object perpendicular to the surface is called thrust. Its $S I$ unit is newton.
21. Differentiate between force and thrust.

Force can act on a surface in any direction. But thrust is a force which acts on the surface in perpendicular direction.
22. Define pressure.

Pressure is defined as thrust per unit area of a surface.
23. State and define SI unit of pressure

The S I unit of pressure is pascal(Pa)
Pressure acting on a surface is 1 Pa if a thrust of $1 \mathcal{N}$ acts on its unit area.
24. How is pressure related to the thrust exerted on a surface?

Pressure is directly proportional to the thrust exerted on a surface,
since pressure

$$
=\frac{\text { Thrust }}{\text { Area }}
$$

25. How is pressure related to the area of a surface on which thrust acts?

Pressure is inversely proportional to area on which thrust is exerted, i.e. if are a is more, pressure reduces and if area is less, pressure increases.
26. Dams have broad foundation. Why is it so?

The broad base of a dam reduces downward pressure of fug amount of water, as greater is the area, lesser is the pressure.
27. It is easier to cut an apple with the sharpedge of a Knife. Give reason.

The sharpedge of a Knife has a smaller area and the pressure is inversely proportional to are a of contact. So it exerts agreater pressure on the apple and cuts it easily.
28. A solid exerts pressure of $20 \mathcal{P a}$ on a surface of $2 \mathrm{~m}^{2}$. Find its weight.

Given Pressure $=20 \operatorname{Pa}, \operatorname{Area}=2 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { Weight }=\text { Thrust } \\
& \mathcal{N} \text { ow, Pressure }=\frac{\text { Thrust }}{\text { Area }} \\
& \Rightarrow \text { Thrust }=\text { Pressure } \chi \mathcal{A r e a} \\
& =20 \text { Pa } \chi=2 \mathrm{~m}^{2}=40 \mathcal{N}
\end{aligned}
$$

29. Do fluids also exert pressure? If yes, in which direction do they exert pressure?

Yes, the fluid molecules exert an equal pressure in all directions and transmit it undiminished in all directions on the walls and base of the containers.
30. Why does a needle have a sharp tip?

The sharp tip of a needle has a smaller are a and the pressure is inversely proportional to area of contact. So it increases the pressure exerted by needle for a given force and easily penetrates into the surface.
31. What is atmospheric pressure?

The pressure exerted on us by atmosphere of the earth is called atmospheric pressure [1 atmosphere $=1.013 \times 10^{5} \mathrm{~Pa}$
32. Is pressure a scalar or a vector quantity? explain

Pressure is a scalar quantity since at a levelinside a liquid, the pressure due to the liquid is exerted uniformly in all directions. Hence a definite direction is not associated with the pressure due to the liquid.
33. How does the density of fluid affect the magnitude of buoyancy acting on an object immersed in it?

The greater the density of fluid, more is the upthrust acting on the objectimmersed in it
34. Mark the direction of weight of the body and upthrust acting on it, in the following diagram

35. State a condition for an object to float when placed on the surface of water.

An object floats on the surface of water if n upthrust exerted on it is greater than its weight, i.e. $\mathcal{U}>\mathcal{W}$
36. A coin sinks when placed on the surface of water. Give reason.

The coin sinks when placed on the surface of water because on it.
37. A body is immersed once in each of the following media:
a.mustard oil
6. water
c.glycerine
d. petrol

In which case will there be maximum apparent loss of weight and why?
c. The body experiences a maximum apparent loss in weightinglycerine because it fas the fighest density among the rest of the media.
38. A crumpled sheet of paper falls down faster through air than a plane sheet, why?

A crumpled sheet of paper falls faster as it experiences lesser air resistance due to its small area than a plane sheet during the fall
39. State Archimedes principle.

Arcfimedes'principle states that when an object is partially or fully immersed in a fluid, it experiences an upthrust or upward force that is equal to the weight of the fluid displaced by it.
40. Give two applications of $\mathcal{A r c h i m e d e s ' p r i n c i p l e . ~}$

Arcfimedes'principle is used indesigning sfips and submarines and in making lactometers.
41. Name two forces which act on an object immersed in a fluid.

Weight [Downward] and buoyancy [upward]
42. Why does a cork not sink in water?

A corkdoes not sink in water because its weight is less than the upthrust exerted by water.
43. What is the use of a hydrometer?
$\mathcal{H y d r o m e t e r}$ is used to find the density of water.
44. What is the use of a lactometer?
\mathcal{A} lactometer is used to measure the purity of a given sample of milk
45. On what principle are lactometer and fydrometer based?

Arcfimedes principle
46. Why is it easier to swim in sea water than freshwater?

It is easier to swim in sea water as it exerts a greater buoyant force on the body of the swimmer. This is because sea water is denser than fresfiwater due to its salt content. Greater the density more is the upthrust exerted by fluid on the body.
47. Define density

Density is defined as mass per unit volume of a substances.

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

48.S tate the SI unit of density

The S I unit of density is Kilogram per cubic metre [$\mathrm{kg} / \mathrm{m}^{3}$]
49. Relate the SI unit of density with its egs unit.
$1 \mathrm{~kg} / \mathrm{m}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\left[\because 1 \mathrm{~kg} / \mathrm{m}^{3}=\frac{10^{-3} \mathrm{~kg}}{10^{-6} \mathrm{~m}^{3}}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right]$
This is equal to the density of water
50. Define relative density

The ratio of density of a substance to density of water is called relative density.
51. State the SI unit of relative density

Ans. relative density fas no unit as it is a ratio.
52. Relate relative density of a substance to its density

Relative $\mathcal{D e n s i t y}=\frac{\text { Density of a substance }}{\text { Density of water }}$
53. Density of a solid is $7.5 \mathrm{~g} / \mathrm{cm}^{3}$. when is its relative density?

Given: Density of water, $p_{w}=1 \mathrm{~g} / \mathrm{cm}^{3}:$ density of solid, $p_{s}=7.5 \mathrm{~g} / \mathrm{cm}^{3}$

$$
\text { Relative density }=\frac{p_{w}}{p_{s}}=\frac{7.5}{1}=7.5
$$

54. Relative density of an object is 1.35 , will it float or sink in water?

Since the given relative density $1.35>1$, the object will sink in water.
55. A body of mass 20 kg is placed on an area $2 \mathrm{~m}^{2}$. Find the pressure exerted.

Given. Mass, $m=20 \mathrm{~kg}: g=9.8 \mathrm{~ms}^{-2}: \mathcal{A r e a} \mathcal{A}=2 \mathrm{~m}^{2}$

$$
\text { Pressure }=\frac{\text { Thrust }}{\text { Area }}=\frac{\mathrm{mg}}{A}=\frac{20 \times 9.8}{2}=98 \mathrm{~Pa}
$$

56. Thrust of 'F' \mathcal{N} is exerted on an area 24 and thrust of " $3 \mathcal{F}$ " \mathcal{N} is exerted on an area $\mathcal{A} / 2$. Find the ratio of pressure exerted.

$$
\begin{aligned}
& \text { Pressure, } P_{1}=\frac{\text { Thrust } 1}{\text { Area } 1}=\frac{F}{2 A} \\
& \text { Pressure, } P_{2}==\frac{\text { Thrust } 2}{\text { Area } 2}=\frac{3 F}{A / 2}=\frac{6 F}{A} \\
& \therefore \frac{P_{1}}{P_{2}}=\frac{F}{2 A} / \frac{6 F}{A}=1: 12
\end{aligned}
$$

57. An ir on 6 all weighs 11 kg in air and 8 kg when immersed in water. Find its relative density.

Relative density $=\frac{\text { Weight of a substance in air }}{\text { Loss in weight of a substance in water }}$

$$
=\frac{11 \mathrm{~kg} w t}{11 \mathrm{kgwt}-8 \mathrm{kgwt}}=\frac{11}{3}=3.6
$$

58. An army tank weighing more than a thousand tone rests upon a continuous chain. Why?

The chain at the base of the tank increases its area of contact with the ground. Since pressure is inversely proportional to the area of contact, it reduces the pressure exerted by the tank on the ground despite its large weight
59. Cutting tools have sharp edges. Why?

The sharpedges of cutting tools have small areas, so for a given amount of applied force, they exert greater pressure upon the surface to be cut. This makes the cutting of the surface easier as pressure increases.
60. Why is it easier for a camel to run on desert sand than a forse?

The feet of camelhave large area, so the pressure exerted by camelon the sand is less since pressure is inversely proportional to area of contact. On the other fiand, dig deep into the sand making it difficult for the horse to run.
61. What happens when buoyant force exerted by the fluid is equal to the weight of the body?
[CBSE 2012]
When a buoyant force exerted by the fluid is equal to weight of the body, then the body floats while being completely immersed in the fluid.
62. Two blocks, one of iron and other of wood are immersed in water at the same depth. Which one will come upward? Why?
[CBS E 2011]

$O R$

\mathcal{A} wooden 6 lock floats and an iron block sinks when both are placed on the surface of water.S tate reason.
[CBSE 2014]

The block of wood will come upward as the weight of wooden 6lock is less than the upthrust exerted by water. On the other hand, the iron block has more density so its weight is greater than the upthrust exerted by water and it sinks.
63. An object of weight $40 \mathcal{N}$ when immersed in water, loses $10 \mathcal{N}$ weight, will the object float or sink? Why?
[CBS E 2011]
Relative density of object

$$
=\frac{\text { Weight in air }}{\text { Loss in weight in water }}==\frac{40 \mathrm{~N}}{10 \mathrm{~N}}=4
$$

Since relative density, $4>1$, the object will sink in water.
64. A sharp Knife is more effective than a 6lunt knife. Why?
[CBSE 2012]
\mathcal{A} sharp Knife has a very thin edge of smaller area than that of a blunt knife. So it exerts a greater pressure for a given amount of force. Thus it is more effective as this large pressure cuts the object easily.
65. On what factors does the magnitude of an buoyant force experienced by a body in a fluid depend?

The magnitude of buoyant force experienced by a body in a fluid laccording to Arcfimedes'principle] depends on
(i) volume of fluid displaced
(ii) density of fluid, and
(iii) acceleration due to gravity
66. Relative of density of gold is 19.5. the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. what will be the density of gold is $S I$ unit and is $g / c c$?
[CBS E 2015]
$\begin{aligned} \text { Density of gold } & =\text { Density of water } \times \text { Relative density of gold } \\ & =1000 \mathrm{~kg} / \mathrm{m}^{3} \times 19.5 \\ & =1.95 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3} \\ \text { Ing/cc, Density } & =\left(\frac{1.95 \times 10^{4}}{10^{3}}\right) \mathrm{g} / \mathrm{cm}^{3} \\ & =19.5 \mathrm{~g} / \mathrm{cm}^{3}\end{aligned}$

I. Sfort Answer Type Question

1. State the principle of floatation for an object of weight \mathcal{W} immersed in a fluid.

Principle of floatation: It states that if a body of weight "W" is immersed in fluid, such that an upthrust 'U'acts on it due to the fluid, then
(i) the body sinks

(ii) the body floats

When $\mathcal{W}<\mathcal{U}$

(iii) The body floats with its top when surface completely immersed in fluid \mathcal{W} fen $\mathcal{W}=\mathcal{U}$

eneration

2. What are fluids? How does an upthrust exerted by a fluid on an object immersed in it vary with density of fluid?

Gases and liquids are fluids as they can flow. When the density of fluid is more, it exerts a greater Guoyant force on the object immersed in it. This is according to Archimedes'principle that upthrust varies directly as density of fluid that upthrust varies directly as density of fluid $[\mathcal{U}=\mathcal{V p g}$, where $p=\operatorname{Density}$ of fluid]. For example, sea water exerts a greater buoyant force on a swimming person than in fresfwater, as the density of sea water is greater that the fresfiwater, like lake or river.
3. Define relative density of a substance. Relative density of silver is 10.8. The density of water is $1000 \mathbf{k g m}^{-3}$. What is the density of silver in SI units?

Relative density of a substance is defined as the ratio of its density to the density of water.

Given: relative density, $\mathcal{R} \cdot \mathcal{D}=10.8$; density of water, $\mathscr{P}_{w}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, density of silver, $\mathcal{P}_{\mathcal{A g}}=$?

$$
\begin{aligned}
\because & \mathcal{R} \cdot \mathcal{D} & =\frac{p_{A g}}{p_{w}} \\
\therefore & \mathcal{P}_{\mathfrak{A g}} & =R . D \times p_{w}=10.8 \times 10^{3} \\
& & =1.08 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

4. Define pressure and state its SI unit. The dimensions of a metallic cuboid are 30 cm $\chi 20 \mathrm{~cm}$ x 15 cm and its mass is 30 kg . If the acceleration due to gravity be $\mathbf{1 0} \mathbf{m} / \mathbf{s}^{2}$, calculate the pressure exerted by the cubfoid when it is resting on the face having sides $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ on a table
[CBSE 2012]

Pressure is defined as thrust per unit area of a surface. Its SI unit is pascal (Pa).
Given: $\mathfrak{M}=30 \mathrm{~kg}, \mathcal{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
$\mathcal{A}=20 \mathrm{~cm} \times 15 \mathrm{~cm}$
Thrust $=$ Mass χ Acceleration due to gravity $=30 \mathrm{~kg} \times 10 \mathrm{~ms}^{-2}=300 \mathcal{N}$
$\mathcal{A r e a}=20 \mathrm{~cm} \times 15 \mathrm{~cm}=0.2 \mathrm{~m} \times 0.15 \mathrm{~m}$

$$
=0.03 \mathrm{~m}^{2}
$$

Pressure $=\frac{\text { Thrust }}{\text { Area }}=\frac{300 \mathrm{~N}}{0.03}=10^{4} \mathrm{~Pa}$
5. a). State the SI units of Thrust and Pressure,
6). In which situation we exert more pressure on the ground - when we stand on one foot or on both the feet? Iustify your answer.
a). Thrust: newton

Pressure : pascal
6). We exert more pressure on the ground when we stand on one foot as all the weights of the body is exerted on the area of one foot only. The pressure is inversely proportional to area of contact. So it increases.
6. A box fas dimensions $15 \mathrm{~cm} \times 20 \mathrm{~cm} \times 25 \mathrm{~cm}$. Calculate pressure exerted by box if it is rested on a surface at (a) $15 \mathrm{~cm} \times 20 \mathrm{~cm}$ face (b) $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ face (c) $15 \mathrm{~cm} \times 25 \mathrm{~cm}$ face, given mass of $60 x=20 \mathrm{~kg}$. Arrange the pressure in ascending order of their magnitude.

Given: Mass of the 6 ox $m=20 \mathrm{~kg}$
\therefore Weight of box $=m g=20 \times 10$
[if $g=10 \mathrm{~m} / \mathrm{s}^{2}$] $=200 \mathrm{~N}$
(a) $\operatorname{Area}=15 \mathrm{~cm} \times 20 \mathrm{~cm}=300 \mathrm{~cm}^{2}$

$$
=0.03 \mathrm{~m}^{2}\left[\because 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}\right]
$$

Pressure, $\mathcal{P}_{1}=200 / 0.03=6666.67 \mathcal{P}_{a}$
(6) Area $=20 \mathrm{~cm} \times 25 \mathrm{~cm}=500 \mathrm{~cm}^{2}$

$$
=0.05 \mathrm{~m}^{2}\left[\because 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}\right]
$$

Pressure, $\mathcal{P}_{2}=200 / 0.05=4000 \mathcal{P}_{a}$
(c) Area $=15 \mathrm{~cm} \times 25 \mathrm{~cm}=375 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& =0.0375 \mathrm{~m}^{2} \\
& {\left[\because 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}\right]}
\end{aligned}
$$

Pressure, $\mathcal{P}_{3}=200 / 0.0375=5333.33 \mathcal{P}_{a}$
$4000<5333.33<6666.67$
$P_{2}<P_{3}<P_{1}$
7. A force of $100 \mathcal{N}$ acts on a surface of area 25 square cm. Calculate thrust and pressure. Calculate the changed pressure if the force now is reduced to $25 \mathcal{N}$
[CBSE 2016]
Given: Force, $\mathcal{F}=100 \mathcal{N} ; \mathcal{A r e a}$,
$\mathcal{A}=25 \mathrm{~cm}^{2}=25 \times 10^{-4} \mathrm{~m}^{2}$
Thrust $=$ Force $=100 \mathcal{N}$
Pressure $=\frac{\text { Trust }}{\text { Area }}=\frac{100}{25 \times 10^{-4}}=40000 \mathrm{~Pa}$
If force becomes $25 \mathcal{N}$ i.e., $\frac{1}{4}$ th then pressure
Also becomes one fourth, i.e. $\frac{40000}{4}=10000 \mathrm{~Pa}$
8. Find the ratio of the pressure exerted by a block of 400 N when placed on a table top along its two different sides with dimensions $20 \mathrm{~cm} \chi 10 \mathrm{~cm}$ and $10 \mathrm{~cm} \times 15 \mathrm{~cm}$
[CBSE 2016]

Thrust $=$ Weight $=400 \mathcal{N}$
Base Area $1=20 \mathrm{~cm} \times 10 \mathrm{~cm}$
$O r$

$$
\mathcal{A}_{1}=0.2 \mathrm{~m} \times 0.1 \mathrm{~m}=0.02 \mathrm{~m}^{2}
$$

Pressure, $\mathcal{P}_{1}=\frac{W}{\mathrm{~A} 1}=\frac{400}{0.02}=2 \times 10^{4} \mathcal{P a}$

Base Area $2=10 \mathrm{~cm} \chi 15 \mathrm{~cm}$
Or $\quad \mathcal{A}_{2}=0.1 \mathrm{~m} \times 0.15 \mathrm{~m}=0.015 \mathrm{~m}^{2}$
Pressure, $\mathcal{P}_{2}=\frac{W}{\mathrm{~A}_{2}}=\frac{400}{0.015}=2.6 \times 10^{4} \mathrm{~Pa}$
$\therefore \frac{P_{1}}{P_{2}}=\frac{2 \times 10^{4}}{2.6 \times 10^{4}}=\frac{10}{13}$
$\therefore P_{1}: P_{2}=10: 13$
9. (a) Which will exert more pressure : a 100 kg mass on $10 \mathrm{~m}^{3}$? Give reason
[CBSE 2016,2011]
(6) When we stand on loose sand, our feet go deep into the sand, but when we lie down on the sand our body does not go that deep in the sand. Why? [CBSE 2016]
(a) Given: Weight of $100 \mathrm{~kg} \mathrm{mass}=100 \times 9.8=980 \mathcal{N}=\mathcal{W}_{1}$

Weight of 50 kg mass $=50 \times 9.8=490 \mathcal{N}=\mathcal{W}_{2}$

$$
\begin{aligned}
& \mathcal{A}_{1}=10 \mathrm{~m}^{2}, \mathcal{A}_{2}=4 \mathrm{~m}^{2}, \\
& \mathcal{P}_{1}=\frac{W_{1}}{A_{1}}=\frac{980}{10}=98 P_{a} \\
& \mathcal{P}_{2}=\frac{W_{2}}{A_{2}}=\frac{490}{4}=122.5 P_{a} \\
& \text { i.e., } \mathcal{P}_{2}>\mathcal{P}_{1} \text { so } 50 \mathrm{~kg} \mathrm{mass} \text { on } 4 \mathrm{~m}^{2} \text { exerts a greater pressure. }
\end{aligned}
$$

(6) When we lie down, the area of contact of our body with surface is more, so we exert less pressure on the sand as pressure $\propto \frac{1}{\text { Area. }}$. Hence we do not sink into the sand.
10. What is meant by buoyancy? Why does an object float or sink when placed on the surface of a liquid?
[CBSE 2012]
$\mathcal{B u o y a n c y}$ is defined as the upward force exerted by a fluid on an object immersed in it.

When the buoyancy of a liquid is greater than the weight of the object, it floats. \mathcal{H} owever, when the buoyancy of liquid is less than the weight of the object, it sinks.
11. A sealed empty plastic bottle is pushed in water in a bucket.
(a) Explain the following observations in doing so:
(i) It becomes more difficult to push it deeper and deeper.
(ii) The bottle comes back to surface on being released.
(6) What should be done to keep the bottle completely immersed in water?
(a) (i) An upthrust exerted by water Keeps on increasing as the empty bottle is pushed deeper till it is completely immersed.
(ii) An upthrust of water is more than the weight of the empty bottle. So it bounces back to surface when released.
(6) To keep the bottle completely immersed, an upward force acting on it due to water must be balanced by an externally applied downward force. Thus force must at least be equal to the difference between upward force and weight of the empty bottle.

12. (a) Name the forces acting on a body when it is fully or partially immersed in a〔iquid.
(6) Briefly explain. Why some objects float and some sink in the liquid. [CBBE2015]
(a) Upthrust or buoyant force
(6) The object whose weight is greater than an upthrust exerted by the liquid, sinks in it and the object whose weight is less than an upthrust, floats on it.
13. Describe a simple activity to prove that the objects of density less than that of the liquid float on it.

Activity:
(i) Take a beaker and fill it with water.
(ii) Put an iron nail and a cork in the beaker. It is observed that an iron nil sinks in water, whereas a corkfloats on it. This is because the density of the iron nail is more than that of water, whereas that of the cork is less than water.
14. The volume of $a \operatorname{bag}$ of mass 1250 g is $150 \mathrm{~cm}^{3}$. If this 6 ag is put on water will it float of sink? I ustify your answer. Lso, find the volume of water displaced by this bag.

Given: Mass of $6 a g=1250 \mathrm{~g}$
Volume of $6 a g=150 \mathrm{~cm}^{3}$
Density $=1250 \mathrm{~g} / 150 \mathrm{~cm}^{3}=8.33 \mathrm{~g} / \mathrm{cm}^{3}$

Density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}$

Since the density of 6 ag is greater than that of water, i.e. $8.33>1$ it will sink.
Volume of water displaced $=$ Volume of $6 a g=150 \mathrm{~cm}^{3}$
15. State any two daily life phenomena which are based on Arcfimedes'principle. Discuss the role of Archimedes'principle in industry and defence.
(i) Whenclothes are immersed in a bucket of water, the water levelrises up.
(ii) An empty mug floats on water. But when water is filled in the mug. It sinks.

Arcfimedes'principle is used in indstry for ship designing and making lactometers to test purity of milketc.,

In country's defence, it plays an important role as it is used in making submarines.
16. What is the condition for an object to sink in water? What is the physical meaning of relative density? float in air?
[CBSE 2015]

An object sinks in water if its density is greater than water.

Relative density is the ratio of density of a substance to density of water.

The fydrogen-filled Gallooms have lesser density than air, so they float in air due uptirustexerted by air.
17. A solid weighs 75 g in air and 55.6 g in water. Find the relative density of the solid. Also state if the object will float or sink when immersed in water
[CBSE 2014]

Relative density of solid

$$
=\frac{\text { Weight of solid in air }}{\text { Loss of weight of solid in water }}==\frac{75 \mathrm{gwt}}{(75-55.6) \mathrm{gwt}}=\frac{75}{19.4}=3.8
$$

Since relative density, $3.8>1$, the object would sink when immersed in water.

I. Long Answer Type Question

1. What is upthrust? What are the quantities that can vary upthrust? How does it account for the floating of a body? When a partially immersed body is pressed down a little, what will happen to the upthrust?

Uptfrust or \mathcal{B} uoyant force: When a body is partially or fully immersed in a fluid, it experiences an upward force due to fluid displaced by it. This is called uptfrust.
i.e. $\mathcal{U}=V$ Vhme immersed x Density of fluid x Acceleration due to Gravity

$$
=V_{p g}
$$

The volume of the fluid displaced is equal to the volume of the immersed portion of the body. Due to the presence of the upthrust, there is an apparent loss in the body's weight. When the upthrust is more that the weight of body, the body floats and when the upthrust is less than the weight of body, the body sinks,

Apparentweight $=$ Weight - Upthrust

$$
=V_{P_{b}} g-V_{i P_{l}} g
$$

Where P_{b} and P_{l} are the densities of the body and liquid respectively, and \mathcal{V} and \mathcal{V}_{i} are the volumes of the body and volume immersed. When a body is pressed, the more immersion will lead to move upthrust for a moment.
2. State Arcfimedes'principle. How will you verify it experimentally?

Archimedes'Principle: Archimedes'principle states that when an object is partially or fully immersed in a fluid, it experiences an upthrust or upward force that is equal to the weight of the fluid displaced by it.

Experimental verification:

Take an overflow can and fill it with water. Put a block of mass minto it. Collect the overflowing water in another small beaker and measure the volume of water collected and the volume of the block. You will be able to see that the two volumes come to be one and the same.
3. (a)State two factors on which the magnitude of buoyant force acting on a body immersed in a fluid depends.
(6) Will buoyant force exerted by a liquid increase if its volume is increased?
(c) $\mathcal{N a m e}$ the devices based on Archimedes'principle.

So the density of the liquid and volume immersed affect the buoyant force
6) Buoyant force exerted by a liquid does not depend on its volume
c) Hydrometer and lactometer are based on Arcfimedes'principle. Submarines are also designed according to Arcfime des principle.
4. (a) Define density, Give its mathematical form
6) Define relative density. Give its unit.
c) \mathcal{A} solid weighs $80 g$ in air, $68 g$ in water and $60 g$ in oil. Calculate the relative density of solid and oil.
a) Density is defined as the mass per unit volume of a body.

Density $=\frac{\text { mass }}{\text { volume }}$
6) Relative density is the ratio of the density of a body to density of water. It has no unit as it is a ratio.
c) Relative density of solid $=\frac{\text { Loss in Weight of solid in oil }}{\text { Loss in weight of solid in water }}$

$$
=\frac{80 g}{(80-68) g w t}=\frac{80 g}{12}=6.6
$$

Relative density of oil

$$
\begin{aligned}
&=\frac{\text { Loss in Weight of solid in oil }}{\text { Loss in weight of solid in water }} \\
&=\frac{80-60}{80-68}=\frac{20}{12}=1.6
\end{aligned}
$$

5. a) Radius of an iron sphere is 0.21 cm . If density of iron is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$, calculate its mass.
6) \mathcal{A} pressure of 1000 Pa , acts on a surface of area $15 \mathrm{~cm}^{2}$ by a block of mass ' m '. Calculate ' m ' Calculate the new pressure exerted by the same block if the area of contact with the surface becomes $10 \mathrm{~cm}^{2}$
a) Given: Radius, $r=0.21 \mathrm{~cm}$.

Density $=7.8 \mathrm{~g} / \mathrm{cm}^{3}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
=\frac{4}{3} \times \frac{22}{7} \times 0.21 \times 0.21 \times 0.21=0.04 \mathrm{~cm}^{3}
$$

Mass $=$ Density χ volume

$$
=7.8 \mathrm{~g} / \mathrm{cm}^{3} \times 0.04 \mathrm{~cm}^{3}=0.312 \mathrm{~g}
$$

6) Pressure, $\mathcal{P}=1000 \operatorname{Pa}$; $\operatorname{Area}, \mathcal{A}=15 \mathrm{~cm}^{2}$

$$
=15 \chi=10^{-4} \mathrm{~m}^{2}
$$

Thrust $=$ Pressure $\chi \mathcal{A r e a}$
Or Mass $=\frac{P A}{g}=\frac{1000 \times 15 \times 10^{-4}}{10}$

$$
=0.15 \mathrm{~kg}=150 \mathrm{~g} \quad\left[\mathcal{T} a k i n g \mathrm{~g}=10 \mathrm{~ms}^{-2}\right.
$$

$$
\text { If } \mathcal{A}=10 \mathrm{~cm}^{2}=10 \times 10^{-4} \mathrm{~m}^{2}
$$

Then Pressure $=\frac{\text { Thrust }}{\text { Area }}=\frac{0.15 \times 10}{10 \times 10^{-4}}$

$$
=1500 P a
$$

Thus if areareduces, pressure increases.
6. Differentiate between thrust and pressure (Give two points)

What do you understand by 1 pascal and 1 newton? How will the pressure change if area of contact is doubled?

Thrust	Pressure
i) The perpendicular force acting	i) Thrust per unit area of a
onsurface is thrust	surface is pressure
ii) The SI unit of thrust is	
newton	ii) The S I unit of pressure is
pascal of $\mathrm{N} / \mathrm{m}^{2}$	

1 Pascal: Pressure acting on a surface is one pascal, if a thrust of one newton acts on unit area.
$1 \mathcal{P a}=1 \mathcal{N} / 1 \mathrm{~m}^{2}=1 \mathrm{~N} / \mathrm{m}^{2}$

1 newton: Thrust exerted on a surface is one newton if it accelerates a body of unit mass by $\mathrm{m} / \mathrm{s}^{2}$ while acting perpendicular to it.

If area of contact is doubled, pressure becomes falf as pressure is inversely proportionalto area.

I. Multiple cfoice Question

1. An object weight $10 \mathcal{N}$ in air. When immersed fully in water. It weighs \& \mathcal{N}. The weight of the liquid displaced by the object will be.
a) $2 \mathcal{N}$
b) $8 \mathfrak{N}$
c) $10 \mathfrak{N}$
d) $12 \mathfrak{N}$
(a) Weight in water $=\mathcal{S} \mathcal{N}$
Weight in air $=10 \mathcal{N}$
Weight of liquid displaced $=$ Loss in weight

$$
=10 \mathcal{N}-8 \mathcal{N}=2 \mathcal{N}
$$

2. An object is put one by one in three liquids having different densities. The object floats with $1 / 9,2 / 11$ and $3 / 7$ parts of the ir volumes outside the liquid surface in liquids of densities d_{1}, d_{2} and d_{3} respectively. Which of the following statement is correct?
a) $d_{1}>d_{2}>d_{3}$
a) $d_{1}<d_{2}>d_{3}$
a) $d_{1}<d_{2}<d_{3}$
b) $d_{1}>d_{2}<d_{3}$

Sol: (d) Volume of solids above water surface $=1 / 9,2 / 11^{2}$ and $3 / 7$ respectively.
Volume of solids immersed $=1-(1 / 9), 1-(2 / 11)$, and $1-(3 / 7)$ respectively.

As $v_{1}>v_{2}>v_{3}$ the densities of liquids are in magnitude $d_{1}<d_{2}<d_{3}$. This is because lesser the volume of solid immersed, more is the upthrust action on it and hence, greater is the density of fluid.

I. Long Answer Type Question

3. (a) A cube of side 5 cm is immersed in water and then in saturated salt solution. In which case will it experience a greater buoyant force? If each side of the cube is reduced to 4 cm and then immersed in water, what will be the effect on the buoyant force experienced by the cube as compared to the first case? Give reason for each case.
6) \mathcal{A} ball weighing 4 kg of density $4000 \mathrm{kgm}^{-3}$ is completely immersed in water of density $\mathbf{1 0}^{\mathbf{3}} \mathrm{kg}^{\mathbf{- 3}}$. Find the force of buoyancy on it (Given $g=10 \mathrm{~ms}^{\mathbf{- 2}}$)
a) The cube experiences a greater buoyant force when immersed in salty water because salty water fas greater density than water.

When the side of cube is reduce, then the buoyant force acting on it due to water, will reduce. This is according to Archimedes'principle as when the volume of a body is less, an upthrust exerted by the fluid on it, is also less.
6) Given: Mass of $6 \mathrm{Gll}=4 \mathrm{~kg}$.

Density of ball $=4000 \mathrm{~kg} / \mathrm{m}^{-3}$
Dive rsity of water $\mathrm{kgm}^{-3}, g=10 \mathrm{~ms}^{-2}$
Volume of ball, $\mathrm{V}=\frac{\text { Mass }}{\text { Density }}=\frac{4}{4000}$
$=10^{-3} \mathrm{~m}^{-3}$

Uptfirust $\mathcal{U}=\mathrm{V} \rho g=10^{-3}$ 夭 10^{3} 夭 $10=10 \mathcal{N}$

