Name: \qquad
Grade : VI
Subject: Mathematics

Chapter: 5 Understanding elementary shapes

Objective Type Questions

I. Multiple choice questions

1. Measures of the two angles betweenfour and minute fands of a clock at 9 O'clock are:
a. $60^{\circ}, 300^{\circ}$
2. $270^{\circ}, 90^{\circ}$
c. $75^{\circ}, 285^{\circ}$
d. $30^{\circ}, 330^{\circ}$
3. If a bicycle wheelhas 48 spokes, then the angle between a pair of two consecutive spokes is:
a. $\left(5 \frac{1}{2}\right)$
4. $\left(7 \frac{1}{2}\right)$
c. $\left(\frac{2}{11}\right)$
d. $\left(\frac{2}{5}\right)$
5. If the sum of two angles is greater than 180°, then which of the following is not possible for the two angles?
a. One obtuse angle and one acute angle
6. One reflex angle and one acute angle
c. Two obtuse angles
d. Two right angles
7. If the sum of two angles is equal to an obtuse angle, then which of the following is not possible?
a. One obtuse angle and one acute angle
8. One right angle and one acute angle
c. Two acute angles
d. Two right angles
9. In Fig., $A B=B C$ and $A D=B D=D C$. The number of isosceles triangles in the figure is:

Fig. 5.3
a. 1
6. 2
c. 3
d. 4
6. In Fig., $<B A C=90^{\circ}$ and $A D \perp B C$. The number of right angled triangles in the figure is:

a. 1
6. 2
c. 3
d. 4
7. In Fig., $P Q \perp R Q, P Q=5 \mathrm{~cm}$ and $Q R=5 \mathrm{~cm}$. Then $\triangle P Q R$ is:

a. A right triangle but not isosceles
6. An isosceles rigft triangle
c. Isosceles but not a right triangle
d. Neither isosceles nor right triangle
8. The number of obtuse angles in Fig., is:

a. 2
6.3
c. 4
d. 5
9. What is the angle measure for half a revolution?
a. 60°
6.90°
c. 180°
d. 270°
10. What fraction of a clockwise revolution does the hour hand of a clockturnthrough when it goes from 3 to 9 ?
a. $\frac{1}{2}$
6. $\frac{1}{3}$
c. $\frac{1}{4}$
d. $1 / 5$
11. Where will the hand of a clockstop if it starts at 5 makes $1 / 4$ of a revolution, clockwise?
a. 7
6.8
c. 9
d. 10
12. Which direction will you face if you start facing south o make one full revolution?
a. East
6. West
c. North
d. South
13. Where will the hour hand of a clockstop if it starts from 6 oturns through one right angle?
a. 7
6.8
c. 9
d. 10
14. What is the measure of a straight angle?
a. 75°
6.90°
c. 180°
d. 360°
15. What is the measure of each angle of an equilateral triangle?
a. 55°
6. 70°
c. 60°
d. 90°
16. A quadrilateral whose all the sides, angle and diagonals are equal called is a
a. Square
6. rfombus
c. rectangle
d. 5 faces
17. A triangular prism fas
a. 9 faces
6. 8 faces
c. 7 faces
d. 5 faces
18. A triangle whole two sides are equal is called
a. Scalene
6. equilateral
c. isosceles
d. none of these
19. A square fias both diagonals
a. Equal
6. unequal
c. 6 oth (a) and (b)
d. none of these
20. For a prism the value of $V+F-E$ is always
a. 0
6. 1
c. 2
d. 3
21. A triangle whose one angle is more than 90° is called
a. An obtuse triangle
6. an acute triangle
c. an equilateral triangle
d. none of these

$1 .(b)$	$2 .(b)$	$3 .(d)$	$4 .(d)$	$5 .(c)$	$6 .(c)$	$7 .(b)$
$8 .(c)$	$9 .(c)$	$10 .(a)$	$11 .(6)$	$12 .(d)$	$13 .(b)$	$14 .(c)$
$15 .(c)$	$16 .(a)$	$17 .(d)$	$18 .(c)$	$19 .(a)$	$20 .(c)$	$21 .(a)$

II. Multiple choice questions

1. In Fig. 5.1 if point \mathcal{A} is sfifted to point \mathcal{B} along the ray $\mathcal{P X}$ such that $\mathcal{P B}=2 \mathcal{P A}$, then the measure of $\angle \mathcal{B P Y}$ is

Fig. 5.1
a. Greater than $45^{\circ} 6.45^{\circ}$
c. Less than 45° d. 90°
2. The number of right angles made when we start from north and turn anticlockwise to west is
a. 1
6. 2
c. 3
d. 4
3. A polygon has prime number of sides. Its number of sides is equal to the sum of the two least consecutive primes. The number of diagonals of the polygon is
a. 4
6. 5
c. 7
d. 10
4. Which of the following statements is not true for a rhombus?
a. The diagonals are perpendicular to each other
6. The diagonats are equal.
c. The diagonals bisecteach other.
d. The diagonals are perpendicular bisectors of each other.

1.6	$2 . a$	3.6	4.6

1. The angle measure for one-fourth revolution is:
a. 90°
6.360°
c. 180°
d. None of these.
2. Through what angle measures does the hour of a clockthrough, when it goes from3 to 9 ?
$a .90^{\circ}$
6.180^{0}
c. 360°
d. none of these
3. Through what angle measures does the hour hand of a clock turn through, when it goes from 5 to 8 ?
a. 90°
4. 180^{0}
c. 360°
d. none of these
5. Through what angle measures does the hour hand of a clock turn through, when it goes from 12 to 9
a. 270°
6. 180°
c. 360°
d. 90^{0}
7. Through what angle does the hour fiand of a clock turn through, when it goes from 2 to 11?
a. 270°
8. 90^{0}
c. 360°
d. 180°
9. Through what angle does the hour fand of a clock turn through, when it goes from 6 to 3 ?
$a .90^{0}$
6.180^{0}
c. 270°
d. 360°
10. What part of a revolution have you turned through if you stand facing north and turn clockwise to face west?
a. $1 / 4$
11. 1/2
c. $3 / 4$
d. None of these
12. What part of a revolution fiave you turned through if you stand facing east and turn clockwise to face west?
a. $\frac{1}{4}$
13. $\frac{1}{2}$
c. $\frac{3}{4}$
d. None of these
14. What part of a revolution have you turned through if you stand facing north and turn clockwise to face east?
a. $\frac{1}{4}$
b. $\frac{1}{2}$
c. $\frac{3}{4}$
d. None of these
15. Find the number of right angles turned through by the are fand of aclock when it goes from 12 to 3 ?
a. 1
16. 2
c. 3
d. 4
17. Find the number of right angles turned through by the are fand of aclock when it goes from 4 to 10 ?
a. 1
18. 2
c. 3
d. 4
19. Find the number of right angles turned through by the are fand of a clock when it goes from 3 to 12 ?
a. 1
20. 2
c. 3
d. 4
21. How many right angles do you make if you start facing north and turn clockwise to south?
a. 1
22. 2
c. 3
d. 4

14 How many right angles do you make if you start facing east and turn clockwise to south?
a. 1
6. 2
c. 3
d. 4
15. How many right angles do you make if you start facing south and turn clockwise to east?
a. 1
6. 2
c. 3
d. 4
16. How many right angles do you make if you start facing east and turnclockwise to east?
a. 1
6. 2
c. 3
d. 4
17. The measure of right angle is
a. 45°
6. 90^{0}
c. 60°
d. 180°
18. The measure of straight angle is
a. 90°
6. 45°
c. 180°
$d .60^{\circ}$
19.T the measure of an acute angle is

$$
a .<90^{\circ} \quad 6 .>90^{\circ}
$$

20. The measure of an obtuse angle is
$a .<90^{\circ}$
21. $>90^{\circ}$ and $<180^{\circ} \quad$ c. $=90^{\circ}$
d. none of these
22. The measure of an reflex angle is
a. 180
$6 .<180^{\circ}$
c. $>180^{\circ}$
d. $<90^{\circ}$
23. Which of the following is the measure of an acute angle?
a. 30°
6.90
c. 120°

24. Which of the following is the measure of an obtuse angle?
a. 120°
6.90^{0}
c. 60°
d. 240°
25. Which of the following is the measure of an reflex angle?
$a .90^{0}$
6.180^{0}
c. 120°
d. 270°
26. A triangle faving three unequal sides is called a
a. scalene triangle
27. isosceles triangle
c. equilateral triangle
d. right triangle
28. \mathcal{A} triangle faving two equal sides is called a
a. scalene triangle
29. isosceles triangle
c. equilateral triangle
d. right angled triangle
30. A triangle faving three equal sides is called a
a. scalene triangle

> 6. isosceles triangle
> d. right triangle
27. Which of the following statement is true
a. The opposite sides of trapezium are parallel
6. All the sides of parallelogram are of equal in length
c. The diagonals of square are perpendicular to each other
d. All the angles of a rectangle are not equal.
28. The following shape

is of a
a. Cone
29. The shape

6.cylinder c.sphere
d. pyramid.
is of

a. cylinder
6. cone
c. Spfiere
d. cuboid
30. The shape

is of
a. cone
6. cylinder
c. Cuboid

31. The strape

Is of
a. cuboid
6. Cylinder
c. Cone
d. sphere
32. The shape

Is of
a. Cone
6. cylinder
c. Sphere
d. pyramid
33. The shape

Is of
a. Triangular prism
c. cuboid

34. The number of faces of the shape

Is
a. 2
6. 4
c. 5
d. 3
35. The number of edges of the shape

Is
a. 4
6.8
c. 10
d. 12
36. The number of corners of the shape

Is
a. 8
6. 6
c. 5

37. The number of faces of the shape

Is
a. 2
6.3
c. 9
d. 5
38. The number of edges of the shape

a. 6
6.8

d. 4
39. The number of corners of the shape.

Is

a. 1
6. 2
c. 4
d. 6

40 The number of faces of the shape

Is
a. 1
6. 2
c. 3
d. 4
41. The number of edges of the shape

Is
a. 3
6. 6
42. The number of vertices of the shape

is
a. 1
6. 2
c. 3
d. 4
43. The number of faces of the shape

c. 4
d. 15
44. The number of edges of the shape

is
a. 12
6. 6
c. 9
d. 8
45. The number of vertices of the shape

is
a. 4
6. 6
c. 5
d. 8
46. The number of vertices of a shape is
a. 0
6. 1
c. 2
d. none of these
47. The number of corners of a cylinder is
a. 0
6. 1
c. 2
d. none of these

$1 .(c)$	$2 .(a)$	$3 .(a)$	$4 .(a)$	$5 .(c)$	$6 .(c)$	$7 .(b)$	$8 .(a)$	$9 .(a)$	$10 .(b)$
$11 .(c)$	$12 .(6)$	$13 .(a)$	$14 .(c)$	$15 .(d)$	$16 .(6)$	$17 .(c)$	$18 .(a)$	$19 .(6)$	$20 .(c)$
$21 .(a)$	$22 .(a)$	$23 .(d)$	$24 .(a)$	$25 .(b)$	$26 .(c)$	$27 .(c)$	$28 .(d)$	$29 .(b)$	$30 .(6)$
$31 .(a)$	$32 .(c)$	$33 .(a)$	$34 .(c)$	$35 .(b)$	$36 .(c)$	$37 .(d)$	$38 .(c)$	$39 .(d)$	$40 .(d)$
$41 .(6)$	$42 .(d)$	$43 .(d)$	$44 .(a)$	$45 .(d)$	$46 .(a)$	$47 .(a)$			


```
I. Fill in the blanks.
```

1. In \mathcal{F} fig.,:
a. $\angle A O D$ is $a / a n$ \qquad angle.
2. $\angle C O A$ is alan \qquad angle.

c. $\angle A O E$ is an alan \qquad angle.
3. The number of triangles in $\mathcal{F i g}$., is \qquad . Their name are \qquad
4. Number of angles less than 180° in Fig., is \qquad and their names are \qquad .

5. The number of straight angles in above Fig., is \qquad -.
6. The number of right angles in a straight angle is \qquad and that in a
7. Measure of an acute angle is less than \qquad -.
8. Measure of an obtuse angle is greater than \qquad but less than \qquad .
9. Complement of an angle of 45° is \qquad _.
10. Angles are measured in \qquad .
11. \mathcal{A} \qquad is a rectangle with a pair of adjacent sides equal.
12. Triangle is classified in terms of \qquad as well as \qquad -
13. A complete angle $=$ \qquad _.
14. Sum of all angles of a pentagon is

| 1. a) Right \quad 6) Acute \quad c) O fuse | 2.5, $\triangle A O B, \triangle A O C, \triangle A C D, \triangle C O D, \triangle A B C$ |
| :--- | :--- | :--- |
| 3. $12, \angle O A B, \angle O B A, \angle O A C, \angle O C A, \angle O C D, \angle O D C$, | 4. Five |
| $\angle A O B, \angle A O C, \angle C O D, \angle D O B, \angle B A C, \angle A C D$ | |

5. Two, four	6.90°
$7.90^{\circ}, 180^{\circ}$	8.45°
9. Degrees	$10 . S$ quare
11. Sides, angles	12.360°
13.540°	

III. Fill in the blanks.

1. The number of diagonals in a hexagon is
2. A pair of opposite sides of a rectangle are \qquad and \qquad
3. The hour hand of a clo9ckstops at \qquad if it starts at 12 and makes $\frac{1}{2}$ revolution clockwise.
4. The angle formed in falf-revolution is \qquad
5. The number of degrees between the hands of a clock, when the time is 3 O'clock
6. Number of faces in a triangular pyramid are \qquad -.
7. The number of vertices of a cuboid are \qquad _.
8. In a scalene triangle, all sides are \qquad
9. Reflex χ angle is always \qquad 180° and \qquad 360°

1. nine	2. equal, parallel	3.6	4.180^{0}	5.90^{0}
7.3	8.8	9. unequal	10. greater than, Less than	

I. True / False

1. A forizontalline and a verticalline always intersect at right angles.
2. If the arms of an angle on the paper are increased, the angle increases.
3. If the arms of an angle on the paper and decreased, the angle decreases.
4. In rectangle diagonals bisect at 90°.
5. An equilateraltriangle is acute angled triangle.
6. The line segments forming letter T from perpendicular lines.
7. An obtuse angled triangle can be isosceles.
8. The point at which two adjacent sides of a polygon meet is called its vertex.

1. True	2.False	3. False	4.False	5. True	6. True	7. True	8. True

III. True / False

1. Perpendicular bisector is perpendicular to the line.
2. Diagonals of a rfombus are always equal. [$\mathcal{N C E E R}$ Exemplar]
3. The base of a pyramid is always a triangle.
4. A trapezium is a parallelogram.
5. The number of sides of a polygon is always five.
[N CEERI Exemplar]
6. A square is a parallelogram.
7. A regular polygon fias all its sides and angles equal.
[N CEERT Exemplar]

1. True	2. True	3. False	
4. False	5. False	6. True	7. True

Column \mathcal{A}	Column \mathcal{B}
1. A polygon with six sides	a. $V+F=E+2$
2. Euler's formula	6. Scalene
3. Triangle with all sides'length different	c. 360°
4. Sum of all angles of a rhombus	d. Hexagon
5. Triangles with all angles equal	e. Equilateral

1. (d)
2. (a)
3. (6)
4. (c)
5. (e)
III. Match the following

Column I		Column II		
a.	3 sides of equal length	i.	O b tuse angle	
6.	1 right angle	ii.	Right angled	
C.	2 sides of equallength	iii.	Equilateral	
d.	1 obtuse angle	iv.	Isosceles	

I. Very short answers type questions.

1. Is it possible for the same:

Line segments to have two different lengths?
Angle to have two different measures?
(a) $\mathfrak{N}(0$, it is not possible that same line segments have two different lengths.
(6). $\mathcal{N}(0$, it is not possible that same angles have two different measures.
2. Will the measure of $\angle \boldsymbol{A B C}$ and of $\angle \boldsymbol{A B C}$ and of $\angle \boldsymbol{C B D}$ make measure of $\angle \boldsymbol{A B D}$ in $\mathcal{F i g}$.

Yes, the measure of $\angle A B C$ and of $\angle C B D$ make measure of $\angle A B D$, because $\angle A B D=\angle A B C+\angle C B D$.
3. Find out the incorrect statement, if any in the following: Any angle is formed when we have
a. Two rays with a common end-point
6. Two line segments with a common end-point
c. A ray and a line segment with a common end-point.
(b) and (c).
4. If two rays intersect will their point of intersection be the vertex of an angle of which the rays are two sides?
$\mathcal{N}(0$, it is not possible.
5. An angle is said to be trisected, if it is divided into three equal parts. If in Fig., $\angle \boldsymbol{B} \boldsymbol{A C}=\angle \boldsymbol{C} \boldsymbol{A} \boldsymbol{D}=\angle \boldsymbol{D} \boldsymbol{A} \boldsymbol{E}$. How many trisectors are the there for $\angle \boldsymbol{B} \boldsymbol{A} \boldsymbol{E}$?

\mathcal{T} wo, $\mathcal{A C}$ and $\mathcal{A D}$.
6. How many edges, faces and vertices are there in a sphere?

Sphere, has no edges, no faces and no vertices.
II. Very sfort answers type questions.

1. Why is it better to use a divider than a ruler, while measuring the lengths of a line segment?

It's better to use a divider because accurate measurement will be possible.
2. What is the disadvantage in comparing line segments by mere observation?

The disadvantage is that there are chances of error due to improper viewing.
3. Draw any line segment, say $\overline{\boldsymbol{A B}}$. Take any point C lying in between \mathcal{A} and \mathcal{B}. Measure the lengths of $\mathcal{A B}, \mathcal{B C}$ and $\mathcal{A C}$. Is $\mathcal{A B}=\mathcal{A C}+\mathcal{C B}$? Yes. (because \mathcal{C} is between \mathcal{A} and $\mathcal{B})$.
4. An angle is formed by two adjacent fingers. What kind of angle will it appear?

Acute angle.
5. A ship sailing in river ghelam moves towards East. If it changes to North, through what angle does it turn?
90°.
6. Look at your watch face. Through how many right angles does the minute - fand moves between 8 o'clock and 10 o'clock?

8
7. The measures of two angles of a triangle are 72° and 58°. Find the measure of the third angle.

The measure of third angle $=180^{\circ}-\left(72^{\circ}+58^{\circ}\right)=50^{\circ}$
8. One of the acute angles of a right triangle is 50°. Find the other acute angle. The other acute angle $=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)=40^{\circ}$
9. Let $\overline{\boldsymbol{P Q}}$ be the perpendicular to the line segment $\overline{\boldsymbol{X Y}}$. Let $\overline{\boldsymbol{P Q}}$ and $\overline{\boldsymbol{X Y}}$ intersect in the point \mathcal{A}. What is the measure of $\angle P \mathcal{A} \mathscr{P}$?
90^{0}
10. An angle is said to be trisected, if it is divided into three equal parts. If in Fig. 5.6, $\angle \mathcal{B A C}=\angle C \mathcal{A D}=\angle \mathcal{D A E}$, how many trisectors are there for $\angle \mathcal{B A E}$?

Fig. 5.6
\mathcal{T} wo trisectors : $\mathcal{A C}$ and $\mathcal{A D}$
11. A figure is said to be regular if its sides are equal in length and angles are equals in measure. Can you identify the regular quadrilateral?

Square.

```
III. Very sfiort answers type
```

1. What is the distance between the end points of a line segment.

We know that, the distance between the end points of a line segment is its length.
2. What is one revolution?

One full turn of clock hand is one revolution.
3. What is an obtuse angle?

An angle is greater than a right angle but less than straight angles is called an obtuse angle.
4. Find the measure of a straight angle?

The measure of a straight angle is 180°.
5. Draw a rough sketch of a reflex angle. Here, $\angle A O B=240^{\circ}$, which is a reflex angle.

6. What is the perpendicular bisector of a line segment? \mathcal{A} line perpendicular to the line segment that divides it into two equal parts is perpendicular bisector of the line segments.

$\mathcal{H e r e}, \overline{C O}$ is a perpendicular bisector of $\overline{A B}$.
7. Write the name of triangle, whose each angle is acute.

It is an acute angled triangle.
8. Write the name of triangle, whose all three sides are unequal in length. A triangle which fias all unequal sides is scalene triangle.

Here, $\triangle A B C$ is a scalene triangle.

9. Write the name of polygon, which has 5 sides.

A polygon which fas 5 sides is pentagon.
10. Find the number of sides in a quadrilateral. What can you say about the number of angles? Is it greater than the number of sides?

Number of sides in a quadrilateral $=4$
and number of angles is atso $=4$
$\mathcal{N}(0$, it is same as the number of sides.
11. If in a quadrilateral, one pair of opposite sides are parallel, then what is the name of such quadrilateral?

If one pair of opposite sides are parallel, then it is a trapezium. i.e., $\boldsymbol{P S} \| \boldsymbol{Q R}$

12. What is the difference between a square and a rfombus?

In a square, all angles are right angle whereas, in rfombus angles may right angle or not.

Square

13. Can you tell any three name of three dimensional solids?

Three dimensional solids are cube, cuboid and sphere.
14. Write the number of faces, vertices and edges in a cuboid.

In a cuboid,

$$
\text { Faces }=6 \text {, Vertices }=8 \text { and edges }=12
$$

15. Write the number of faces, vertices and edges in a triangular prism? In a triangle prism,

$$
\text { Faces }=3 \text {, Vertices }=6 \text { and edges }=9
$$

I. Sfort answers type questions.

1. What is common in the following figures: (i) and (ii)?

Is Fig. (i) that of triangle? If not, why?

(i) Both figures have 3 line segments, which is the common in both figures.
(ii) $\mathcal{N}(o$, fig. (i) is not a triangle as it is not a closed figure.
2. Can we have two obtuse angles whose sum is:
a. A reflex angle? Why or why not?
6. A comple te angle? Why or why not?
a. Yes, the sum of two obtuse angles is always greater than 180°.
6. No, the sum of two obtuse angles is always greater than $180^{\circ} 6$ ut less than 360°.
3. In the given figure:

a. What is $\mathcal{A E}+\mathcal{E C}$?
6. What is $\mathcal{A C}-\mathcal{E C}$?
c. What is $\mathcal{B D}-\mathcal{B E}$?
d. What is $\mathcal{B D}-\mathcal{D E}$?
a. $A E+E C=A C$
b. $A C-E C=A E$
c. $B D-B E=E D$
d. $B D-D E=B E$
4. How many rigft angles do you make, if you start facing:
a. South and turn clockwise to west?
6. North and turn anti-clockwise to east?
a. 1 right angle

6.3 right angle
II. Sfort answers type questions.

1. Name the following angles of $\mathcal{F i g}$. using three letters:

a) $\angle 1$
b) $\angle 2$
c) $\angle 3$
d) $\angle 1+\angle 2$
e) $\angle 1+\angle 2+\angle 3 \quad$ f) $\angle C B A-\angle 1$
$\angle 1=\angle C B D$
$\angle 2=\angle D B E$
$\angle 3=\angle E B A$
$\angle 1+\angle 2=\angle C B A$
$\angle 1+\angle 2+\angle 3=\angle C B A$
$\angle C B A-\angle 1=\angle D B A$
2. (i) If $\angle \boldsymbol{A}=\mathbf{3 0}^{\circ}$ and $\mathcal{B}=60^{\circ}$ of $\triangle \boldsymbol{A B C}$, then measure $\angle \boldsymbol{C}$.
(ii) Write the faces and vertices of cuboid as shown in the figure.

(i) Since, $\angle A=30^{\circ}, \angle B=60^{\circ}$

We know that the sum of all angles of a triangle is 180°, then

$$
\begin{gathered}
\angle A+\angle B+\angle C=180^{\circ} \\
30^{\circ}+60^{\circ}+\angle C=180^{\circ} \\
90^{\circ}+\angle C=180^{\circ}
\end{gathered}
$$

or

$$
\angle C=180^{\circ}-90^{\circ}
$$

$$
\angle C=90^{\circ}
$$

(ii) Faces $=6$, Vertices $=8$
3. In the given figure:

a. Name any four angles that appear to be acute angles.
6. Name any two angles that appear to be obtuse angles.
a. Four acute angles are: $\angle A E B, \angle A D E, \angle B A E$ and $\angle B C E$
6. Two obtuse angles are: $\angle B C D$ and $\angle B A D$.
4. In the given figure:
a. Is $\mathcal{A C}=\mathcal{C B}=\mathcal{A B}$?
6. Is $\mathcal{A B}+\mathcal{A C}=\mathcal{C B}$?
c. Is $\mathcal{A B}+\mathcal{B C}=\mathcal{C A}$?
a. Yes, i.e., $A C+C B=A B$
6. \mathcal{N} o, i.e., $A B+A C \neq C A$
c. $\mathcal{N}(o$, i.e., $A B+B C \neq C A$.
5. What conclusion can be drawn from each part of figure, if:
a. $\mathcal{D B}$ is the bisector of $\angle A D C$?

6. $\mathcal{B D}$ bisects $\angle \boldsymbol{A B C}$?

c. $\mathcal{D C}$ is the bisector of $\angle \boldsymbol{A D B}, \boldsymbol{C} \boldsymbol{A} \perp \boldsymbol{D} \boldsymbol{A}$ and $\boldsymbol{C B} \perp \boldsymbol{D} \boldsymbol{B}$?

a. Yes, $D B$ is the bisector of $\angle A D C$ i.e., $\angle A D B=\angle C D B$.
6. Yes, $B C$ bisects $\angle A B C$ i.e., $\angle A B D=\angle C B D$.
c. Yes, $D C$ is the bisector of $\angle A D B$ i.e., $\angle A D C=\angle B D C$ and $\angle C A D=90^{\circ}, \angle C B D=90^{\circ}$
III. Sfort answers type questions.

1. Verify, whether \mathcal{D} is the mid point of $\overline{\boldsymbol{A G}}$

Verify, whether D is the mid point of $\overline{A G}$.

Sol. Here, \mathcal{D} is the mid point of $\overline{A G}$ because $\mathfrak{A D}=3$
$\mathcal{D G}=3$
i.e., $\quad \mathcal{A D}=\mathcal{D} \mathcal{G}=3$
2. If \mathcal{B} is the mid point of $\overline{\boldsymbol{A C}}$ and \mathcal{C} is the mid point of $\overline{\boldsymbol{B} \boldsymbol{D}}$, where $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ lie on a straight line, say why $\mathcal{A B}=\mathcal{C D}$? We fave,
\mathcal{B} is mid point of
So, $\overline{A B}=\overline{B C}$
Similarly, \mathcal{C} is mid point of $\overline{B D}$,
So, $\overline{B C}=\overline{C D}$
Therefore, $\overline{A B}=\overline{C D}$
3. What is the measure of (i) a right angle? (ii) a straight angle?
i) Right angle $=90^{\circ}$
ii) $\operatorname{Straight}$ angle $=180^{\circ}$
4. Write down the measures of
i) Some acute angles
ii) Some obtuse angles
(give at least two examples of each).

Sol. i) Acute angles : $9^{\circ}, 54^{\circ}$ and 81°.
ii) O6tuse angles : $94^{\circ}, 144^{\circ}, 179^{\circ}$.
5. In Fig. 5.8,

Exemplar]
i) $\mathcal{N a m e}$ any four angles that appear to be acute angles.
ii) $\mathcal{N a m e}$ any two angles that appear to be obtuse angles.

Fig. 5.8
i) Four ac ute angles are $\angle \mathcal{A E B}, \angle \mathcal{A D E}, \angle \mathcal{B A E}, \angle \mathcal{B C E}$.
ii) \mathcal{T} wo obtuse angles are $\angle \mathcal{B C D}, \angle \mathcal{B A D}$.
6. Which angle has a large measure? First estimate and then measure.

Me asure of $\mathfrak{A n g l e} \mathcal{A}=$ Me asure of Angle $\mathcal{B}=$

Fig. 5.9

Clearly, by estimation angle \mathcal{B} has large measure as compared to angle \mathcal{A}.
Me asure of $\mathcal{A n g l e} \mathcal{A}=40^{\circ}$ and Me asure of angle $\mathcal{B}=65^{\circ}$.
7. From these two angles which has larger measure? Estimate and then confirm by measuring them.
[N CERT]

Fig. 5.10
Clearly, by estimation measure of angle \mathcal{B} is greater than that of angle \mathfrak{A}.

Me asure of angle $\mathcal{A}=45^{\circ}$

Me as ure of angle $\mathcal{B}=55^{\circ}$
8. Can we have two obtuse angles whose sum is
i) A reflex angle? Why or why not?
ii) A complete angle? Why or why not?
i) Yes, because sum of two obtuse angles is greater than 180°.
ii) $\mathcal{N}\left(\right.$, because sum of two obtuse angles is greater than 180° 6ut less than 360°.
9. Find the angle measure between the fands of the clock in each figure:
[$\mathcal{N C E R T}$]

Angle measure of clock(6) is 30°
Angle measure of clock © is 180°
10. The angles of a triangle are in the ratio $1: 3: 5$. Find the measure of each of the angles.

Let the measure of given angle be $(1 x)^{0},(3 x)^{0}$ and $(5 x)^{0}$.

Then, $1 x+3 x+5 x=180^{\circ}$

$$
\begin{aligned}
9 x & =180^{\circ} \\
x & =20^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x=3 \times 20^{\circ}=60^{\circ} \\
& 5 x=5 \times 20^{\circ}=100^{\circ}
\end{aligned}
$$

Hence, the measure of angles of given triangle are $20^{\circ}, 60^{\circ}, 100^{\circ}$.
11. Match the following:
i) Straight angle
a) Less than one -fourth a revolution
ii) Right angle
6) More than half a revolution
iii) Acute angle
c) Half of a revolution
iv) Obtuse angle
d) One-fourth of a revolution
v) Reflex angle
e) Between $1 / 4$ and $1 / 2$ of revolution f) One complete revolution.
i) c
ii) d
iii) a
iv) e
v) 6
IV. Short answers type questions.

1. Will the lengths of line segment $\boldsymbol{A B}$ and line segments $\boldsymbol{B C}$ make the length of line segment $\boldsymbol{A C}$ in figure?

$\mathcal{H e r e}, \overline{A B}+\overline{B C}=\overline{A C}$
Hence, the length of line segment $\overline{A B}$ and $\overline{B C}$ make the length of line segment $\overline{A C}$.
2. Will the measure of $\angle \boldsymbol{A B C}$ and $\angle \boldsymbol{C B D}$ make the measure of $\angle \boldsymbol{A B D}$ in figure?

Here, $\angle A B D=\angle A B C+\angle C B D$
Hence, the measure of $\angle A B C$ and $\angle C B D$ make the measure of $\angle A B D$.
3. By simply looking at the pair of angles given below. State which of the angles in each pair is greater.

From the given figures, we can say that
$\angle A O B>\angle D E F$
$\angle J K L>\angle G H I$
Refle x angle $\angle M O N<\angle Q P R$

$$
\angle O>\angle S U T
$$

4. Which points in figure, appear to be mid-point of the line segments? When you locate a mid-point, name the two equal line segments formed by it.

(i)

(ii)

(iii)

In the figure.

There is no mid-point in $\overline{A B}$.
i) O is the mid-point of $\overline{A B}$ and $\overline{O A}=\overline{O B}$
ii) D is the mid-point of $\overline{B C}$ and $\overline{B D}=\overline{C D}$
5. Is it possible for the same
a) Line segment to have two different lengths?
6). Angle to have two different measures?
(a) $\mathcal{N}(0$, a line segment cannot have two different lengths.
(6). $\mathcal{N}(0$, an angle cannot fiave two different measurements.
6. Ulsing the information given, name the right angles in each part of figure.
(a) $B A \perp B D$

(b) $R T \perp S T$

(c) $A C \perp B D$

(d) $R S \perp R W$

The right angles in each part of the given figure are as follow:
a. $\angle A B D=90^{\circ}$
6. $\angle R T S=90^{\circ}$

c. $\angle A C D=\angle A C B=90^{\circ}$
d. $\angle S R W=\angle R T S=\angle R T W=90^{\circ}$
7. State the type of angle given below.

(i)

(ii)

(iii)

(iv)

(v)

In the given figures, we have
a. $\angle A O B$ is a right angle.
6. $\angle A O B$ is a straight angle.
c. $\angle A O B$ is an acute angle.
d. $\angle A O B$ is an obtuse angle.
e. $\angle A O B$ is an obtuse angle.
f. $\angle O$ is a complete angle.
8. Using a ruler only, draw an acute, obtuse and reflex angle.
a. Acute $\angle \boldsymbol{A O B}$

(b) Obtuse $\angle P O Q$

(c) Reflex $\angle R O S$

9. Convert the following angles of degrees into fractional right angle.
a. 10°
(b) 20°
(c) 135°

We know that, 1 right angle $=90^{\circ}$ i.e., $\quad 1^{\circ}=\frac{1}{90}$ right angle
a. $10^{\circ}=\frac{10^{\circ}}{90^{\circ}}=\left(\frac{1}{9}\right)$ rigft angle
6. $20^{\circ}=\frac{20^{\circ}}{90^{\circ}}=\left(\frac{2}{9}\right)$ right angle
c. $135^{\circ}=\frac{135^{\circ}}{90^{\circ}}=\left(\frac{3}{2}\right)$ right angle
10. Convert the following into degree.
a. $\frac{2}{9}$ right angle
6. $\frac{3}{4}$ right angle

We know that, 1 right angle $=90^{\circ}$
a. $\frac{2}{9}$ rigft angle $=\frac{2}{9} \times 90^{\circ}=20^{\circ}$
b. $\frac{3}{4}$ right angle $\frac{3}{4} \times 90^{\circ}=67.5^{\circ}$
11. In the given figure, $\boldsymbol{P Q}, \perp \mathbf{A B}$ and $\mathbf{P O}=\mathbf{O Q}$. IS $\boldsymbol{P Q}$, the perpendicular bisector of line segment $\boldsymbol{A B}$? Why or why not?

$P Q$ is not the perpendicular bisector of line segment $A B$ because $A O \neq B O$. [$A B$ is the perpendicular bisector of line segment $P Q]$.

Seneration
12. Draw any triangle of your choice, then draw all the three medians. Are they passing through one point?

Sol. According to the given information, $\triangle P Q R$ fas medians $\overline{P S}, \overline{Q T}$ and $\overline{R N}$. Yes, the se medians passing through one point 0 :

13. Which direction will you face, if you start facing East and make $\frac{3}{4}$ of a revolution clockwise?

We face towards North.

14. If each side of a triangle is 6 cm . name the type of triangle.

Given that, each side of a triangle is 6 cm . Hence, it is an equilateral triangle.
15. Find the measure of $\angle \boldsymbol{P O Q}$, if $\boldsymbol{P R} \perp \boldsymbol{Q T}$.

Here, $\angle P O Q=90^{\circ}$

I. Long answers type questions.

1. Using the information given, name the right angles in each part fig. (a-h).
a. $B A \perp B D$

2. $R T \perp S T$

c. $A C \perp B D$

d. $R T \perp S W$

e. $A C \perp B D$

f. $A E \perp C E$

h. $O P \perp A B$

$A B D$
$\angle R T S$
$\angle A C D$ and $\angle A C B$
$\angle R T W$ and $\angle R T S$
$\angle A E D, \angle A E B, \angle B E C$ and $\angle D E C$
$\angle A E C$
$\angle A C D$
$\angle A K O, \angle A K P, \angle B K O$, and $\angle B K P$
3. Can we have two acute angles whose sum is:
a. A right angle? Why or why not?
4. An obtuse angle? Why or why not?
c. A straigft angle? Why or why not?
d. A reflex angle? Why or why not?
a. Yes, the sum of two acute angles may be equal to a right angle.
5. Yes, the sum of two acute angles may be more than a right angle.
c. \mathcal{N} o, the sum of two acute angles is always less than 180°.
d. $\mathcal{N o}$, the sum of two acute angles is always less than 180°.
6. Construct an angle of 90° with the help of a protractor.

Steps of construction:

1. Draw a line segment $B C$.
2. Make an angle of 90° with the help of protractor.
3. Hence $\angle A B C=90^{\circ}$.
```
II Long Answer Questions
```

1. Classify eack one of the following angles as right, acute, obtuse or reflex: [$N C E R I$]

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Fig. 5.12
i) Acute
ii) Obtuse
iii) Right
iv) $\operatorname{Refle} x$
v) Straight vi) Acute
2. Ulsing information given, name the right angles in each part of figure:
[N CERT Exemplar]

i) $\mathcal{B A} \perp \mathcal{B D}$
ii) $\mathcal{R T} \perp \mathcal{S T}$

iii) $\mathcal{A C} \perp \mathcal{B D}$
iv) $R \mathcal{T I} \perp S \mathcal{W}$

$\mathcal{B D}$

vi) $\mathfrak{A E} \perp \mathcal{C E}$

vii) $\mathcal{A C} \perp \mathcal{C D}$

viii) $O \mathcal{P} \perp \mathscr{A B}$
i) $\angle \mathfrak{A B D}$
iii) $\angle \mathcal{A C D}$ and $\angle \mathcal{A C B}$
ii) $\angle \mathcal{R} \mathcal{I S}$
iv) $\angle R \mathcal{I} \mathcal{W}$ and $\angle R \mathcal{I S}$
v) $\angle \mathcal{A E D}, \angle \mathcal{A E B}, \angle \mathcal{B E C}$ and $\angle \mathcal{D E C}$ vi) $\angle \mathcal{A E C}$
vii) $\angle A C D$
viii) $\angle \mathcal{A} \mathcal{O}, \angle \mathcal{A} \mathcal{X P}, \angle \mathcal{B K O}, \angle \mathcal{B K P}$
3. Study the diagram. The line $[$ is perpendicular to line m. [$\mathcal{N C E R T}$]

Fig. 5.13
i) Is $\mathcal{C E}=\mathcal{E} \mathcal{G}$?
ii) Does PE Gisect CG?
iii) Identify any two line segments for which P E is the perpendicular bisector
iv) Are these true?
a) $\mathcal{A C}>\mathcal{F} G$
b) $\mathcal{C D}=G \mathcal{H}$
c) $\mathcal{B C}=\mathcal{E} \mathcal{H}$.
i) yes
ii) Yes
iii) $\overline{B H}, \overline{D F}$
iv) All are true.
4. In Fig. 5.14,

Fig. 5.14
i) $\mathcal{A O D}$ is a/an \qquad angle.
ii) $\quad \operatorname{COD}$ is $a / a n$ \qquad angle.
iii) $\mathcal{A O E}$ is a/an \qquad angle.
i) $R \operatorname{Right}_{t}$
ii) acute
iii) obtuse

i) \quad Triangle with lengths of sides $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm .
ii) $\quad \triangle \mathcal{A B C} \mathcal{W I T} \mathcal{H} \mathfrak{A B}=8.7 \mathrm{~cm}, \mathcal{A C}=7 \mathrm{~cm}$ and $\mathcal{B C}=9 \mathrm{~cm}$
iii) $\Delta P Q \mathcal{R}$ such that $P Q=Q \mathcal{R}=P \mathcal{R}=5 \mathrm{~cm}$.
iv) $\Delta \mathcal{D E F}$ wit $\kappa=90^{\circ}$.
v) $\quad \triangle X Y Z$ with $m \angle Y=90^{\circ}$ and $X Y=Y Z$.
vi) $\triangle \angle \mathcal{M N}$ with $m \angle L=30^{\circ}, m \angle \mathcal{M}=70^{\circ}$ and $m \angle \mathcal{N}=80^{\circ}$.
i) Scalene Triangle
ii)Scalene Triangle
iii)Equilateral \mathcal{T} riangle
iv) Right Triangle
v) Isosceles right triangle
vi)Acute angled triangle
6. Name each of the following triangles in two different ways: (you may judge the nature of the angle by observation)

(i)

(iv)

(ii)

(v)

(iii)

(vi) ,

Fig. 5.15
(i) Acute angled and isosceles.
(ii) Right angled and scalene.
(iii) Obtuse angled and isosceles.
(iv) Right angled and isosceles.
(v) Equilateral and acute angled.
(vi) Obtuse angled and scalene.
7. Give reasons of the following:
(i) A square can be thought of as a special rectangle.
(ii) A rectangle can be thought of as a special parallelogram.
(iii) A square can be thought of as a special riombus.
(iv) Squares, rectangles, parallelograms are all quadrilaterals.
(v) Square is atso a parallelogram.
(i)
\mathcal{A} square can be thought as special rectangle as rectangle with all sides equal becomes a square.
(ii)
\mathcal{A} rectangle can be a parallelogram as parallelogram with each angle a right angle becomes a rectangle.
(iii) A square can be thought of as rhombus as rhombus with eachangle a right angle becomes a square.
(iv) \quad Square rectangles, parallelogram are quadrilaterals as all these four sides polygons made of line segments.
(v) $\quad S$ quare is a parallelogram as opposite sides of square are parallel, so it is parallelogram.
8. Examine whether the following are polygons. If any one among them is not, say why?

(i)

(ii)

(iii)

Fig. 5.16
(iv)

It is not a closed figure fience it is not a polygon.
(ii) It is a polygon of six sides.
(iii) It's not a polygon as it is not made of line segments.
(iv) It's not a polygon as it is not made of line segments.
9. In Fig. 5.17, points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E} are colfinear such that $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{C}=\boldsymbol{C D}=\boldsymbol{D} \boldsymbol{E}$. Then
(i) $\quad \boldsymbol{A D}=\boldsymbol{A B}+$ \qquad
(ii) $\boldsymbol{A D}=\boldsymbol{A C}+$ \qquad
(iii) Mid point of $\boldsymbol{A E}$ is \qquad
(iv) \quad Mid point of $\boldsymbol{C E}$ is \qquad
(v)

$$
A E=
$$

\qquad $\times A B$.

Fig. 5.17
(i) $B D$
(ii) $C D$
(iii) C
(iv) D
(v) 4
10. Write the name of
(i) Vertices
(ii) Edges, and
(iii) Faces of the prism shown in Fig. 5.18.

(i) Vertices A, B, C, D, E, F.
(ii) Edges $A B, A C, B C, B D, D F, F C, E F, E D, A E$.
(iii) Faces $A B C, D E F, A E F C, A E D B, B D F C$.

()) Cext
 Schaol

```
III. Long answers type questions.
```

1. Construct two line segments $\boldsymbol{A B}$ and $\boldsymbol{C D}$ lengths 2.5 cm and 3.2 cm . construct anotfer segment EF, whose length is the sum of these two segments. Measure the new length. [$\mathcal{H O} \mathcal{T S}$]

Sol. Now, first of all, we draw $A B=2.5 \mathrm{~cm}$ and $C D=3.2 \mathrm{~cm}$

$$
\overline{A B}+\overline{C D}=\overline{E F}
$$

\mathcal{N} ow, we have to draw a line segment

$\therefore \overline{E F}=\overline{A B}+\overline{C D}=2.5+3.2=5.7 \mathrm{~cm}$
Hence, new length is 5.7 cm .
2. Name the type of triangle and also draw it rough sketch.
a. $\triangle A B C: \angle A=\angle B=\angle C=60^{\circ}$
6. $\triangle A B C: \angle B=\angle C=50^{\circ}$
c. $\triangle A B C: \angle A=45^{\circ}, \angle B=45^{\circ}, \angle C=90^{\circ}$
d. $\triangle A B C: \angle A=50^{\circ}, \angle B=60^{\circ}, \angle C=70^{\circ}$
a. Given, $\angle A=\angle B=\angle C=60^{\circ}$

Hence, it is an equilateraltriangle.
a. Give $n, \angle B=\angle C=50^{\circ}$

Hence, it is an isosceles triangle.
6. Given, $\angle A=45^{\circ}, \angle B=45^{\circ}, \angle C=90^{\circ}$

Hence, it is an isosceles triangle.
a. Give $n, \angle A=50^{\circ}, \angle B=60^{\circ}, \angle C=70^{\circ}$

Hence, it is a scalene triangle.
3. Name the type of triangle, if
a. Sides are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm
b. $\triangle A B C ; A B=A C=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$
$c . \triangle A B C ; A B=B C=A C=5 \mathrm{~cm}$
d. $\triangle A B C ; \angle B=90^{\circ}, B C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$
a. Given, sides are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm .

Hence, it is a scalene triangle.
6. Give n, in $\triangle A B C ; A B=A C=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$

Hence, it is an isosceles triangle.
c. Given, $\triangle A B C ; A B=B C=A C=5 \mathrm{~cm}$

Hence, it is an equilateraltriangle.

$$
\text { d. Given, in } \triangle A B C ; \angle B=90^{\circ}, B C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}
$$

$\mathcal{H e n c e}$, it is a right angled triangle.
4. Take three non-colfinear points $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ on your notebook, goin $\boldsymbol{A B}, \boldsymbol{B C}, \boldsymbol{C A}$. What type of figure do you get? If it is a triangle, name the following
a. Side opposite to $\angle \boldsymbol{B}$.
6. Angle opposite to side AC.
c. Vertex opposite to side BC.
d. Side opposite to vertex \boldsymbol{A} and \boldsymbol{B}.

Given, three non-colline ar points A, B and C.
\mathcal{N} (ow, after joining $A B, B C$ and $C A$, we get a $\triangle A B C$.

Then, we have
a. Side opposite to $\angle B$ is $A C$.
6. Angle opposite to side $A C$ is $\angle B$.
c. Vertex opposite to side $B C$ is A.
d. Side opposite to vertex A and B is $B C$ and $A C$ respectively.
5. In figure, $\mathcal{B C D E}$ is a square and a $3-\mathcal{D}$ shape fias been formed by joining the point \mathcal{A} in shape with the vertices $\mathcal{B}, \mathcal{C}, \mathcal{D}$ and \mathcal{E}. Name the 3-D shape and also its (i) vertices, (ii) edges and (iii) faces.

The 3-D shape formed is a square pyramid.

i. Vertices are A, B, C, D and E.
ii. Edges are $A B, A C, A D, A E, B C, C D, D E$ and $E D$.
iii. Faces are: square $B C D E, \triangle A B C, \triangle A C D, \triangle A D E$ and $\triangle A B E$.
6. During Maths lab activity, each students was given four broom sticks of length $\boldsymbol{8}$ cm, $\boldsymbol{8}$ cm, $5 \mathrm{~cm}, 5 \mathrm{~cm}$ to make different types of quadrilaterals.
a. How many quadrilaterals can be formed using four broom sticks?
6. Name the types of quadrilateral formed.
c. While doing this activity, which value is depicted?

Given, four broom sticks of length $8 \mathrm{~cm}, 8 \mathrm{~cm}, 5 \mathrm{~cm}$ and 5 cm .
a. Three types of quadrilaterals can be formed.
6. Name of the quadrilaterals are rectangle, parallelogram and kite.
c. The value is scientific, temper and curiosity.
7. Name the following angles of figure using three alphabets.
a. $\angle 1$
6. $\angle 2$
c. $\angle 3$
d. $\angle 1+\angle 2$
e. $\angle 2+\angle 3$
f. $\angle 1+\angle 2+\angle 3 \quad$ g. $\angle C \mathcal{B A} \cdot \angle 1$

$\mathcal{N a m e}$ of the angles are as follows:
a. $\angle 1=\angle C B D$ 6. $\angle 2=\angle D B E$
c. $\angle 3=\angle E B A d . \angle 1+\angle 2=\angle C B E$
e. $\angle 2+\angle 3=\angle D B E f . \angle 1+\angle 2+\angle 3=\angle C B A$
g. Put the value of $\angle C B A$

$$
[\therefore \angle C B A=\angle 1+\angle 2+\angle 3]
$$

\mathcal{N} ow, $\angle C B A-\angle 1=\angle 1+\angle 2+\angle 3-\angle 1$

$$
=\angle 2+\angle 3=\angle D B A \quad[\therefore \angle D B A=\angle 2+\angle 3]
$$

8. In which of the following figures?
a. Perpendicular bisector is show?
9. Bisector is show?
c. Only bisector is shown?
d. Only perpendicular is shown?

(i)

(ii)

(iii)

Sol.
(a) perpendicular bisector means, a line is perpendicular to the another line and divided it into two equal parts.
$\mathcal{H e r e}$, in figure (ii), perpendicular bisector is shown.
(6) Bisector means, a line divides the another line in equal parts.
$\mathcal{H e r e}$, in figure (ii) and (iii), bisector are shown.
(c) Only bisector is shown in figure (iii).
(d) Only perpendicular is shown in figure (i).
9. Using the information given, name the right angles in each part of figure.
a. $A C \perp B D$
6. $\boldsymbol{A} \boldsymbol{E} \perp \boldsymbol{C} \boldsymbol{E}$
c. $A C \perp C D$
d. $O P \perp A B$

a. Since, $A C \perp B D$, it means $\angle E=90^{\circ}$.
$\therefore \angle A E B, \angle B E C, \angle C E D$ and $\angle A E D$ are right angles.
6. Since, $A E \perp C E$, it means $\angle E=90^{\circ}$
$\therefore \angle A E C$ is a right angle.
c. Since, $A C \perp C D$, it means $\angle C=90^{\circ}$
$\therefore \angle A C D$ is a right angle.
d. Since, $O P \perp A B$, it means $\angle K=90^{\circ}$
$\therefore \angle A K O, \angle O K B, \angle B K P$ and $A K P$ are right angles.
10. What conclusion can be drawn in each part of figure?
(a) $D B$ is the bisector of $\angle A D C$.

(b) $B D$ bisects $\angle A B C$.

(c) $D C$ is the bisector of $\angle A D B, C A \perp D A$ and $C B \perp D B$.

We know that, bisector line divide that angle into two equal angles.
a. Since, $B D$ is the bisector of $\angle A D C$
$\therefore \angle A D B=\angle B D C$
6. Since, $B D$ Gisector $\angle A B C$,

$$
\therefore \angle A B D=\angle C B D
$$

c. Since, $D C$ is the bisector of $\angle A D B$ and $C A \perp D A$ and $C B \perp D B$
$\therefore \angle A D C=\angle B D C$ and $\angle C A D=90^{\circ}, \angle C B D=90^{\circ}$.

```
I \(\mathcal{H O} \mathcal{T S}\) (Higher Order Thinking Skills)
```

1. Write the measure of the two angles formed by the hour and the minute finds of a clock at 4 o'clock. Also, write what types of angles these are?

Sol. At 4 o'clock, the hour hand is at 12 and the minute fiand is at 4. Making two angles of 60° and 120°.

The two hands of the clockmaking an angle of 60° is an acute angle and the other angle of 120° is an obtuse angle.
2. What part of a revolution have you turned through if you stand facing
(i) East and turn clockwise to face North?
(ii) South and turn clockwise to face East?
(iii) West and turn clockwise to face East?

Sol.
(i) $\frac{3}{4}$
(ii) $\frac{3}{4}$
(iii) $1 / 2$

