Name: \qquad

Grade : VI
Subject: Mathematics

Chapter: 7. Fractions

I. Multiple cfoice questions

1. The fraction which is not equal to $\frac{4}{5}$ is
a. $\frac{40}{50}$
2. $\frac{12}{15}$
c. $\frac{16}{20}$
d. $\frac{9}{15}$
3. If $\frac{5}{8}=\frac{20}{p}$, then value of p is
a. 23
4. 2
c. 32
d. 16
5. Which of the following is not in the lowest form?
a. $\frac{7}{5}$
b. $\frac{15}{20}$
c. $\frac{13}{33}$
d. $\frac{27}{28}$
6. Sum of $\frac{4}{17}$ and $\frac{15}{17}$ is
a. $2 \frac{1}{17}$
7. $1 \frac{2}{17}$
c. $3 \frac{1}{17}$
d. $3 \frac{2}{17}$
8. On subtracting $\frac{6}{13}$ from $\frac{11}{13}$, the result is
a. $\frac{5}{13}$
9. $\frac{2}{13}$
c. $\frac{3}{13}$
d. $\frac{8}{13}$
10. Which of the following fraction is smallest?
a. $\frac{16}{23}$
11. $\frac{17}{23}$
c. $\frac{9}{23}$
d. $\frac{11}{23}$
12. If $\frac{3}{4}$ is equivalent to $\frac{x}{24}$, then the value of x is
a. 15
13. 20
c. 16
d. 18
14. When $\frac{1}{4}$ is written with denominator as 12 , its numerator is
a. 3
15. 8
c. 24
d. 12
16. The two consecutive integers between which the fraction $\frac{5}{7}$ lies are
a. 5 and 6
6.0 and 1
c. 5 and 7
d. 6 and 7
17. $\frac{21}{19}$ can be expressed in form
a. $2 \frac{3}{19}$
18. $2 \frac{1}{19}$
c. $1 \frac{2}{19}$
d. $3 \frac{1}{19}$
19. When $\frac{1}{7}$ is written with denominator as 56 , its numerator is
a. 3
6.8
c. 24
d. 12
20. If $\frac{7}{9}=\frac{28}{p}$, then value of p is
a. 23
6.2
c. 36
d. 16

$1 . d$	$2 . c$	3.6	4.6	$5 . a$	$6 . c$
$7 . d$	$8 . a$	9.6	$10 . c$	11.6	$12 . c$

II. Multiple choice questions

1. Which of the following is not equal to the others?
a. $\frac{6}{8}$
2. $\frac{12}{16}$
c. $\frac{15}{25}$
d. $\frac{18}{24}$
3. Which of the following fractions is the greatest?
a. $\frac{5}{7}$
4. $\frac{5}{6}$
c. $\frac{5}{9}$
d. $\frac{5}{8}$
5. On subtracting $\frac{5}{9}$ from $\frac{19}{9}$, the result is:
a. $\frac{24}{9}$
6. $\frac{14}{9}$
c. $\frac{14}{18}$
d. $\frac{14}{0}$
7. What fraction of the given figure is shaded?

a. $\frac{1}{2}$
8. $\frac{1}{3}$
c. $\frac{1}{4}$
d. $\frac{2}{3}$
9. Which of the following is a proper fraction?
a. $\frac{5}{4}$
10. $\frac{1}{4}$
c. $\frac{11}{4}$
d. $\frac{12}{4}$
11. Which of the following is the equivalent fraction for $\frac{2}{3}$ with de nominator 18 ?
a. $\frac{9}{18}$
12. $\frac{10}{18}$
c. $\frac{11}{18}$
d. $\frac{12}{18}$
13. Which of the following is the equivalent fraction of $\frac{3}{5}$ with denominator 50 ?
a. $\frac{20}{30}$
14. $\frac{30}{50}$
c. $\frac{40}{50}$
d. $\frac{50}{50}$
15. Which of the following is the sum of $\frac{7}{12}$ \& $\frac{3}{12}$?
a. $\frac{4}{6}$
16. $\frac{21}{12}$
c. $\frac{4}{12}$
d. $\frac{5}{6}$
17. Which of the following is the difference between $\frac{7}{8}$ \& $\frac{3}{8}$?
a. $\frac{4}{5}$
b. $\frac{1}{2}$
c. $\frac{3}{2}$
d. $\frac{10}{5}$
18. $\frac{5}{8}+\frac{1}{8}=$?
a. $\frac{1}{4}$
b. $\frac{1}{2}$
c. $\frac{1}{16}$
d. none of these
19. $\frac{5}{8}+\frac{1}{8}=$?
a. $\frac{3}{8}$
20. $\frac{3}{4}$
c. 6
d. none of these
a. $1 / 4$
21. $\frac{1}{2}$
c. $\frac{1}{16}$
d. none of these
$12 \cdot \frac{5}{8}-\frac{1}{8}=$?
22. $4 \frac{3}{5}=$?
a. $\frac{17}{5}$
23. $\frac{23}{5}$
c. $\frac{17}{3}$
d. none of these
$14 \cdot \frac{34}{7}=$?
a. $3 \frac{4}{7}$
24. $7 \frac{3}{4}$
c. $4 \frac{6}{7}$
d. none of these
25. The smallest of the fraction $\frac{6}{11}, \frac{7}{11}, \frac{8}{11}, \frac{9}{11}$
a. $\frac{6}{11}$
$6 \cdot \frac{7}{11}$
c. $\frac{8}{11}$
d. $\frac{9}{11}$
26. The smalle st of the fractions $\frac{3}{4}, \frac{5}{6}, \frac{7}{12}, \frac{2}{3}$ is :
a. $\frac{2}{3}$
27. $\frac{3}{4}$
c. $\frac{5}{6}$
d. $\frac{7}{12}$
28. Which of the following is a proper fraction?
a. $\frac{3}{4}<\frac{3}{5}$
b. $\frac{3}{4}>\frac{3}{5}$
c. can't be compared
d. none of these
29. The smallest of the fractions $\frac{3}{5}, \frac{2}{3}, \frac{5}{6}, \frac{7}{10}$ is :
a. $\frac{2}{3}$
30. $\frac{7}{10}$
c. $\frac{3}{5}$
d. $\frac{5}{6}$
31. The largest of the fractions $\frac{4}{5}, \frac{4}{7}, \frac{4}{9}, \frac{4}{11}$ is:
a. $\frac{4}{11}$
32. $\frac{4}{5}$
c. $\frac{4}{7}$
d. $\frac{4}{9}$

$1 . c$	2.6	3.6	$4 . c$	5.6	$6 . d$	7.6
$8 . d$	9.6	10.6	11.6	12.6	$13 . c$	$14 . a$
$15 . d$	$16 . a$	17.6	$18 . c$	19.6		

1. The fraction representing the shaded portion is

a. $\frac{1}{4}$
2. $\frac{3}{4}$
c. $\frac{1}{2}$
d. $\frac{1}{8}$
3. The fraction representing the shaded portion is
a. $\frac{1}{4}$
4. $\frac{1}{2}$
c. $\frac{1}{3}$
d. $\frac{1}{8}$
5. The fraction representing the shaded portion is

a. $\frac{1}{4}$
6. $\frac{1}{2}$
c. $\frac{3}{4}$
d. none of these
7. The fraction representing the shaded portion is

a. $\frac{1}{4}$
8. $\frac{1}{2}$
c. $\frac{1}{6}$
d. none of these
9. The fraction representing the shaded portion is

a. $\frac{1}{2}$
b. $\frac{1}{4}$
c. $\frac{1}{3}$
d. $\frac{1}{8}$
10. What fraction of ₹ 1 is 50 paise?
a. $\frac{1}{2}$
11. $\frac{1}{4}$
c. $\frac{1}{8}$
d. $\frac{1}{10}$
12. What fraction of ₹ 1 is 25 paise?
a. $\frac{1}{2}$
13. $\frac{1}{4}$
c. $\frac{1}{8}$
d. $\frac{1}{10}$
14. What fraction of an four is 30 minutes?
a. $\frac{1}{4}$
15. $\frac{1}{2}$
c. $\frac{1}{3}$
d. $\frac{1}{5}$
16. What fraction of a day is 12 hours?
a. $\frac{1}{2}$
b. $\frac{1}{4}$
c. $\frac{1}{3}$
d. $\frac{1}{6}$
17. Which of the following is a proper fraction?
a. $\frac{1}{2}$
18. $\frac{5}{4}$
c. $\frac{3}{2}$
d. $\frac{9}{2}$
19. Which of the following is a proper fraction?
a. $\frac{0}{1}$
20. $\frac{5}{2}$
c. $\frac{7}{4}$
d. $\frac{11}{3}$
21. Which of the following is a proper fraction whose numerator is 1 and denominator is 3 ?
a. $\frac{1}{3}$
22. $\frac{1}{6}$
c. $\frac{1}{9}$
d. $\frac{1}{12}$
23. Which of the following is an improper fraction?
a. $\frac{2}{3}$
24. $\frac{3}{4}$
c. $\frac{4}{5}$
d. $\frac{5}{4}$
25. Which of the following is an improper fraction?
a. $\frac{1}{4}$
26. $\frac{3}{8}$
c. $\frac{11}{3}$
d. $\frac{2}{5}$
27. Express $\frac{5}{2}$ as a mixed fraction.
a. $1 \frac{1}{2}$
28. $2 \frac{1}{2}$
c. $3 \frac{1}{2}$
d. $4 \frac{1}{2}$
29. Express $\frac{9}{4}$ as a mixed fraction
a. $2 \frac{1}{4}$
30. $3 \frac{1}{4}$
c. $4 \frac{1}{4}$
d. $5 \frac{1}{4}$
31. Express the mixed fraction $1 \frac{1}{2}$ as an improper fraction.
a. $\frac{2}{3}$
32. $\frac{3}{2}$
c. $\frac{3}{4}$
d. none of these
33. Express the mixed fraction $2 \frac{3}{4}$ as an improper fraction
a. $\frac{11}{4}$
34. $\frac{4}{11}$
c. $\frac{9}{11}$
d. $\frac{7}{11}$
35. The simplest form of $\frac{12}{20}$ is
a. $\frac{1}{5}$
36. $\frac{2}{5}$
c. $\frac{3}{5}$
d. $\frac{4}{5}$
37. The simplest form of $\frac{45}{20}$ is
a. $\frac{9}{4}$
38. $\frac{4}{9}$
c. $\frac{9}{8}$
d. $\frac{2}{9}$
39. Which of the following fractions is not equivalent to $\frac{1}{3}$?
a. $\frac{5}{15}$
40. $\frac{6}{18}$
c. $\frac{4}{12}$
d. $\frac{7}{20}$
41. Which of the following fractions is equivalent to $\frac{3}{4}$?
a. $\frac{6}{11}$
42. $\frac{9}{10}$
c. $\frac{15}{20}$
d. $\frac{21}{25}$
43. The equivalent fraction of $\frac{2}{5}$ with nume rator 4 is
a. $\frac{4}{10}$
44. $\frac{4}{12}$
c. $\frac{4}{16}$
d. $\frac{4}{20}$
45. The equivalent fraction of of $\frac{20}{36}$ with denominator 9 is
a. $\frac{4}{9}$
46. $\frac{5}{9}$
c. $\frac{7}{9}$
d. $\frac{8}{9}$
47. Which of the following pairs of fractions are equivalent?
a. $\frac{1}{2}, \frac{2}{4}$
48. $\frac{1}{3}, \frac{3}{7}$
c. $\frac{2}{5}, \frac{4}{9}$
d. $\frac{4}{7}, \frac{8}{13}$
49. Which of the following pairs of fractions are not equivalent?
a. $\frac{1}{2}, \frac{2}{3}$
50. $\frac{4}{5}, \frac{12}{15}$
c. $\frac{6}{7}, \frac{12}{14}$
d. $\frac{4}{9}, \frac{36}{81}$
51. Which of the following pairs of fractions are like fractions?
a. $\frac{1}{5}, \frac{4}{5}$
52. $\frac{2}{3}, \frac{3}{4}$
c. $\frac{4}{5}, \frac{5}{6}$
d. $\frac{5}{6}, \frac{6}{7}$
53. Which of the following pairs of fractions are unlike fractions?
a. $\frac{2}{3}, \frac{3}{5}$
54. $\frac{1}{6}, \frac{6}{7}$
c. $\frac{2}{9}, \frac{5}{9}$
d. $\frac{4}{13}, \frac{12}{13}$

29 Apala typed 50 pages of a 6ook containing 100 pages. Meenutyped 25 pages of the same book. Who typed more fractions of pages of the book?
a. Apala
6. Meenu
c. Neither a and 6 d.cannot say.
30. $\frac{1}{3}+\frac{2}{3}=$
a. 1
6. 2
c. 3
d. none of these
31. $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=$
a. 1
6.2
c. 3
d. none of these
32. $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=$
a. 1
6. 2
c. 4
d. 8
33. $\frac{5}{4} \cdot \frac{1}{4}=$
a. 1
6. 4
c. 5
d. none of these
$34 \cdot \frac{8}{10} \cdot \frac{3}{10}=$
a. $\frac{1}{2}$
6. $\frac{1}{5}$
c. $\frac{1}{10}$
d. none of these
35.1- $\frac{1}{2}=$
a. $\frac{1}{2}$
6. 1
c. $-\frac{1}{2}$
d. $\frac{1}{4}$
$36 \cdot \frac{0}{1}=\frac{0}{1}=$
a. 0
6.1
c. -1
d. 2
$37 \cdot \frac{8}{15}-?=\frac{7}{15}$
a. $\frac{1}{15}$
6. $\frac{2}{15}$
c. $\frac{4}{15}$
d. $\frac{7}{15}$
38. ? $\frac{1}{4}=\frac{1}{4}$
a. $\frac{1}{4}$
6. $\frac{1}{2}$
c. $\frac{3}{4}$
d. $\frac{5}{4}$
39.? $+\frac{2}{7}=\frac{5}{7}$
a. $\frac{1}{7}$
6. $\frac{2}{7}$
c. $\frac{3}{7}$
d. $\frac{4}{7}$
$40 \cdot \frac{25}{5}-\frac{15}{5}=$
a. 1
6. 2
c. 5
d. 3
41. $\frac{1}{2}-\frac{1}{4}=$
a. $\frac{1}{4}$
6. $\frac{1}{2}$
c. $\frac{1}{8}$
d. $\frac{1}{3}$
$42 \cdot 1 \frac{1}{2}+2 \frac{1}{2}$
a. 1
6. 2
c. 3
d. 4
43. Apala bought $2 \frac{1}{2} \mathrm{~kg}$ of potatoes whereas Meenu bought $1 \frac{1}{2} \mathrm{~kg}$ of potatoes. Find the totalamount of potatoes purchased by Apala and Meenu both.
a. 1 kg
6.2 kg
c. 3 kg
d. 4 kg
44. A teacher finished $\frac{3}{4}$ of his course. Howmuch course is left?
a. $\frac{1}{2}$
b. $\frac{1}{4}$
c. $\frac{1}{6}$
d. $\frac{1}{3}$
45. Manishread $\frac{5}{6}$ part of a book. Preetiread $\frac{1}{6}$ part of that book. What more part was read by Manisf?
a. $\frac{2}{3}$
6. $\frac{1}{6}$
c. $\frac{5}{6}$
d. none of these

IV. Multiple choice questions

1. The fraction representing prime number between 1 and 20 is
a. $\frac{2}{5}$
2. $\frac{4}{9}$
c. $\frac{9}{20}$
d. $\frac{1}{2}$
3. Which of the following fraction is the smallest?
a. $\frac{5}{7}$
4. $\frac{5}{11}$
c. $\frac{5}{4}$
d. $\frac{5}{8}$
5. Which of the following fraction is the greatest?
a. $\frac{5}{7}$
6. $\frac{5}{6}$
c. $\frac{5}{9}$
d. $\frac{5}{8}$
7. Which of the following is not equal to the others?
a. $\frac{6}{8}$
8. $\frac{12}{16}$
c. $\frac{15}{25}$
d. $\frac{18}{24}$
9. Which of the following is a proper fractions?
a. $\frac{7}{8}$
10. $1 \frac{7}{8}$
c. $\frac{8}{7}$
d. none of these
11. A fraction equivalent to $\frac{4}{5}$ is
a. $\frac{4+2}{5+2}$
12. $\frac{4-2}{5-2}$
c. $\frac{4 X 2}{5 X 2}$
d. none of these
13. The correct fraction in the 6ox \square is $\square-\frac{5}{8}=\frac{1}{4}$
a. $\frac{6}{8}$
14. $\frac{7}{8}$
c. $\frac{1}{2}$
d. none of these
15. A circle is divided into certain number of equal parts. If 15 of the parts so formed represent the fraction $\frac{3}{5}$, the number of parts in which the circle fas been divided is
a. 45
6.75
c. 20
d. 25

$1 . a$	2.6	3.6	$4 . c$	$5 . a$	$6 . c$	7.6	$8 . d$

```
I. Fill in the blanks
```

1. A number representing a part of a \qquad is called a fraction.
2. A fraction with numerator greater than the denominator is called an \qquad fraction.
3. Fractions with the same denominator are called \qquad fractions.
$4.13 \frac{5}{18}$ is a \qquad fraction
4. $\frac{21}{13}$ is an \qquad fraction
5. $\frac{7}{9}$ and $\frac{5}{9}$ are \qquad proper fractions.
6. The fraction $\frac{25}{40}$ in simplest form is \qquad $-$
7. $2 \frac{5}{7}$ is equal to the improper fraction \qquad -.
8. $\frac{19}{7}$ is equal to the mixed fraction \qquad - .
9. $\frac{5}{17}+\frac{11}{17}$ is equal to \qquad - .
10. 1 whole $=$ \qquad tenths

1. whole	2. improper	3. like	4. mixed	5. improper	6. like
$7 . \frac{5}{8}$	8. $\frac{19}{7}$	$9.2 \frac{5}{7}$	$10 . \frac{16}{17}$	11.10	

II. Fill in the blanks

1. A fraction with denominator greater than the numerator is called a \qquad fraction.
2. $\frac{18}{5}$ is an \qquad fraction.
3. $\frac{7}{19}$ is a \qquad fraction.
4. $\frac{5}{8}$ and $\frac{3}{8}$ are \qquad proper fractions
5. $\frac{6}{11}$ and $\frac{6}{13}$ are \qquad proper fractions.
6. The fraction $\frac{6}{15}$ in simplest form is \qquad -.
7. The fraction $\frac{17}{34}$ in simplest form is \qquad - .
8. $\frac{18}{135}$ and $\frac{90}{675}$ are proper, unlike and \qquad fractions.
9. $8 \frac{2}{7}$ is equal to the improper fraction \qquad - .
10. $\frac{87}{7}$ is equal to the mixed fraction \qquad .
11. $9 \frac{2}{3}+$ \qquad $=19$
12. $7 \cdot 5 \frac{2}{3}=$ \qquad - .
$13 \cdot \frac{42}{54}=$ \qquad - .
$14.6 \frac{1}{6}--------=\frac{29}{30}$
13. $\frac{72}{90}$ reduced to simplest form is \qquad $-$

$$
0-2
$$

1. Proper	2. improper	3.proper	4. like	5. unlike
$6 . \frac{2}{5}$	$7 . \frac{1}{2}$	8.equivalent	$9 . \frac{58}{7}$	$10.12 \frac{3}{7}$
$11.9 \frac{1}{3}$	$12.1 \frac{1}{3}$	13.9	$14.5 \frac{1}{5}$	$15 \cdot \frac{4}{5}$

a) $i v$	b) i	c) v	d) $i i$	e. iii

i) A fraction with numerator 1 is	a) Proper fraction
ii) A fraction whose numerator is greater	6) Positive rational number
iii) A fraction whose denominator is	
greater than numerator	c) Unit fraction
iv) Fraction are also defined as	d) Like fraction
v) Fractions witf same denominator	e) Improper fraction

i) c	ii) e	iii) a	iv) b	v) d

I. True or False

1. Fraction $\frac{19}{39}$ is in its lowest form.
2. Fractions $\frac{7}{9}$ and $\frac{42}{54}$ are equivalent fractions.
3. Sum of two fractions is always a fraction.
4. The result obtained by subtracting a fraction from another fraction is necessarily a fraction.
5. If a whole of an object is divided into number of equal parts, theneach part represents a fraction.
6. The fraction represented by the shaded portion in the following figure is $\frac{3}{8}$

©choal
7. The fraction represented by the unshaded portion in the following figure is $\frac{5}{9}$

8.Sum of $\frac{5}{12}$ and $=\frac{7}{12}$ is $1 \frac{7}{12}$.
8. The value of $\frac{19}{23}-\frac{7}{23}$ is $\frac{12}{23}$.
9. The simplest form of $\frac{24}{50}$ is $\frac{12}{25}$.
10. All divided one fruit cake equally among six persons. The part of the cake he gave to each person is $\frac{1}{6}$

1. True	2. True	3. False	4. False	5. True	6. True
7. False	8. False	9. True	10. True	11. True	

II. \mathcal{T} rue or $\mathcal{F a l s e}$

1. Fraction with same numerator are called like fractions.
2. Fraction $\frac{18}{39}$ is in its lowest form.
3. Fractions $\frac{15}{39}$ and $\frac{45}{117}$ are equivalent fractions.
$4 \cdot \frac{25}{19}+\frac{6}{19}=\frac{31}{38}$
$5 \cdot \frac{8}{18}-\frac{8}{15}=\frac{8}{3}$
4. $\frac{7}{12}+\frac{11}{12}=\frac{3}{2}$
5. $3 \frac{1}{3}>\frac{33}{10}$
6. $8-1 \frac{5}{6}=7 \frac{1}{6}$.
7. $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ are like fractions.
8. $\frac{3}{5}$ lies between 3 and 5 .
9. Among $\frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \frac{4}{3}$ the largest fraction is $\frac{4}{3}$
10. A fraction represents a part of the whole.
11. We can find infinite equivalent fractions for a given fraction.
12. All rational number are fractions
13. In Improper fraction numerator is greater thandenominator
14. While reducing a fraction into its lowest terms, it is divided by their $\mathcal{L C M}$.

1. False	2. False	3. True	4. False	5. False	6. True	7. True	8. False
9. False	10. False	11. True	12. $\mathcal{T r u e}$	13. $\mathcal{T r u e}$	14. False	15. True	16. False

I. Very Sfort Answer Type Questions

1. What is a fraction?
\mathcal{A} fraction is a number representing a part of a whole. This whole may be a single object or a group of objects.
2. What are like fractions? Give examples.

Fractions with same denominator are called like fractions.e.g. $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$ are like fractions.
3. 30 seconds is what fraction of a minute?

We know that, $1 \mathrm{~min}=60 \mathrm{~s}$
i.e. $60 \mathrm{~s}=1 \mathrm{~min}$
$30 s=\frac{30}{60} \mathrm{~min}$
$=\frac{1}{2} \min$
So, 30 sec are $\frac{1}{2}$ of a minute.
4. What are unit fractions?

Fractions having numerator equal to 1 are called unit fractions.
5. What are equivalent fractions?

Fractions representing same part of the whole are called equivalent fractions.
6. What is the simplest form of a fraction?

In simplest form of a fraction, the numerator and denominator fiave 1 as the only common factor i.e. $\mathcal{H C F}$ (numerator and denominator) $=1$
7. 3 mm is what fraction of a metre?

We know that, $1 \mathrm{~m}=1000 \mathrm{~mm}$

$$
3 m m=\frac{3}{1000} m
$$

So, 3 mm is $\frac{3}{1000}$ of ametre.
8. Name the fraction wfich are always less than 1.

We know that, proper fractions are always less than 1.
9. Write $\frac{2}{3}$ of 60 kg .

We have, $\frac{2}{3}$ of $60 \mathrm{~kg}=\frac{2 \times 60}{30}=2 \times 20=40 \mathrm{~kg}$
10. What fraction of the week in 3 days

We know that, 1 week $=7$ days
$\therefore 3$ days $=\frac{3}{7}$ week
So, 3 days are $\frac{3}{7}$ of a week.
II. Very Sfort Answer Type Questions

1. Write the fraction represented by the unshaded portion of the adjoining figure:

2. How many parts of the following figure is shaded?

$\frac{1}{16}$
3. Express $6 \frac{2}{3}$ as an improper fraction
$\frac{20}{3}$
4. Write as $\frac{\mathbf{1 2 9}}{\mathbf{8}}$ a mixed fraction.
$16 \frac{1}{8}$
5. Write $\frac{3}{4}$ as a fraction with denominator 44.
$\frac{3}{4}=\frac{3 \times 11}{4 \times 11}=\frac{33}{44}$ (To make denominator 44 , we multiply $\mathcal{N} u m e r a t o r$ \& $\mathcal{D e n o m i n a t o r ~ 6 y ~ 1 1) ~}$
6. Write $\frac{\mathbf{5}}{\mathbf{6}}$ as a fraction with numerator 60.
$\frac{5}{6}=\frac{5 \times 12}{6 \times 12}=\frac{60}{72}$ (To make numerator 60, we multiply Numerator \& Denominator 6y 12)
7. Add the fractions $\frac{\mathbf{3}}{\mathbf{8}}$ and $\frac{2}{3}$.
$S u m=\frac{3}{8}+\frac{2}{3}$

$$
\begin{aligned}
& =\frac{3 X 3}{8 X 3}+\frac{2 X 8}{3 X 8}=\frac{9}{24}+\frac{16}{24} \\
& =\frac{9+16}{24}=\frac{25}{24}
\end{aligned}
$$

8. Subtract $\frac{\mathbf{1}}{\mathbf{6}}$ from $\frac{\mathbf{1}}{\mathbf{2}}$

$$
\begin{aligned}
\text { Difference }= & \frac{1}{2}-\frac{1}{6}=\frac{1 X 6}{2 X 6}-\frac{1 X 2}{6 X 2} \\
& =\frac{6}{12}-\frac{6}{12}=\frac{6-2}{12} \\
& \frac{4}{12}=\frac{1}{3}
\end{aligned}
$$

9. Ali divided one fruit cake equally among six persons. What part of the cake he gave to each person?
Given, totalno. Of fruit cake $=1$
$\mathcal{H e r e}, \mathcal{A l i}$ divide d fruit cake equally among six persons.
\therefore The part of cake given to one person $=\frac{1}{6}$
10. A cup is $\frac{1}{3}$ full of milk. What part of the cup is still to be filled by milk to make it full?
art of the cup is still to be filled by milk to make it full

$$
\begin{aligned}
& =1-\frac{1}{3} \\
& =\frac{1 X 3}{1 X 3}-\frac{1}{3} \\
& =\frac{3-1}{3}=\frac{2}{3}
\end{aligned}
$$

11. Grip size of a tennis racquet is $11 \frac{9}{\mathbf{8 0}} \mathrm{~cm}$. Express the size as an improper fraction.
Given, Grip size of a tennis racquet $=11 \frac{9}{80}$
I mproper fraction of $11 \frac{9}{80}=\frac{889}{80} \mathrm{~cm}$
III. Very Sfort Answer Type Questions
12. What fraction of a day is 8 fours?

$$
\frac{8}{24}, \text { as }(1 \text { day }=24 \text { fours) }
$$

2. What fraction of an four is 40 minutes?

$$
\frac{40}{60} \text {, as }(1 \text { frour }=60 \text { minutes })
$$

3. Identify the error, if any.

This is $\frac{1}{2}$

This is $\frac{1}{4}$

Thisis $\frac{3}{4}$

In each figure shaded portion do not represent the given fraction because of unequal parts.
4. Write the fraction represented by the shaded portion of the adjoining fig Shaded portion $=\frac{7}{8}$

Semeralian

5. Write the fraction represented by the unshaded portion of the adjoining fig

Unsfiaded portion $\frac{4}{15}$
6. When $\frac{1}{4}$ is written witf denominator as 12 , what will be its numerator?

3
7. Write an improper fraction with denominator 8 .
$\frac{11}{8}$
8. Write the fraction representing the shaded portion:
(i)

(ii)

$$
\frac{1}{2}
$$

-Write an improperfractionwitf denominator 8.
9. What fraction of the naturalnumbers from 2 to 12 are prime numbers?

$$
\frac{5}{11}
$$

10. What fraction of the natural numbers from 102 to 113 are prime numbers? $\frac{3}{12}$
11. What fractions of these circles have ' X 's in them?

I. Skort Answer Type Questions

1. Write the natural numbers from 205 to 219 . What fractions of them are odd numbers?
$\mathcal{N a t u r a l}$ numbers from 205 to 219 are $205,206,207,208,209,210,211,212,213$, $214,215,216,217,218,219$.

Totalnatural numbers $=15$

Odd numbers $=8$
\therefore Required fraction

$$
=\frac{\text { Odd numbers }}{\text { Natural numbers }}=\frac{8}{15}
$$

2. Express the following as mixed fractions.
a) $\frac{15}{4}$
b) $\frac{25}{6}$
a) We have, improper fraction $=\frac{15}{4}$
$\therefore \frac{15}{4}=3 \frac{3}{4}$
6) We have, improper fraction $\frac{25}{6}$
$\therefore \frac{25}{6}=4 \frac{1}{6}$
3. Express the following as improper fraction.
a) $5 \frac{1}{4}$
b) $7 \frac{2}{3}$
a) We fiave, $5 \frac{1}{4}=5+\frac{1}{4}=\frac{5 \times 4+1}{4} \frac{21}{4}$
b) $\mathcal{W e}$ fave, $7 \frac{2}{3}=7+\frac{2}{3}=\frac{7 \times 3+2}{3}=\frac{23}{3}$
4. Check whether the given fractions are equivalent.
a) $\frac{5}{7}, \frac{9}{12}$
a) We have, $\frac{5}{7}, \frac{9}{12},=\frac{5}{7}>\mathbf{9} \frac{9}{12}$
$\Rightarrow 5 \times 12=9 \times 7$
$60 \neq 63$
So, $\frac{5}{7}, \frac{9}{12}$ are not equivalent fractions.
5. Neelam's father needs $1 \frac{3}{4}$ m of cloth for the skirt of Neelam's new dress and $\frac{1}{2}$ m for the scarf. How much cloth must he buy in all?

Cloth required for skirt $=1 \frac{3}{4} \mathrm{~m}$
Cloth required for scarf $=\frac{1}{2} m$
\therefore Totalclotf $=1 \frac{3}{4}+\frac{1}{2} \quad m=\frac{7}{4}+\frac{1}{2}$

$$
\left[\frac{7+2}{4}=\frac{9}{4}\right] \quad[\because \text { LCM of } 2 \text { and } 4 \text { is } 4]
$$

$=2 \frac{1}{4} \mathrm{~m}$
So, he must buy $2 \frac{1}{4} \mathrm{~m}$ cloth.
6. Nasir travelled $3 \frac{1}{2} \mathrm{~km}$ by bus and then walked $1 \frac{1}{\mathbf{8}} \mathrm{~km}$ to reach a town. How much did he travel to reach the town?

Distance travelled by bus $=3 \frac{1}{2} \mathrm{~km}$
$\mathcal{N a s i r}$ walked to reach town $1 \frac{1}{8} \mathrm{~km}$
\therefore Total distance $=3 \frac{1}{2}+1 \frac{1}{8}=\frac{7}{2}+\frac{9}{8}$

$$
=\frac{28+9}{8}[\because L C M \text { of } 2 \text { and } s \text { is } 8]
$$

$$
=\frac{37}{8}=4 \frac{5}{8} \mathrm{~km}
$$

7. Simplify the following:
a) $6-\frac{3}{4}$
6) $\frac{7}{12}-\frac{4}{15}$
a) We have, $6-\frac{3}{4}=\frac{6}{1}-\frac{3}{4}$
$=\frac{28+9}{8}[\because \mathcal{L C M}$ of 1 and 4 is 4$]$
$=\frac{21}{4}=5 \frac{1}{4}$
7) We have, $\frac{7}{12}-\frac{4}{15}=\frac{35-16}{60}$
$[\because \mathcal{L C M}$ of 12 and 15 is 60$]$

$$
\frac{19}{60}
$$

8. Find the value of the following:
a) $\frac{6}{17}+\frac{3}{17}+\frac{11}{17}$
6) $\frac{1}{2}+\frac{3}{4}+1 \frac{1}{3}$

We have, $\frac{6}{17}+\frac{3}{17}+\frac{11}{17}=\frac{6+3+11}{17}=\frac{20}{17}=1 \frac{3}{17}$
b) We have, $\frac{1}{2}+\frac{3}{4}+1 \frac{1}{3}=\frac{1}{2}+\frac{3}{4}+\frac{4}{3}$

$$
\begin{aligned}
& =\frac{6+9+16}{12}[\because \mathcal{L C M} \text { of } 2,4 \text { and } 3 \text { is } 12] \\
& =\frac{31}{12}=2 \frac{7}{12}
\end{aligned}
$$

9. A cup is $\frac{1}{3}$ full of milk. What part of the cup is still to be filled by milk to make it full?

Given, cup is $\frac{1}{3}$ full of milk
\therefore Required milk $=1-\frac{1}{3}=\frac{3-1}{3}=\frac{2}{3}$ full of milk
10. Mary bought $3 \frac{\mathbf{1}}{2}$ m of lace. She used $1 \frac{3}{4}$ m of lace for her new dress. How much lace is left with fier?

Mary bought lace $=3 \frac{1}{2} \mathrm{~m}$
Lace used for new dress $=1 \frac{3}{4} m$
\therefore Lace left with her $=3 \frac{1}{2}-1 \frac{3}{4}=\frac{7}{2}-\frac{7}{4}$
$=\frac{14-7}{4} \frac{7}{4}=1 \frac{3}{4} \mathrm{~m}$
So, 1 $\frac{3}{4}$ mlace is left with fier
11. Grip size of a tennis racket is $12 \frac{\mathbf{3}}{\mathbf{2 0}} \mathrm{~cm}$.

The size of grip of tennis racket $=12 \frac{3}{20} \mathrm{~cm}$

$$
\begin{aligned}
& =12+\frac{3}{20}=\frac{12 \times 20+3}{20} \\
& =\frac{240+3}{20}=\frac{243}{20} \mathrm{~cm}
\end{aligned}
$$

12. Sunil purchased $12 \frac{1}{2}$ Lof juice on Monday and $14 \frac{3}{4} \mathcal{L}$ of juice on $\mathcal{T} u e s d a y$. How many litres of juice did he purchased together in two days? S unil purchased juice on Monday $=12 \frac{1}{2} \mathcal{L}$

Juice purchased on Tues day $14 \frac{3}{4} \mathcal{L}$
\therefore Totaljuice purchased $=12 \frac{1}{2}+14 \frac{3}{4}=\frac{25}{2}+\frac{59}{4}$

$$
=\frac{50+59}{4}=\frac{109}{4}=27 \frac{1}{4} \mathcal{L}
$$

So, fie purchased $27 \frac{1}{4}$ Lof juice in two days.
13. $\mathcal{N a z i m a ~ g a v e ~} 2 \frac{3}{4} \mathcal{L}$ out of the $5 \frac{1}{2} \mathcal{L}$ of juice she purchased to her friends.

How many litres of juice is left with her?
Quantity of juice \mathcal{N} azima fas $=5 \frac{1}{2} \mathcal{L}$
She gave $2 \frac{3}{4}$ Lout of this to fer friends
\mathcal{N} ow, juice left with her $=5 \frac{1}{2}-2 \frac{3}{4}$

$$
=\frac{11}{2}-\frac{11}{4}=\frac{22-11}{4}=\frac{11}{4}=2 \frac{3}{4} \mathcal{L}
$$

So, $2 \frac{3}{4} \mathcal{L}$ of juice is left with her.
14. What fraction of a kg is 650 gm ?

We know that, $1 \mathrm{~kg}=1000 \mathrm{~g}$
$\therefore 650 \mathrm{gm}=\frac{650}{1000} \mathrm{~kg}=\frac{65}{100}$

$$
\begin{aligned}
& =\frac{65+5}{100+5}[\because \mathcal{H C F} \text { of } 65 \text { and } 100 \text { is } 5] \\
& =\frac{13}{20}
\end{aligned}
$$

So, 650 g is $\frac{13}{20}$ of a kg .
15. Find an equivalent fraction of $\frac{2}{3}$ having denominator equal to 18 .
$\operatorname{Let} \frac{2}{3}=\frac{12}{18}$
\mathcal{N} ow, $\frac{2}{3}=\frac{2 X 6}{3 X 6}=\frac{12}{18}$
So, equivalent fraction is $\frac{12}{18}$
16. Write $\frac{\mathbf{1 5 6}}{\mathbf{6 0}}$ in its lowest form.

We fiave, $\frac{156}{60}$
\mathcal{N} ow, we find the $\mathcal{H C F}$ of 156 and 60
$\mathcal{H C F}$ of 156 and 60 is 12.
So, $\frac{156}{60}=\frac{156+12}{60+12}=\frac{13}{5}$
17. Compare $4 \frac{2}{3}$ and $5 \frac{3}{7}$

We fave, $4 \frac{2}{3}$ and $5 \frac{3}{7}$.
\mathcal{N} ow, $\quad 4 \frac{2}{3}=\frac{4 X 3+2}{3}=\frac{14}{3}$
and

$$
5 \frac{3}{7}=\frac{5 X 7+3}{7}=\frac{38}{7}
$$

\mathcal{N} ow, let us compare $\frac{14}{3}$ and $\frac{38}{7}$ by cross multiplication.
We have, $\frac{14}{3}$ >< $\frac{38}{7}$

$$
14 \times 7=98 \text { and } 38 \times 3=114
$$

$\because \quad 114>98$

$$
\therefore \quad \frac{38}{7}>\frac{14}{3}
$$

So, $\quad 5 \frac{3}{7}>4 \frac{2}{3}$
18. Find the fraction that represents the number of natural numbers to total numbers in the collection $0,1,2,3,4,5$. What fraction will it be for whole numbers?

Given collection is $0,1,2,3,4,5$
$\mathcal{N a t u r a l n}$ numbers $=1,2,3,4,5$
\therefore The fraction of naturalnumbers to the collection $=\frac{5}{6}$
$\mathcal{N o w}$, whole numbers $=0,1,2,3,4,5,6$
The fraction of whole numbers to the collection $=\frac{6}{6}$
i.e. $\frac{1}{1}$
II. Short Answer Type Questions

1. Arrange the fractions $\frac{\mathbf{6}}{\mathbf{7}}, \frac{\mathbf{7}}{\mathbf{8}}, \frac{\mathbf{4}}{\mathbf{5}}$ and $\frac{\mathbf{3}}{\mathbf{4}}$ in descending order.

Given fractions are $\frac{6}{7}, \frac{7}{8}, \frac{4}{5}$ and $\frac{3}{4}$
\mathcal{A}, we have to arrange the given fractions in descending order, so we take L. C. M. of denominator of all fractions.

2	$7,8,5,4$
2	$7,4,5,2$
2	$7,2,2,1$
5	$7,1,5,1$
7	$7,1,1,1$
	$1,1,1,1$

$$
\mathcal{L C M}=2 \times 2 \times 2 \times 5 \times 7
$$

$$
\begin{aligned}
& =2^{3} \times 5 \times 7 \\
& =280 \\
& \mathcal{N} \text { (ow, } \frac{6}{7}, \frac{7}{8}, \frac{4}{5}, \frac{3}{4} \\
& =\frac{6 X 40}{7 X 40}, \frac{7 X 35}{8 \times 35}, \frac{4 X 56}{5 \times 56}, \frac{3 \times 70}{4 \times 70} \\
& \quad=\frac{240}{280}, \frac{245}{280}, \frac{224}{280}, \frac{210}{280} \\
& \\
& =\frac{240}{280}>\frac{245}{280}>\frac{224}{280}>\frac{210}{280}
\end{aligned}
$$

(\because When denominator of fractions are same, the fraction faving smaller
numerator will be smaller)
\therefore Descending order is $\frac{7}{8}, \frac{6}{7}, \frac{4}{5}, \frac{3}{4}$.
2. Arrange the fractions $\frac{\mathbf{2}}{\mathbf{3}}, \frac{\mathbf{3}}{\mathbf{4}}, \frac{\mathbf{1}}{\mathbf{2}}$ and $\frac{\mathbf{5}}{\mathbf{6}}$ in ascending order

Given fractions are $\frac{\mathbf{2}}{\mathbf{3}}, \frac{\mathbf{3}}{4}, \frac{\mathbf{1}}{\mathbf{2}}$ and $\frac{\mathbf{5}}{\mathbf{6}}$
$\mathcal{A s}$ we have to arrange fractions in ascending order, so we take L.C.M. of numerator of all fractions.

$$
\begin{aligned}
& \left.\therefore \quad \begin{array}{rl}
\mathcal{L C M} & =2 \times 3 \times 5=30 \\
& \mathcal{N}\left(o w, \frac{2}{3}, \frac{3}{4}\right.
\end{array}\right) \frac{1}{2}, \frac{5}{6} \\
& \\
& =\frac{2 \times 15}{3 \times 15}, \frac{3 \times 10}{4 \times 10}, \frac{1 \times 30}{2 \times 30}, \frac{5 \times 6}{6 \times 6} \\
& \\
& =\frac{30}{45}, \frac{30}{40}, \frac{30}{60}, \frac{30}{36} \\
& \\
&
\end{aligned}
$$

(\because When numerators of fractions are same the fraction having smaller) denominator will be greater)

Thus, ascending order is $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
3. Add the fractions $\frac{\mathbf{3}}{\mathbf{8}}$ and $6 \frac{\mathbf{3}}{\mathbf{4}}$

Given fractions are $\frac{3}{8}$ and $6 \frac{3}{4}$
First covert mixed fraction in improper fraction.
i.e ., $6 \frac{3}{4}=\frac{27}{4}$
$\mathcal{N o w}, \quad$ sum $=\frac{3}{8}+\frac{27}{4}$

$$
\begin{aligned}
& =\frac{3}{8}+\frac{27 X 2}{4 X 2} \\
& =\frac{3}{8}+\frac{54}{8}=\frac{57}{8} \\
& =4 \frac{1}{8}
\end{aligned}
$$

4. Subtract $8 \frac{\mathbf{1}}{\mathbf{3}}$ from $\frac{\mathbf{1 0 0}}{\mathbf{9}}$.

Given fractions are $8 \frac{1}{3}$ and $\frac{100}{9}$
First, convert mixed fraction into improper fraction.
i.e, $\quad 8 \frac{1}{3}=\frac{25}{3}$
\mathcal{N} ow, difference $=\frac{100}{9}-\frac{25}{3}$

$$
\begin{aligned}
& =\frac{100}{9}-\frac{25}{3} \\
& =\frac{100}{9}-\frac{75}{9} \\
& =\frac{100-75}{9}=\frac{25}{9} \\
& =2 \frac{7}{9}
\end{aligned}
$$

5.Subtract $1 \frac{1}{4}$ from $6 \frac{1}{2}$

First, convert given mixed fractions in improper fraction.
i.e., $\quad 1 \frac{1}{4}=\frac{5}{4}$ and $6 \frac{1}{2}=\frac{13}{2}$
\mathcal{N} ow difference $=\frac{13}{2}-\frac{5}{4}$

$$
\begin{aligned}
& =\frac{13 \times 2}{2 \times 2}-\frac{5}{4} \\
& =\frac{26-5}{4}-\frac{5}{4} \\
& =\frac{26-5}{4}=\frac{21}{4} \\
& =5 \frac{1}{4}
\end{aligned}
$$

6. Add $1 \frac{\mathbf{1}}{\mathbf{4}}$ and $6 \frac{\mathbf{1}}{\mathbf{2}}$

First, convert the given mixed fractions in improper fraction.

$$
\text { i.e., } \begin{aligned}
1 \frac{1}{4} & =\frac{5}{4} \text { and } 6 \frac{1}{2}=\frac{13}{2} \\
\mathcal{N} \text { (ow, sum } & =\frac{5}{4}+\frac{13}{2} \\
& =\frac{5}{4}+\frac{26}{4} \\
& =\frac{5+26}{4}=\frac{31}{4} \\
& =7 \frac{3}{4}
\end{aligned}
$$

7. What fraction of a straight angle is a right angle? We know that,

$$
\text { Straight angle }=180^{\circ}
$$

and

$$
\text { right angle }=90^{\circ}
$$

Hence, fraction of a straight angle to a right angle

$$
\begin{aligned}
& =\frac{90^{\circ}}{180^{\circ}} \\
& =\frac{1}{2}
\end{aligned}
$$

8. What should be added to $9 \frac{2}{3}$ to get 19?

Let the number $=x$
According to problem,
$9 \frac{2}{3}+x=19$
or $\quad \frac{29}{3}+x=19$
or $\quad x=19-\frac{29}{13}$
or $\quad x=\frac{28}{3}$
or $\quad x=9 \frac{1}{3}$
Hence, required fraction $=9 \frac{1}{3}$

9. What sfrould be subtracted from $5 \frac{3}{2}$ to get 5 ?

Let the fraction $=x$
According to problem,
$=5 \frac{3}{2}-x=5$
$=5 \frac{3}{2}=5+x$
or

$$
\frac{13}{2}=5+x
$$

or
$x=\frac{13}{2}-\frac{5}{1}$
or $x=\frac{13-10}{2}$
or

$$
x=\frac{3}{2}
$$

Hence required fraction $=\frac{3}{2}$
10. Convert 2009 paise to rupee and express the result as a mixed fraction. We know that,

$$
1 \text { paise }=\frac{1}{100} \text { rupee }
$$

$\therefore 2009$ paise $=\frac{2009}{100}$ rupee $=₹ 20.09$
$\mathcal{N o w}, 1 0 0 \longdiv { 2 0 0 9 (2 0 }$
2000

9

When we divide 2009 by 100, we get
Quotient $=20$ and Remainder $=9$

$$
\frac{2009}{100}=20 \frac{9}{100}
$$

11. Convert 1537 cm to metre and express the result in an improper fraction. We know that

$$
\begin{array}{ll}
& 1 \mathrm{~cm}=\frac{1}{100} m \\
\therefore & 1537 \mathrm{~cm}=\frac{1537}{100} m=15: 37 \mathrm{~m}
\end{array}
$$

\mathcal{N} ow, $\quad 1 0 0 \longdiv { 1 5 3 7 (1 5 }$

500

Quotient $=15$ and Remainder $=37$

$$
\frac{1537}{100}=15 \frac{37}{100}
$$

12. Convert 2435 m to Km and express the result as mixed fraction.

We know that,

$$
\begin{aligned}
& 1 \mathrm{~m}=\frac{1}{1000} \mathrm{~km} \\
& \therefore 2435 \mathrm{~m}=\frac{2435}{1000} \mathrm{~km}=2.435 \mathrm{~km}
\end{aligned}
$$

Now, $1 0 0 0 \longdiv { 2 4 3 5 (2 }$
2000
435
When we divide 2435 by 1000 , we get

$$
\text { Quotient }=2 \text { and Remainder }=435
$$

$$
\therefore \quad \frac{2435}{1000}=2 \frac{435}{1000}
$$

13. Convert 5201 g to kg

We know that,

$$
\begin{aligned}
& 1 g=\frac{1}{1000} \mathrm{~kg} \\
& \therefore \quad \quad 5201 \mathrm{~g}=\frac{5201}{1000} \mathrm{~kg}=5.201 \mathrm{~kg} \\
& \mathcal{N o w}, \quad 1 0 0 0 \longdiv { 5 2 0 1 (5 }
\end{aligned}
$$

5000

201
When, we divide 5201 by 1000 , we get

$$
\text { Quotient }=5 \text { and Remainder }=201
$$

14. On an average $\frac{\mathbf{1}}{\mathbf{1 0}}$ of the food eaten is turned into organism's own body and is available for the next level of consumer in a food chain. What fraction of the food eaten is not available for the next level?

Let the complete eaten food be 1 .
Part of eatenfood which is available for next level
$=\frac{1}{10}$
\therefore Remaining part of eaten food $=\frac{1}{1}-\frac{1}{10}$
Here, L.C.M of 1 and $10=10$
$\therefore \frac{1}{1}=\frac{1 \times 10}{1 \times 10}=\frac{10}{10}$

$$
\mathcal{N} \text { ow, } \frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{10-1}{10}=\frac{9}{10}
$$

15. Energy content of different foods are as follows:

Food	Energy Content per kg
Wheat	3.2 Ioule
Rice	5.3 g oule
Potatoes (Cooked)	3.7 Ioule
Milk	3.0 goule

Which food provides the least energy and which provides the maximum? Express the leastenergy as a fraction of the maximum energy.

In the given table, we see that minimum value is 3.0 g and maximum value is 5.3 g.
$\mathcal{N o w}$, le ast energy provided by the food $=3.0 \mathrm{~g}$
Maximum energy provided by the food $=5.3 \mathrm{~g}$
\therefore Required fraction $=\frac{\text { Least energy }}{\text { Maximum energy }}$

$$
=\frac{3.0}{5.3}
$$

$$
=\frac{30}{53}
$$

16. Roma gave a wooden board of length $150 \frac{1}{4} \mathrm{~cm}$ to a carpenter for making a shelf. The carpenter sawed off apiece of $40 \frac{\mathbf{1}}{\mathbf{5}} \mathrm{~cm}$ from it. What is the length of the remaining piece?

Given, length of a wooden board $=150 \frac{1}{4} \mathrm{~cm}$

$$
=\frac{601}{4} \mathrm{~cm}
$$

Carpenter sawed off a piece of wooden board $=40 \frac{1}{5} \mathrm{~cm}=\frac{201}{5} \mathrm{~cm}$

Lengtf of the remaining piece $=\frac{601 X 5}{4 X 5}-\frac{201 X 4}{5 X 4}$

$$
\begin{aligned}
& =\frac{3005}{20}-\frac{804}{20} \\
& =\frac{3005-804}{20}=\frac{2201}{20} \mathrm{~cm}
\end{aligned}
$$

Hence, the length of remaining pieces is $\frac{2201}{29}$ cm
III. Sfort Answer Type Questions

1. Fill in the blanks.
i) \mathcal{A} number representing a part of a \qquad is called a fraction.
ii) The fraction $\frac{\mathbf{6}}{\mathbf{1 5}}$ in simplest form is \qquad - .
iii) $\frac{87}{7}$ is equal to the mixed fraction \qquad $-$.
iv) Fractions with the same denominator are called \qquad fractions.

i) Whole	ii) $\frac{2}{5}$	iii) $12 \frac{3}{7}$	iv) Like

2. Express $6 \frac{2}{3}$ as an improper fraction.

We fiave,
$6 \frac{2}{3}=\frac{6 \times 3+2}{3}$

$$
=\frac{18+2}{3}=\frac{20}{3}
$$

3. Write $\frac{\mathbf{1 2 9}}{\mathbf{8}}$ as a mixed fraction.

$$
\frac{129}{8}
$$

$8 \longdiv { 1 6 }$

48
1 i.e., 16 whole and $\frac{1}{8}$ more or $16 \frac{1}{8}$
4. Subtract $\frac{\mathbf{1}}{\mathbf{6}}$ from $\frac{\mathbf{1}}{\mathbf{2}}$.

We have,

$$
\begin{aligned}
& \frac{1}{2}-\frac{1}{6} \\
& \mathcal{L C M} \text { of } 2 \text { and } 6=6 \\
\therefore & \frac{1}{2}-\frac{1}{6}=\frac{3-1}{6}=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

5. Kristin received a CD player for her birthday. She bought 3 CDs and received 5 others as gifts. What fraction of her total CDs did she buy and what fraction did she receive as gifts?

Here, we have
CDs received as gifts $=5$
CDs she bougft $=3$
TotalCDs $=3+5=8$
$\mathcal{N o w , ~ f r a c t i o n ~ o f ~ h e r ~ t o t a l ~ C D s ~ s h e ~ b o u g h t ~}=\frac{\text { CDs she bought }}{\text { Total CDs }}=\frac{5}{8}$
6. Ramesh had 20 pencils, Sheelu had 50 pencils and gammal fad 80 pencils.

After 4 months. Ramesfused up 10 pencils, Sheelu used up 25 pencils and Iamaal used up 40 pencils. What fraction did each use up? Check if each fas used up an equal fraction of her/his pencils?

Pencils with Ramesf	$=20$
Pencils with Sheelu	$=50$
Pencils with gammal	$=80$
Pencils used by Ramesf	$=10$
Pencilused by sheelu	$=25$
Pencils used by gammal	$=40$

Fraction of pencils used by Rames $斤=\frac{\text { Pencils used }}{\text { Total Pencils }}=\frac{10}{20}=\frac{1}{2}$
Fraction of pencils used by Sheelu $=\frac{25}{50}=\frac{1}{2}$
Fraction of pencils used by gammal $=\frac{40}{80}=\frac{1}{2}$
Yes, each fas used up equal fraction of pencils.
9. Mr. Rajan got a job at the age of 24 years and he got retired from the job at the age of 60 years. What fraction of his age till retirement was he in the job?

Rajangot the job $=24$ years
Rajan retired from the job $=60$ years
Time till Rajan was in job $=(60-24)=36$ years
Fraction of his age in the job till retirement $=\frac{36}{60}=\frac{3}{5}$.
10. When Sunita weighed herself on Monday, she found that she had gained $1 \frac{\mathbf{1}}{\mathbf{4}} \mathrm{~kg}$. Earlier her weight was $46 \frac{\mathbf{3}}{\mathbf{8}} \mathrm{~kg}$. What was her weight on Monday? S unita's earlier weight $=46 \frac{3}{8} \mathrm{~kg}$.

$$
=\frac{46 X 8+3}{8}=\frac{368+3}{8}=\frac{371}{8}
$$

Sunita's gained weight $=1 \frac{1}{4} \mathrm{Kg}$

$$
=\frac{1 X 4+1}{4}=\frac{5}{4} \mathrm{Kg}
$$

Sunita's weigft on Monday $=\frac{371}{8}=\frac{5}{4}$

$$
=\frac{371+5 \times 2}{8}=\frac{381}{8}=4>\frac{5}{8} \mathrm{~kg}
$$

I. Long Answer Type Questions

1. It was estimated that because of people switcfing to Metro trains, about 33000 tonne of $C N(G, 3300$ tonne of diesel and 21000 tonne of petrol was saved by the end of year 2007. Find the fraction of

Given, quantity of $C \mathcal{N G}$ saved $=33000$ tonne
Quantity of dieselsaved $=3300$ tonne
Quantity of petrolsaved $=21000$ tonne
i) the quantity of dieselsaved to the quantity of petrol saved.

The fraction of the quantity of dieselsaved to the quantity of petrolsaved

$$
\begin{aligned}
& =\frac{3300}{21000} \\
& =\frac{33}{210}=\frac{33+3}{210+3} \quad[\because \mathcal{H C F} \text { of } 33 \text { and } 210 \text { is } 3] \\
& =\frac{11}{70}
\end{aligned}
$$

ii) the quantity of diesel saved to the quantity of $\mathcal{C N G}$ saved.

The fraction of the quantity of diesel to the quantity of
CNEG saved $=\frac{33000}{33000}=\frac{33}{330}=\frac{33+33}{330+33}=\frac{1}{10}$
2. On an average, $\frac{\mathbf{1}}{\mathbf{1 0}}$ of the food eaten is turned into organism's own body and is available for the next level of consumer in a food chain. What fraction of the food eaten is not available for the next level?

Quantity of food eaten which turned into organism's own body $=\frac{1}{10}$ of the totalfood

Now, the quantity of food eaten which is not available for the next level $=1-\frac{1}{10}$

$$
=\frac{10-1}{10}=\frac{9}{10}
$$

Hence, the required fraction $=\frac{9}{10}$
3. From school X out of 750 students, 250 were selected for an essay writing and from another school 9 out of 1200 students, 300 were selected. From which school, more students were selected?

Total students in school $=750$
Selected students $=250$
\therefore Fraction of selected students to the total students

$$
=\frac{250}{750}=\frac{1}{3}
$$

Now, totalstudents in school $\mathcal{Y}=1200$
Selected students $=300$
$\therefore \mathcal{F r a c t i o n}$ of selected students to the total students

$$
\frac{300}{1200}=\frac{1}{4}
$$

From Eqs. (i) and (ii).

$$
\frac{1}{3}>\frac{1}{4} \quad[\because 4>3]
$$

Hence, from the school X, more students were selected.
4. A rectangle is divided into certain number of equal parts. If 16 of the parts so formed represent the fraction $\frac{\mathbf{1}}{\mathbf{4}}$, find the number of parts in which the rectangle fas been divided.

Let a rectangle be divide into X equal parts.
$\mathcal{N o w} 16$ of the parts represent $=\frac{1}{4}$
$\therefore \frac{16}{X}=\frac{1}{4} \Rightarrow X=16 X 4 \Rightarrow X=64$ parts
Hence, rectangle is divided into 64 equal parts
5. Riya saves $\frac{\mathbf{1}}{\mathbf{3}}$ of her salary. She spends $\frac{\mathbf{1}}{2}$ of the remaining and gives the left amount to charity.
a) Find the fraction she gives for charity?

Riya's saving $=\frac{1}{3}$ of her salary
Remaining salary $=1-\frac{1}{3}=\frac{2}{3}$
She spends $=\frac{1}{2}$ of $\frac{2}{3}=\frac{1}{2} X \frac{2}{3}=\frac{2}{6}=\frac{1}{3}$
She gives for charity $=\frac{2}{3}-\frac{1}{3}=\frac{2-1}{3}=\frac{1}{3}$
The fraction she gives for charity $=\frac{1}{3}$
6) Mention the values you depict from this

The values depict from this are:
$\mathcal{H e l p f u l l n e s s , ~ c a r i n g ~ f o r ~ p o o r ~ p e o p l e ~ a n d ~ c o o p e r a t i o n . ~}$
6. A square is divided into certain number of equal parts. If 15 of the parts, so formed represent the fraction $\frac{\mathbf{1}}{\mathbf{5}}$, find the number of parts in which the rectangle fias been divided.

We know that, a part represents $6 y$ fraction as $1 / 5$.
$\therefore \mathcal{F r a c t i o n}$ of their parts $=\frac{\text { Number of parts }}{\text { Total number of parts }}$

$$
\frac{1}{5}=\frac{15}{\text { Total number of parts }}
$$

\Rightarrow Totalnumber of parts $=5 \times 15=75[$ bycross-product]

Hence, the total number of parts are 75.
7. Mr. Rajangot ajob at the age of 24 yr and he got retired from the job at the age of 60 yr . What fraction of his age till retirement was he in the job?

Given, Rajan's age on the joining $=24 \mathrm{yr}$
And retirement age $=60 \mathrm{yr}$
The number of years, fie did the job

$$
\begin{aligned}
& =\text { Retirment age }- \text { goining age } \\
& \quad=60-24=36 \mathrm{~g}_{r}
\end{aligned}
$$

\therefore The fraction of his age till retirement, when he was in the job

$$
=\frac{\text { Total years he did the job }}{\text { Retirment age }}=\frac{36}{60}
$$

$$
[\because \mathcal{H C F} \text { of } 36 \text { and } 60=12]
$$

$$
=\frac{36+12}{60+12}=\frac{3}{5}
$$

Hence, the required fraction is $\frac{3}{5}$.
8. Poorvi cut a cake into 8 equal pieces. If she wanted to divide each of them into 3 equal pieces, what fraction of the whole cake would each small pieces be?
\mathcal{N} umber of pieces the cake cut $=\boldsymbol{8}$
$\mathcal{N u m b e r}$ of pieces eacficut piece divided into $=3$
\therefore Total number of pieces $=8 \times 3=24$
Hence, each piece is represented by the fraction $\frac{1}{24}$
9. Energy content of different foods are as follows:

Food	Energy content per kg (in goules)
Wheat	3.2 g
Rice	5.3 g
Potatoes (Cooked)	3.7 g
Milk	3.0 g

Which food provides the le ast energy and which provides the maximum?
Also, express the least energy as a fraction of the maximum energy.
In the given table, we see that the minimum value is 3.0 g and maximum value is

5.3 g

\therefore Lest energy provide by food $=3.0$ I i.e. Milk
Food which provide the maximum energy $=5.3 \mathrm{~g}$ i.e. Rice
\therefore Required fraction $=\frac{\text { Least energy }}{\text { Maximum energy }}=\frac{3.0}{5.3}=\frac{30}{53}$
10. Roma gave a wooden board of lengtf $150 \frac{\mathbf{1}}{\mathbf{4}}$ cm to a carpenter for making a shelf. The carpenter sawed off a piece of $40 \frac{\mathbf{1}}{\mathbf{5}} \mathrm{~cm}$ from it. What is the length of the remaining piece?
Given, length of a wooden board

$$
=150 \frac{1}{4} c m=\frac{601}{4} \mathrm{~cm}
$$

Carpenter sawed off a piece of wooden board $=40 \frac{1}{5} \mathrm{~cm}=\frac{201}{5} \mathrm{~cm}$
\therefore Length of the remaining piece $=\frac{601}{4}-\frac{201}{5}$
$\because \mathcal{L C M}$ of 4 and $5=20$
$\therefore \frac{601}{4}-\frac{201}{5}=\frac{601 X 5}{4 \times 5}-\frac{201 \times 4}{5 \times 4}$

$$
=\frac{3005-804}{20}
$$

$$
=\frac{3005-804}{20}
$$

$$
=\frac{2201}{20} \mathrm{~cm}
$$

Hence, the length of remaining piece is $\frac{2201}{20}$ cm or $110 \frac{1}{20} \mathrm{~cm}$
11. The fisf caught by Neetu was of weigft $3 \frac{3}{4} \mathrm{~kg}$ and fisf caught by Narendra was of weight $2 \frac{1}{2} \mathrm{~kg}$. How much more was $\mathcal{N e}$. $\mathcal{N a r e n d r a}$?

Given, weight of fisf caught by $\mathfrak{N e}$ elu

$$
=3 \frac{3}{4} \mathrm{~kg}=\frac{15}{4} \mathrm{~kg}
$$

And weight of the fisf caught by \mathcal{N} arendra=2 $\frac{1}{2} \mathrm{~kg}=\frac{5}{2} \mathrm{~kg}$
\therefore Difference betweentheir weights

$$
\begin{aligned}
& =\frac{15}{4}-\frac{5}{2}=\frac{15}{4} \cdot \frac{5 \times 2}{4}[\mathcal{L C M} \text { of } 2 \text { and } 4=4] \\
& =\frac{15}{4}-\frac{10}{4}=\frac{15-10}{4}=\frac{5}{4} \mathrm{Kg}
\end{aligned}
$$

$\mathcal{H e n c e}, \mathcal{N e} e t u$'s fish weight is $\frac{5}{4} \mathrm{~kg}$ more than the \mathcal{N} arendra's fish weight.
II. Long Answer Type Questions

1. Write the fraction representing the total of natural numbers in the collection of numbers - 3, - 2, - 1, 0, 1,2,3. What fraction will it be for whole numbers?

What fraction will it be for integers?
Given, the collection of numbers are $-3,-2,-1,0,1,2,3$.
Totalinteger numbers $=7$
Total natural number $=3$
Total whole numbers $=4$
i) Required fraction $=\frac{\text { Total natural numbers }}{\text { Total numbers }}$

$$
=\frac{4}{7}
$$

ii) Required fraction $=\frac{\text { Total } \text { whole numbers }}{\text { Total numbers }}$

$$
=\frac{4}{7}
$$

iii) Require d frac tion $=\frac{\text { Total integer numbers }}{\text { Total numbers }}$

$$
=\frac{7}{7}=1
$$

2. (i) Subtract the sum of $3 \frac{\mathbf{5}}{\mathbf{9}}$ and $3 \frac{\mathbf{1}}{\mathbf{3}}$ from the sum of $5 \frac{\mathbf{5}}{\mathbf{6}}$ and $4 \frac{\mathbf{1}}{\mathbf{9}}$.

The sum of $3 \frac{5}{9}$ and $3 \frac{1}{3}=3 \frac{5}{9}+3 \frac{1}{3}=\frac{32}{9}+\frac{10}{3}$

$$
=\frac{32+30}{9}=\frac{62}{9}
$$

and the sum of $5 \frac{5}{6}$ and $4 \frac{1}{9}=\frac{35}{6}+\frac{37}{9}$

$$
=\frac{105+74}{18}=\frac{179}{18}
$$

According to condition,

$$
\begin{aligned}
\frac{179}{18} & -\frac{62}{9}=\frac{179-124}{18} \\
& =\frac{55}{18}=3 \frac{1}{18}
\end{aligned}
$$

(ii) What is difference between like fractions and unlike fractions Like fractions have same denominators and unlike fractions have different denominators.

```
III. Long Answer Type Questions
```

1. Write the fraction representing the shaded portion.

(i)

(ii)

(iii)

(v)

(vi)

(vii)

(iv)

(viii)
i) $\frac{2}{4}$
ii) $\frac{8}{9}$
iii) $\frac{17}{7}$
iv) $\frac{1}{4}$
v) $\frac{3}{7}$
vi) $\frac{3}{12}$
vii) $\frac{10}{10}$
viii) $\frac{4}{9}$
2. Express the following as mixed fractions:

$$
\text { i) } \frac{20}{3}
$$

6
$3 \longdiv { 2 0 }$

18
2 Quotient $=6$ and remainder $=2$
$\therefore \frac{20}{3}=6+\frac{2}{3}=6 \frac{2}{3}$
ii) $\frac{11}{5}$

$$
\underline{10}
$$

$$
\underline{1} \quad \text { Quotient }=2 \text { and remainder }=1
$$

$$
\therefore \frac{11}{5}=2+\frac{1}{5}=2 \frac{1}{5}
$$

iii) $\frac{17}{7}$
7) $\frac{2}{17}$

14
3 Quotient $=2$ and remainder $=3$
$\therefore \frac{17}{7}=2+\frac{3}{7}=2 \frac{3}{7}$
iv) $\frac{28}{5}$
$\frac{5}{5 \longdiv { 2 8 }}$
$\underline{25}$
\qquad Quotient $=5$ and remainder $=3$

$$
\therefore \frac{28}{5}=5 \frac{3}{5}=5 \frac{3}{5}
$$

v) $\frac{19}{6}$

$$
\underline{1}
$$ Quotient $=3$ and remainder $=1$

$$
\therefore \frac{19}{6}=3+\frac{1}{6}=3 \frac{1}{6}
$$

3. Express the following as improper fractions:
i) $7 \frac{3}{4}$

$$
7 \frac{3}{4}=\frac{(7 X 4)+3}{4}=\frac{28+3}{4}=\frac{31}{4}
$$

iii) $2 \frac{5}{6}$

$$
2 \frac{5}{6}=\frac{(2 X 6)+5}{6}=\frac{12+5}{6}=\frac{17}{6}
$$

iv) $10 \frac{3}{5}$

$$
10 \frac{3}{5}=\frac{(10 \times 5)+3}{5}=\frac{50+3}{5}=\frac{53}{5}
$$

v) $9 \frac{3}{7}$

$$
9 \frac{3}{7}=\frac{(9 X 7)+3}{7}=\frac{63+3}{7}=\frac{66}{7}
$$

4. Find the equivalent fraction of $\frac{3}{5}$ faving
i) denominator 20

Hence, denominator $=20$
Clearly, $20=(5 \times 4)$
So, we multiply numerator with 4.
$\therefore \frac{3}{5}=\frac{3 X 4}{5 X 4}=\frac{12}{20}$
ii) denominator 30

Here, numerator $=9$
Clearly, $9=\left(\begin{array}{ll}3 & x\end{array}\right)$
So, we multiply the denominator also by 3.

$$
\therefore \frac{3}{5}=\frac{3 \times 3}{5 \times 3}=\frac{9}{15}
$$

iii) numerator 9

Here, denominator $=30$
Clearly, $30=\left(\begin{array}{ll}5 & x\end{array}\right)$
So, we multiply the numerator also by 6

$$
\therefore \frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}
$$

iv) numerator 27

$$
\text { Here, numerator }=27
$$

Clearly, $27=\left(\begin{array}{ll}3 & x 9\end{array}\right)$

So, we multiply the denominator also by 9.

$$
\therefore \frac{3}{5}=\frac{3 \times 9}{5 \times 9}=\frac{27}{45}
$$

5. Reduce the following fractions to simplest form:
i) $\frac{48}{60}$

Factors of 48 are $1,2,3,4,6,8,12,16,24,48$
Factors of 60 are $1,2,3,4,5,6,10,12,15,20,30,60$
Common factors of 48 and 60 are $1,2,3,4,6,12$
$\mathcal{H C F}$ of 48 and $60=12$

$$
\therefore \frac{48}{60}=\frac{48 \div 12}{60 \div 12}=\frac{4}{5}
$$

ii) $\frac{150}{60}$

Factors of 150 are $1,2,3,5,6,10,15,25,30,50,75,150$
Factors of 60 are $1,2,3,4,5,6,10,12,15,20,30,60$
$\mathcal{H C F}$ of 150 and $60=30$
$\therefore \frac{150}{60}=\frac{150 \div 30}{60 \div 30}=\frac{5}{2}$
iii) $\frac{84}{98}$

Factors of 84 are $1,2,3,4,6,7,12,14,21,28,42,84$
Factors of 98 are 1, 2, 7, 14, 49, 98
$\mathcal{H C F}$ of 84 and $98=14$
$\therefore \frac{84}{98}=\frac{84 \div 14}{98 \div 14}=\frac{6}{7}$
iv) $\frac{12}{52}$

Factors of 12 are $1,2,3,4,6,12$
Factors of 52 are 1, 2, 4, 13, 26,52
$\mathcal{H C F}$ of 12 and $52=4$
$\therefore \frac{12}{52}=\frac{12 \div 4}{52 \div 4}=\frac{3}{13}$
v) $\frac{7}{28}$

Factors of 7 are 1, 7
Factors of 28 are $1,2,4,7,14,28$
$\mathcal{H C F}$ of 7 and $28=7$

$$
\therefore \frac{7}{28}=\frac{7 \div 7}{28 \div 7}=\frac{1}{4}
$$

6. Find answers to the following. Write and indicate fow you solve them.
i) Is $\frac{\mathbf{5}}{9}$ equal to $\frac{\mathbf{4}}{\mathbf{5}}$?
$\mathcal{N}\left(0, \frac{5}{9} \neq \frac{4}{5}\right.$
\mathfrak{A}, the fractions are unlike, their numerators are different too. So, we write the ir equivalent fractions.

$$
\frac{5}{9}=\frac{25}{45} \text { and } \frac{4}{5}=\frac{36}{45}
$$

Since $\frac{36}{45}>\frac{25}{45}$. So $\frac{36}{45} \neq \frac{25}{45}$
Therefore, $\frac{4}{5} \neq \frac{5}{9}$.
ii) Is $\frac{\mathbf{9}}{\mathbf{1 6}}$ equal to $\frac{\mathbf{5}}{\mathbf{9}}$?
$\mathcal{N}\left(o, \frac{9}{16} \neq \frac{5}{9}\right.$
As, the fractions are unlike so we write their equivalent fractions.
i.e, $\frac{9}{16}=\frac{81}{144}$ and $\frac{5}{9}=\frac{80}{144}$
$\mathcal{H e r e}, \frac{81}{144}>\frac{80}{144}$, So $\frac{81}{144} \neq \frac{80}{144}$
Therefore, $\frac{9}{16} \neq \frac{5}{6}$.
iii) Is $\frac{4}{5}$ equal to $\frac{16}{20}$?

Yes, $\frac{4}{5}=\frac{16}{20}$
$\mathcal{H e r e}$, we write their equivalent fractions
i.e. $\frac{4}{5}=\frac{8}{10}, \frac{12}{15}, \frac{16}{20} \ldots$

Therefore, $\frac{4}{5}=\frac{16}{20}$.
iv) Is $\frac{1}{15}$ equal to $\frac{4}{30}$?
$\mathcal{N}\left(0, \frac{1}{15} \neq \frac{4}{30}\right.$
$\mathcal{A} s$, the fractions are unlike so we write their equivalent fractions.
7. Solve:
i) $\frac{1}{18}+\frac{1}{18}$

$$
\frac{1}{18}+\frac{1}{18}=\frac{2}{18}=\frac{1}{9}
$$

ii) $\frac{8}{15}+\frac{3}{15}$

$$
\frac{8}{15}+\frac{3}{15}=\frac{8+3}{15}=\frac{11}{15}
$$

iii) $\frac{7}{7}-\frac{5}{7}$

$$
\frac{7}{7}-\frac{5}{7}=\frac{7-5}{7}=\frac{2}{7}
$$

iv) $\frac{1}{22}=\frac{21}{22}$

$$
\frac{1}{22}+\frac{21}{22}=\frac{1+21}{22}=\frac{22}{22}=1
$$

v) $\frac{12}{15}-\frac{7}{15}$

$$
\frac{12}{15}-\frac{7}{15}=\frac{12-7}{15}=\frac{5}{15}=\frac{1}{3}
$$

vi) $\frac{5}{8}+\frac{3}{8}$

$$
\frac{5}{8}+\frac{3}{8}=\frac{5+3}{8}=\frac{8}{8}=1
$$

$$
\begin{aligned}
& 1-\frac{2}{3}=\frac{3}{3}-\frac{2}{3} \\
& =\frac{3-2}{3}=\frac{1}{3}
\end{aligned}
$$

viii) $\frac{1}{4}+\frac{0}{4}$

$$
\frac{1}{4}+\frac{0}{4}=\frac{1+0}{4}=\frac{1}{4}
$$

ix) $3-\frac{12}{5}$

$$
3-\frac{12}{5}=\frac{3}{1}-\frac{12}{5}
$$

Taking LCM of 1 and 5, we frave

$$
\frac{3 \times 5-12}{5}=\frac{15-12}{5}=\frac{3}{5}
$$

8. Solve:
i) $\frac{2}{3}+\frac{1}{7}$

Taking LCM of 3 and 7, we have

$$
\frac{2}{3}+\frac{1}{7}=\frac{2 X 7+1 X 3}{3 X 7}=\frac{14+3}{21}=\frac{17}{21}
$$

ii) $\frac{3}{10}+\frac{7}{15}$

Taking LCM of 10 and 15, we have

$$
\frac{3}{10}+\frac{7}{15}=\frac{3 \times 3+7 \times 2}{30}=\frac{9+14}{30}=\frac{23}{30} \quad[\text { S ince } \angle C \mathcal{M}=30]
$$

iii) $\frac{2}{3}+\frac{3}{4}+\frac{1}{2}$

$$
\left.\frac{2}{3}+\frac{3}{4}+\frac{1}{2}=\frac{2 \times 4}{3 \times 4}+\frac{3 \times 3}{4 \times 3}+\frac{1 X 6}{2 \times 6} \quad \text { [S ince } \quad \mathcal{L C M}=12\right]
$$

$$
=\frac{8}{12}+\frac{9}{12}+\frac{6}{12}=\frac{8+9+6}{12}=\frac{23}{12}
$$

iv) $1 \frac{1}{3}+3 \frac{2}{3}$

We can write this as,
$1+\frac{1}{3}+3+\frac{2}{3}=4+\frac{1}{3}+\frac{2}{3}$
\mathcal{N} ow taking $\frac{1}{3}+\frac{2}{3}=\frac{1+2}{3}=\frac{3}{3}=1$
Thus, $4+\frac{1}{3}+\frac{2}{3}=4+1=5$
v) $\frac{16}{5}-\frac{7}{5}$

$$
\frac{16}{5}-\frac{7}{5}=\frac{16-7}{5}=\frac{9}{5}
$$

I. HOTS (Higher Order Thinking Skills

1. Katrina rode her bicycle $6 \frac{\mathbf{1}}{2} \mathrm{~km}$ in the morning and $8 \frac{3}{4} \mathrm{~km}$ in the evening. Find the distance travelled by fier altogether on that day.

Katrina rode fer bicycle in the morning

$$
\begin{gathered}
=6 \frac{1}{2} \\
=\frac{13}{2}
\end{gathered}
$$

Katrina rode fer bicycle in the evening

$$
\begin{aligned}
& =8 \frac{3}{4} \\
& =\frac{35}{4}
\end{aligned}
$$

Hence, distance travelled by fer although on that day

$$
\begin{aligned}
& =\frac{13}{2}+\frac{35}{4} \\
& =\frac{13 \times 2}{2 \times 2}+\frac{35}{4} \\
& =\frac{26}{4}+\frac{35}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{26+35}{4}=\frac{61}{4} \\
& =15 \frac{1}{4}
\end{aligned}
$$

2. The food we eat remains in the stomach for a maximum of 4 fours. For what fraction of a day, does it remain there?

We know that,

$$
1 \text { day }=24 \text { four }
$$

Given, the food we eat remains in the stomach for a maximum fours $=4$
\therefore Fraction of a day, does food remain there

$$
\begin{aligned}
& =\frac{\text { Total no.of hour food remain in the stomach }}{\text { Total no.of hours in } 1 \text { day }} \\
& =\frac{4}{24}
\end{aligned}
$$

$$
=\frac{1}{6}
$$

II. HOTS (Higher Order Thinking Skills

1. Write the fraction representing the total number of natural numbers in the collection 0, 1, 2, 3, -4, -5, 6. What fraction will it be for whole numbers and integers?

Total collection of numbers $=7$
Total number of natural numbers $=3$
\therefore The fraction representing the total number of natural numbers in the given
collection of numbers is $\frac{3}{7}$
The number of whole numbers $=4$
\therefore The fraction is $\frac{4}{7}$.

Total number of integers $=7$
\therefore The fraction is $\frac{7}{7}$
2. What is wrong in the following additions?
i) $8 \frac{1}{2}=8 \frac{2}{4}$
ii) $6 \frac{1}{2}$
$+4 \frac{1}{4}=4 \frac{1}{4}$
$+2 \frac{1}{4}$

$$
=12 \frac{3}{8} \curvearrowright W_{r o n g}
$$

$=8 \frac{2}{6}$
i) Equal denominators too have been added.
ii) $\mathfrak{N} u m e r a t o r s$ and denominators have been added.
3. Write a pair of fractions whose sum is $\frac{\mathbf{7}}{\mathbf{1 1}}$ and difference is $\frac{\mathbf{2}}{\mathbf{1 1}}$.

Let the fraction be x
So, the other fraction is $\frac{7}{11} \cdot x$
According to question,
$x\left[\frac{7}{11}-x\right]=\frac{2}{11} \Rightarrow x-\frac{7}{11}+x=\frac{2}{11}$
$\Rightarrow 2 x=\frac{2}{11}+\frac{7}{11} \quad \Rightarrow 2 x=\frac{9}{11} \Rightarrow x=\frac{9}{22}$

One of the fractions is $\frac{9}{22}$.
And the other fraction is $\frac{7}{11}-\frac{9}{22}=\frac{14-9}{22}=\frac{5}{22}$
4. Complete the addition-subtraction box.
(i)

$\stackrel{\ominus}{|$| | | |
| :---: | :---: | :---: |
| $\frac{2}{3}$ | $\frac{4}{3}$ | |
| $\frac{1}{3}$ | $\frac{2}{3}$ | |
| | | |$}$

(ii)

So,

$\frac{2}{3}$	$\frac{4}{3}$	2
$\frac{1}{3}$	$\frac{2}{3}$	1
$\frac{1}{3}$	$\frac{2}{3}$	1

(ii)

\downarrow| | | $\frac{1}{3}$ |
| :---: | :---: | :---: |
| $\frac{1}{3}$ | $\frac{1}{4}$ | y |
| a | b | z |

So, | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{5}{6}$ |
| :---: | :---: | :---: |
| $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{7}{12}$ |
| $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{3}{12}$ |

$$
\begin{aligned}
& x=\frac{2}{3}+\frac{4}{3}=\frac{6}{3}=2 \\
& y=\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1 \\
& z=2-1=1 \\
& a=\frac{2}{3}-\frac{1}{3}=\frac{1}{3} \\
& b=\frac{4}{3}-\frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

$x=\frac{1}{2}+\frac{1}{3}=\frac{3+2}{6}=\frac{5}{6}$
$y=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}$
$z=\frac{5}{6}-\frac{7}{12}=\frac{10-7}{12}=\frac{3}{12}=\frac{1}{4}$
$a=\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}$ and $b=\frac{1}{3}-\frac{1}{4}=\frac{4-3}{12}=\frac{1}{12}$
\mathcal{G}

