Grade IX

Lesson : 8 Motion
$\mathcal{C H A P I E R} \mathcal{A T} \mathcal{A} \mathcal{C L A N C E}$

Acceleration

$>$ Acceleration is defined as the rate of change of velocity of a Gody
$>$ SI unit is $\boldsymbol{m} / \boldsymbol{s}^{\mathbf{2}}$
Acceleration, $\quad a=\frac{v-u}{t}$
(i.e. $\frac{\text { Change in velocity }}{\text { Time Taken }}$)

Average Speed $=\frac{\text { Total Distance travelled }}{\text { Total Time Taken }}$
Average Speed $=\frac{\text { Total Distance travelled }}{\text { Total Time Taken }}$
$>$ Velocity of a body is defined as its displacement per unit time
travelled by it per unit time
Speed $=\frac{\text { Distance travelled }}{\text { Time }}=$
$>$ SI unit of speed is m / s
$>$ When the Gody travels at varying speeds during a journey, then average speed is calculated as total distance travelled divided by the total time taken,

Distance

$>$ The length of path covered by a moving object on a plane is called distance

SI unit is metre (m)

Dis placement
$>$ The sfortest distance from initial position of an object to its final position is called displacement.
$>$ SI unit is metre (m)

Velocity $=\frac{\text { Displacement }}{\text { TimeTaken }}$

$>$ SI unit of velocity is m / s
$>$ The average velocity of a body is defined as total displacement of a body divided $6 y$ total time taken.
Average Velocity $=\frac{\text { Total Displacement }}{\text { Total Time Taken }}$

Motion along circular path $>\mathcal{A}$ body moving with uniform speed along a circular path is said to be in uniform circular motion.
$>$ Angular velocity ($\boldsymbol{\omega}$)
=Angular displacement
$>\omega=\frac{\theta}{t}$

Types of motion in a straight line

Uniform motion: If a body covers equal distances in equal intervals of time in a straight line, then its motion is said to be uniform motion.
\mathcal{N} on-Uliform motion: If a body covers unequal distances in given equal intervals of time, then its motion is said to be non-uniform

Grapfical
Representation of motion
(Continued on
next page)

$\mathcal{E Q U A T I O N} O \mathcal{F} \mathcal{M O T I O N}$

$>$ Equation for Velocity $-\mathcal{T}$ ime relation or $1^{\text {st }}$ equation of motion

$$
v=u+a t
$$

$>$ Equation for Position - Time relation or $2 n d$ equation of motion

$$
s=u t+\frac{1}{2} a t^{2}
$$

\rightarrow Equation for Position - Velocity relation or $3^{\text {rd }}$ equation of motion

$$
v^{2}=u^{2}+2 a s
$$

Grapfical Representation of Motion. Motion can be represented grapfically by
plotting displacement-time $(s-t)$ graph and Motion can be represented grapfically $6 y$
plotting displacement - time $(s-t)$ graph and velocity - time (v-t) graph.

Object at rest

$$
\mathcal{N} \text { on-uniform motion }
$$

The slope of displacement - time graph gives the velocity of the object.
In time interval $\left(t_{2}-t_{1}\right)$
Displacement $=\boldsymbol{s}_{\mathbf{2}}-\boldsymbol{s}_{\mathbf{1}}$

$$
\begin{gathered}
\text { Slope }=\frac{Y \text { intercept }}{X \text { intercept }}==\frac{S_{2-} s_{1}}{t_{2}-t_{1}} \\
=\frac{s_{2-} S_{1}}{t_{2}-t_{1}}=\text { Velocity }
\end{gathered}
$$

The slope of velocity - time graph gives the acceleration of the moving body. Slope of $v-t$ graph for time $\left(\boldsymbol{t}_{\mathbf{2}}-\boldsymbol{t}_{\mathbf{1}}\right)$

$$
\begin{gathered}
=\frac{Y \text { intercept }}{X \text { intercept }}==\frac{S_{2-} S_{1}}{t_{2}-t_{1}} \\
\quad=\frac{o B-O A}{t_{2}-t_{1}}=\frac{v-u}{t} \\
=A \text { Accleration }
\end{gathered}
$$

Activity / Project 1

Objective \quad	To plot $s-t$ graph from observed quantities and calculate average
	velocity.

Materials Required: A stop watch, a car with driver, grapf paper
Method : 1. Start from a point on the fighway and set the odometer and stopwatch at zero
2. After every five minutes, note down the odometer reading. Note that once the stop watch is start, it does not stop till one hour is over.
3. Selecting appropriate scale, plot a displacement time graph with time on χ - axis and displacement on y-axis
4. Find the slope of graph plotted by you.

Conclusion
: Slope of graph

Type of motion
Average velocity

Activity / Project 2
Objective : To calculate the acceleration of a body by plotting graph from given data and interpret the graph.

Materials Required: Given data, graph, ruler, pencil

Method : Collect the given data, table and graph sheet.
2. Select appropriate scale and plot time on X-axis and velocity of \mathscr{Y}-axis
3. Plot a grapf using the given data.
4. Calculate the slope of the grapf for different time intervals.

Conclusion : Nature of motion : -

I. Multiple choice questions

1. Equations of motion can be used for a body having
a) uniform motion
6) non uniform motion
c) uniform acceleration
d) non uniform acceleration
2. The slope of the $x-t$ graph is a measure of

a) Velocity $=2 \mathrm{~ms}^{-1}$
6) acceleration $=\frac{1}{2} \mathrm{~ms}^{-2}$
c) V elocity $=\frac{1}{2} \mathrm{~ms}^{-2}$
d) acceleration $=2 \mathrm{~ms}^{-2}$

$$
v=\frac{(6-0) m}{(3-0) s}=2 \mathrm{~m} / \mathrm{s}
$$

3. For a body starting from rest the displacement in 10 second, when it acquires $4 \mathrm{~ms}^{-1}$ in 2 seconds is
a) 25 m
b) 50 m
c) 500 m
d) 100 m

$$
\begin{aligned}
& v=u+a t \\
& \text { or } a=\frac{v-u}{t}=\frac{4-0}{2}=2 \mathrm{~m} / \mathrm{s}^{2} \\
& \left.a=u t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \times 2(10)^{2}\right)
\end{aligned}
$$

4. Motion of bodies \mathcal{A} and \mathcal{B} is depicted by the x - tgraph. Then which of the following is/are incorrect?

A: A has uniform motion
$\mathcal{B}: \mathcal{B}$ has less velocity than \mathcal{A} initially
$\mathcal{C}: \mathcal{B}$ crosses \mathcal{A} at \mathcal{X}
$\mathcal{D}: \mathcal{A}$ comes to rest at X
a) $O n[y \mathcal{A}$
b) Only \mathcal{B} and \mathcal{C}
c) Only \mathcal{B}, \mathcal{C} and \mathcal{D} d) $\mathcal{A l l}$ of them
5. The v-t graph for x-t graph givenhere is best drawn as

(a)

品
(b)

(c)

(d)

6. From x - tgrapf, one candraw the following conclusions:

$\mathcal{A}: v_{O A}<v_{A B}$
$C: v_{C D}$ is the least by magnitude
a) Only \mathcal{A} is correct
c) $O n l y \mathcal{A}, \mathcal{B}$ and \mathcal{C} are correct
$\mathcal{B}: v_{B C}$ is negative
\mathcal{D} : acceleration is uniform
6) Only \mathcal{B} and C are correct
c) Only \mathcal{D} is correct
7. For a uniformly accelerated body with initial and final velocities as u and $v \mathrm{~ms}^{-1}$, the average velocity is
a) $\frac{a}{2}$
b) $\frac{v}{2}$
c) $\frac{u+v}{2}$
d) $\frac{v-u}{2}$
8. In a uniformly accelerated motion,
$\mathcal{A}: v-t \operatorname{graph}$ is a straight line not parallel to t or v axis
$\mathcal{B}: v-t \operatorname{graph}$ is not a straight line
C: Slope of v-tgraph varies
d) Slope of $v-t$ graph is constant
a) $\operatorname{Only} \mathcal{A}$ is correct
6) Only \mathcal{A} and \mathcal{B} are correct
c) $\operatorname{Only} \mathcal{A}, \mathcal{B}$ and \mathcal{C} are correct
c) $O n(y \mathcal{B}, \mathcal{C}, \mathcal{D}$ is correct
9. Areabelowv-tgraph is a measure of
a) Acceleration
c) Angular speed
b) Displacement
d) Angular acceleration
10. If the velocity of a body is reducing, it is said to have
a) $\mathcal{N e g a t i v e ~ a c c e l e r a t i o n ~}$
b) Retardation
c) Positive Acceleration
d) Both (a) and (b)
11. For a body moving in a straight line, there can be situations with
$\mathcal{A}: v=0, a \neq 0 \quad \mathcal{B}: a=0, v \neq 0$
a) $\operatorname{Onf} \boldsymbol{y} \mathcal{A}$ is correct
6) $\operatorname{Onf}(\mathrm{B}$ is correct
c) $\mathcal{B o t h} \mathcal{A}$ and \mathcal{B} are correct
d) Botf are incorrect
12. One can conclude from the given $x-t$ grapf that

a) $V_{A}>V_{B}$
6) $V_{A}<V_{B}$
c) $V_{A}=V_{B}$ at x_{1}
d) $a_{A}=a_{B} 1$
13. If the $v-t$ graph is a straight line inclined to the time axis, then
a) $a=0$
b) $a \neq 0$
c) $a=$ cons tant $\neq 0$
d) $a \neq$ constant $\neq 0$
14. \mathcal{A} Gody starting at a point, say \mathcal{A}, reaches, say \mathcal{B}, afead in a straight line and returns back to \mathcal{A}. Thenthere is
a) Positive displacement
6) negative displacement
c) zero displacement
d) cannot be said
15. A car accelerate, uniformly from $15 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in 5 minutes. The acceleration is
(a) $5 \mathrm{~ms}^{-2}$
(b) $1 \mathrm{~km} / \mathrm{s}^{-2}$
(c) $216 \mathrm{~ms}^{-2}$
(d) $216 \mathrm{~km} / \mathrm{s}^{-2}$
$u=15 \mathrm{~km} / \mathrm{h}, v=36 \mathrm{~km} / \mathrm{h}, t=5 \mathrm{~min}=\frac{1}{12} h$
$\boldsymbol{a}=\frac{\boldsymbol{v}-\boldsymbol{u}}{\boldsymbol{t}}=\frac{\mathbf{3 6 - 1 8}}{\left(\frac{\mathbf{1}}{12}\right)}=216 \mathrm{~km} / \mathrm{s}^{2}$
16. A body moves in a circle of radius 5 m with a speed of $5 \mathrm{~ms}^{-1}$, Then it fas \mathcal{A} : an acceleration of $\mathbf{5 m s} \mathbf{m}^{\mathbf{2}}$,
\mathcal{B} : an acceleration varying with direction alone
(a) $O n l y \mathcal{A}$ is correct
(6) Only \mathcal{B} is correct
(c) Botf \mathcal{A} and \mathcal{B} are correct
(d) $\mathcal{N e}$ ither \mathcal{A} nor \mathcal{B} is correct
17. A man walks with a speed of $\mathbf{5 m s} \mathbf{S}^{\mathbf{- 1}}$, northwards and then turns to his right to move with the same speed. The change in velocity is
(a) $5 \sqrt{2} N E$
(b) $5 \sqrt{2} S E$
(c) $5 \sqrt{2} s w$
(d) $25 \sqrt{2} S E$

18. The displacement of the body in 5 seconds from the beginning of the motion is

(a) 12.5 m
(b) 100 m
(c) 87.5 m
(d) 50 m

Displacement $=\mathcal{A r e a}$ of $\triangle \mathcal{A B C}$

$$
\mathcal{A}=\frac{1}{2} \times 5 \times 20=50 \mathrm{~m}
$$

19. Pranesh is in seat number 48 of a train moving with a speed of $18 \mathrm{~km} / \mathrm{h}$ and S rinidfi is standing on the platform. Then
$\mathcal{A}: \operatorname{Pranesh}$ is at rest according to another passenger in the train
$\mathcal{B}:$ Srinidfi is moving according to Pr anesf

C: Pranesh is moving according to Srinidfi
$\mathcal{D}: \operatorname{Pranes} h$ is moving according to the train

Then the incorrect options are
(a) \mathcal{A}, \mathcal{D}
(b) \mathcal{B}, \mathcal{C}
(c) \mathcal{B}, \mathcal{D}
(d) $O n l y \mathcal{D}$
20. The v-t graph shownhere depicts the motion of \mathcal{A} and \mathcal{B} such that
(a) They collide when their velocity is $10 \mathrm{~ms}^{-1}$
(6) velocity of \mathcal{A} exceeds beyond $10 \mathrm{~ms}^{-1}$
(c) 6 oth \mathcal{A} and \mathcal{B} have non-zero acceleration
(d) 6 oth \mathcal{A} and \mathcal{B} have zero acceleration.
21. Suppose a boy is enjoying a ride on a merry-go-round which is moving with a constant speed of $10 \mathrm{~ms}^{-1}$, it implies that the boy is
[$\mathcal{N C R T}$ Exe mplar Problem]
(a) $\mathcal{A t}$ rest
(6) moving with no acceleration
(c) in acceleration motion
(d) moving with uniform velocity.
22. Area under a v-t grapf represents a physic al quantity which fias the unit
[N (CRI Exe mplar Problem]
(a) m^{2}
(b) m
(c) m^{3}
(d) ms^{-1}
23. Four cars $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} are moving on a levelled road. Their distance versus time graphs are shown infigure. Choose the correct statement [$\mathcal{N C R I}$ Exemplar Prob[em]

(a) $\operatorname{Car} \mathcal{A}$ is faster thancar \mathcal{D}
(6) $\operatorname{Car} \mathcal{B}$ is the slowest
(c) Car \mathcal{D} is faster thancar \mathcal{C}
(d) Car C is the slowest.
24. Which of the following figures represent uniform motion of a moving object correctly?
[N (CRT Exemplar Problem]
(a)

(b)

(c)

(d)

25. Slope of a velocity-time graph gives
[$\mathcal{N C R I}$ Exemplar Prob[em]
(a) the distance
(c) the acceleration

(e) choal
26. In which of the following cases of motion, the distance moved and the magnitude of displacement are equal? [$\mathcal{N C R I}$ Exemplar Prob[em]
(a) \mathcal{A} car is moving on a straight road
(6) A car is moving in a circular path
(c) The pendulum is moving to and fro
(d) The earth is revolving around the S un

1. c	2.a	$3 . d$	4.d	5.d	$6 . c$	$7 . c$	8. 6	9.6	10.d
11. 6	$12 . a$	$13 . d$	14.c	15.d	16. 6	17.a	18.d	19. a	20.6
21.c	22.6	23.6	$24 . a$	25.c	26.a				

I. Match the column

Column I	Column II
1. Displacement per second	A. Displacement
2. Distance per second	B. Uniform circular motion
3. Negative acceleration	C. Velocity
4. Constant acceleration	D. Retardation
5. Area under v-t grapf	E.Speed

$1 . C$	$2 . E$	$3 . \mathcal{D}$	$4 . \mathcal{B}$	$5 . \mathcal{A}$

28. Equations of motion are applicable for \qquad accelerated motion
29. The maximum displacement between two points in a circular path of radius rcan be \qquad
30. Acceleration of a body whose r-t graph is paralled to time axis is \qquad
31. Ulsha swims in a 90 mlong pool from one end to another and back. Her average velocity is
32. Displacement of a body which moves (3/4) th round of a circular path of radius r is
33. Acceleration and displacement are \qquad quantities

$28 . \mathcal{U n i f o r m l y}$	$29.2 r$	$30 . z e r o$	$31 . z e r o$	$32 . r \sqrt{2}$	33. vector

I. True or False

34. Motion of earth around the sun in non-uniformly accelerated.
35. The acceleration of a body in uniform circularmotion is directed towards the centre of the circular patf
36. Acceleration of a body is expressed in ms^{2} in SI system
37. The negative slope of $s-t$ indicates retarded motion
38. Motion is relative in nature.

34. True	35.False	36. False	$37 . \operatorname{True}$	$38 . \mathcal{T r u e}$

Direction: (Q. 39 to Q 41): In the following Questions, the Assertion and Reason five been put forward. Read tje statements carefully and choose the correct alternative from the following :
a) Botf the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion.
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
c) Assertion is true but the Reason is fatse.
d) The statement of the Assertion is false but the Reason is true.
39. Assertion: Displacement is the shortest distance from one point to another

Reason: Displacement can never be greater than distance travelled.

6) The Assertion and the Reason are correct 6ut the Reason is not the correct explanation of the Assertion.

40. Assertion: Uniform circular motion is also called accelerated motion.

Reason: Direction of motion changes at every point. So velocity is not constant
a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion
41. Assertion: Sun appears to rise in the east and set in the west.

Reason: The earth revolves around the sun in uniform circular motion.
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
42. "An object may appear moving to one person and at rest to another person at the time". Iustify giving an example.
$\mathcal{A n}$ object appearing at rest to one person may appear to be moving to another person. For example, for a boy standing on the ground, a tree or a building appears to be at rest. But for another person sitting in a moving bus, the same object appear to be moving in opposite direction to that of motion of the bus.
43. How are the states of rest and motion relative?

States of rest and motion ore relative because they are interpreted according to the change in position of the object with respect to the origin. For example, mountains trees etc. $\mathcal{A r e}$ at rest with respect to us. But to an astronaut in outer space, they are in motion as the earth is rotating.
44. Distinguish between scalar quantity and vector quantity.

Scalar quantities have magnitude only. For example speed and distance.
Vector quantities have magnitude as well as direction. For example velocity and displacement.
O) Cest Oeneralion (chool
45. The motion of water in a dam serves fuman beings by generating electricity as it is a controlled motion. Give one example of an controlled motion. What effects could it cause?

The motion of water during a furricane or tsunami is uncontrolled. It could cuse mass scale devastation and a severe loss to life and property. Thus motion should occur in a controlled manner.
46. Is it possible that the train in which you are sitting appears to move while it is at rest?

The train in which we are sitting appears to move when the relative position of a point on adjacent train changes. This happens when we are at rest and adjacent train on next track starts moving.
47. What causes the phenomena of sunrise, sunset and change of seasons. How do we perceive this cause?

The motion of earth around the sun causes change of seasons. We perceive the motion of earth by observing the change in positions of stars, moon, planets etc., located in outer space.
48. The walls of your classroom are in motion but appear stationary. Explain.

The walls of classroom are at rest w.r.t. us because their relative position remains constant. \mathcal{B} ut to a person in outer space they appear moving as the earth rotates.
49. Define uniform motion.

When a body covers equal distances in equal intervals of time, then it has uniform motion.
50. Between two given positions, distance travelled can never be less than the displacement. Why?

Distance is the actual length of path between two points which could be curved. Zig zag or straight line. However, displacement is the straight line path which is the shortest possible distance between two points. Thus displacement can never be more than distance. If actual path traversed between two points is a straight line, thendistance is equal to displacement.
51. De fine speed.

Speed is defined as the distance travelled per unit time by a body.
52. Define velocity.

Displacement per unit time of a body is called velocity.
53. The length of minute hand of a clock is 14 cm ; Calculate the speed at which the tip of minute hand moves.

Radius of clock dial = Length of minute $\operatorname{hand}=14 \mathrm{~cm}$
It completes 1 round in $1 \mathrm{f}=(60 \times 60) \mathrm{s}$.
Speed of the tip of minute fiand
$=v=\frac{2 \pi r}{t}=\frac{2 \times \frac{22}{7} \times 14}{60 \times 60}=\frac{11}{450} \mathrm{cms}^{-1}$
54. A particle is moving in a circle of diameter 5 m . What is its displacement when it covers one and a half revolutions?

After one and a fialf revolution, the particle reaches the diame trically opposite end. Thus displacement $=5 \mathrm{~m}$
55. A body is thrown vertically upwards and rises to height f. Calculate (a) total distance travelled (6) displacement of the body when it is caught back.
a) Distance $=2$ h(ascend + descend)
6) Displacement $=$ zero (the body returns back)
56. What is the numerical ratio of average velocity to average speed of an object moving along a straight line path?

In a straight line motion, average velocity = ave rage speed.

Thus their ratio is $1: 1$
57. An electric train is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$. How much distance will it travel in 30s?

Velocity, $v=30 \mathrm{~ms}^{-1}$; time, $t=30 \mathrm{~s}$
Distance $=v t=30 \times 30=900 \mathrm{~m}$
58. Mokian travels at $20 \mathrm{~m} / \mathrm{s}$ from fome to market and returns back at $25 \mathrm{~m} / \mathrm{s}$.

Find his average velocity for the entire journey.

Displacement of the Mohan over the journey = zero
Thus, average velocity $=$ zero
59. Define acceleration

Acceleration is defined as the rate of change of velocity of a body.
60. Define uniform acceleration.

The acceleration of a body is said to be uniform if its velocity changes by equal amount in equalintervals of time.
61. Why in a graph plotted between distance and time, we always put time on \boldsymbol{x} - axis and distance on y-axis?

When a graph is plotted between two variable quantities, then the quantity which varies independently, is plotted on y-axis. Since time is an independent variable, it is plotted on x axis.
62. What type of motion is described by the following grapts?
(a)

(b)

a) Object is at rest
6) Object is innon uniform motion
63. Out of the following, identify the graph which corresponds to a motion with (i) Uniform retardation. (ii) Zero acceleration.
(A)

(\mathcal{B})

i) Uniform retardation: graph C as it has negative slope.
ii) Zero acceleration: grapf \mathcal{B} as it has zero slope.
64. The motion of four cars $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} is represented below. Which of the cars is travelling.
a) the fastest

a) C is travelling the fastest as it has the fighest slope
6) \mathcal{B} is travelling the slowest as it has the lowest slope
65. Which physical quantity is given by the area under the velocity - time graph ?

Displacement of the body.
66. Find the displacement of the body in first 10 seconds in the following graph.

Displacement
=Area under the vt graph

$=$ Are a of rectangle $\mathfrak{A B C D}$
$=\mathcal{A B} \nsucc \mathcal{A D}$
$=15 \mathrm{~ms}^{-1} \times 10 \mathrm{~s}$
67. A car acceleration non-uniformly over a path for time t. Do equation of motion fold true in the case? Why/ Why not?
\mathcal{N} o, because the equation of motions are valid for uniformly accelerated motion only.
68. A van accelerates uniformly and its velocity changes from $5 \mathrm{~m} / \mathrm{s}$. in time t.

Find its average velocity.
Initial velocity, $u=5 \mathrm{~ms}^{-1}$, final velocity $v=25 \mathrm{~ms}^{-1}$
For uniform acceleration, average velocity $=\frac{u+v}{2}=\frac{5+25}{2}=15 \mathrm{~ms}^{-1}$
69. A body is thrown vertically upward with velocity u. Derive an expression for height 'h' to which it rises.

Final velocity at the fighest point, $v=0$
Let acceleration, a (negative as the body travels against gravity). From third equation of motion.
$\mathcal{H}=\frac{v^{2}-u^{2}}{2 a} \Rightarrow \frac{o-u^{2}}{-2 a}=\frac{u^{2}}{2 a}$
70. What type of motion is described by a stone which moves in a circular path with constant speed?

Uniform circular motion
71. Find the angular velocity of a satellite which revolves in a circular orbit of radius 35000 km and completes one round in 12 hours.

Angular velocity, $\omega=\frac{2 \pi}{t}=\frac{2 \times \pi}{12}=\frac{\pi}{6}$
72. A car travels a distance of 360 km in 5 fours. What is the speed in $\mathrm{m}^{\mathbf{- 1}}$

Distance $=360 \mathrm{~km}=360 \times 10^{3} \mathrm{~m}$;
Times $5 K=5 \times 3600 \mathrm{~s}$
Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{360 \times 10^{3}}{5 \times 3600}=20 \mathrm{~m} / \mathrm{s}$.
73. Define displacement of a particle in linear motion. Does it depend upon the origin?

The shortest distance measured from initial position of the particle to its final position is called displacement.
\mathcal{N} o, displacement of a particle does not depend upon the choice of origin.
74. A cyclist once goes round a circular track of diameter 105 m in 5 minutes. Calculate fis speed.

$$
\begin{aligned}
& \mathcal{V}=\frac{\text { Circumference }}{\text { Time }} \\
& =\frac{\pi d}{t}=\frac{\left(\frac{22}{7} \times 105\right) m}{(5 \times 60) s}=\frac{330}{5 \times 60} \\
& =1.1 \mathrm{~ms}^{-1}
\end{aligned}
$$

75. Define (a) average speed (b) average velocity

Average speed is defined as the totaldistance covered by a body per unit time

Average velocity is defined as the total displacement of a body per unit time.
76. Observe the signboards on roads indicating the speed -limit. What does this indication mean? Why over speeding is a hazard?

Speed limits indicate the maximum distance a veficle running on that road can safely cover in one hour. Over speeding could lead to sever accidents and even pose threat to ones life.
77. A body can have zero average velocity but not zero average speed. Why?

The average velocity of a body is zero if its displacement is zero, i.e. the object comes back to its initial position. However, the distance covered by the body is not zero, fence average speed is non-zero.
78. Why is the motion of a train starting from one station stopping at the other is non- uniform?

When the train starts from rest from a station, it accelerates to attain a maximum velocity. Thereafter, on reaching the next station, brakes are applied and it retards before it finally comes to rest. Thus, the motion of the train is non-uniform.
79. Represent the given data grapfically

Time (insec)	0	2	4	6
Distance (in m)	0	5	10	20

80. A cyclist travels a distance of 4 km from \mathcal{P} to Q and then moves a distance of 3 km at right angle to $\mathcal{P Q}$. Find his displacement.
$\mathcal{P Q}=4 \mathrm{~km}, Q \mathcal{R}=3 \mathrm{~km}$

Displacement $P R=\sqrt{P Q^{2}+Q R^{2}}$
(Pythagoras theorem)

$$
=\sqrt{4^{2}+3^{2}}=5 \mathrm{~km}
$$

81. The brakes applied to a train moving at $90 \mathrm{~km} / \mathrm{h}$ produces a retardation of $5 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$. What distance will it cover before coming to a stop?

$$
u=90 \mathrm{~km} / \hbar=90 \times \frac{5}{18} m \mathrm{~s}^{-1}
$$

$$
\begin{aligned}
& \mathcal{V}=0, a=-5 \mathrm{~ms}^{-2} \\
& \text { Distance, } s=\frac{v^{2}-u^{2}}{2 a}=\frac{0-(25)^{2}}{2 X(-5)} \\
& =62.5 \mathrm{~m}
\end{aligned}
$$

82. A train starting from rest moves with uniform acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. Find its velocity when it has travelled a distance of 1 km .

Initial velocity, $\quad u=0$
Acceleration $\quad a=5 \mathrm{~ms}^{-2}$
Displacements $\quad s=1 \mathrm{~km}=1000 \mathrm{~m}$
Final velocity $\quad v=$?
$\mathcal{B y}$ third equation $=v^{2}=u^{2}+2$ as

$$
\begin{aligned}
& \Rightarrow v=\sqrt{2 a s} \\
& =\sqrt{2 X 5 X 1000} \\
& =100 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

I. Sfort Answer questions

83. Distinguish between displacement and distance covered by a body in given time.

Distance	Displacement
1. The length of path covered by a moving object irrespective of the direction in which object is moving 2. It is a scalar quantity 3. It cannot be zero for a moving body 4. It is always greater than or equal to displacement 5. It is always positive	1. The shortest distance from initial position of an object to its final position 2. It is a vector quantity 3. It can be zero if object comes back to its starting point. 4. It can be equal to distance only if the body travels in straight line, otherwise is atways smaller than distance 5. It can be positive, negative or zero.

84. (a) If you divide the total distance travelled on a car trip, are you calculating average speed or magnitude of ave rage velocity?
6) Under what circumstances are the two quantities same? Illustrate with the felp of an example.
a) Average speed
7) When a body, say a car, travels 100 km on a straight fighway, then the distance travelled is equal to displacement. In such a situation, average speed equals the magnitude of average velocity.
85. A train covers half of its journey with a speed of $30 \mathrm{~m}^{\mathbf{- 1}}$ and other half with a speed of $40 \mathrm{~ms}^{\mathbf{- 1}}$. Calculate its average speed for the entire journey.

Let length of each half of journey $=x$
Time taken for each half $=t_{1}$ and t_{2} respectively
$\therefore t_{1}=\frac{x}{30} s, t_{2}=\frac{x}{40} s,\left(\right.$ time $\left.=\frac{\text { distance }}{\text { speed }}\right)$
Totaltime, $t=t_{1}=\frac{x}{30}+\frac{x}{40}=\frac{2 x}{120}$

Total distance $=2 x$
Average speed $=\frac{\text { distance }}{\text { time }}=\frac{2 x}{7 x / 120}$
$=\frac{2 \times 120}{7}=34.3 \mathrm{~m} / \mathrm{s}$.

Speed of the entire journey is $34.3 \mathrm{~m} / \mathrm{s}$.
86. What type of motion is represented by following displacement - time graph:

a) Line ar motion with constant velocity
6) Linear motion with constant velocity after which the direction of motion reverses and Gody moves with constant velocity.
c) \mathfrak{N} on-uniform motion.
87. Starting from a stationary position, Anil paddles fis bicycle to attain a velocity of 10 $m \boldsymbol{s}^{\mathbf{- 1}}$ in 25 s . Then, he applies brakes such that he again comes to rest after next 50 s . Calculate the acceleration of the bicycle in both cases. Also find the total distance covered by Anil.

Initial velocity $u_{1}=0$ final velocity
$v_{1}=10 \mathrm{~ms}^{-1}$, and time, $t_{1}=25 \mathrm{~s}$
Acceleration, $a_{1}=\frac{v_{1-} u_{1}}{t_{1}}=\frac{10-0}{25}=\frac{2}{5} m S^{-2}$
Distance $s_{1}=u_{1} t_{1}+\frac{1}{2} a_{1} t_{1}^{2}$
$=0+\frac{1}{2} \times \frac{1}{2} \times 25 \times 25$
$=125 \mathrm{~m}$
$\mathcal{A g a i n}, u_{2}=v_{1}=10 \mathrm{~ms}^{-1}, v_{2}=0, t_{2}=50 \mathrm{~s}$
Acceleration, $a_{2}=\frac{v_{2-} u_{2}}{t_{2}}=\frac{0-10}{50}=\frac{-1}{5} \mathrm{~ms}^{-2}$
Distance, $s_{2}=u_{2} t_{2}+\frac{1}{2} a_{2} t_{2}^{2}$
$=10 \times 50+\frac{1}{2}\left(-\frac{1}{5}\right) \times 50 \times 50$
$=500-250=250 \mathrm{~m}$

Total distance $=s_{1}+s_{2}=125 m+250 m$
$=375 \mathrm{~m}$

Totaldistance covered by Anil is 375 m .
88. Rajeev went from Dethi to Chandigarf on his motorbike. The odometer of bike reads 4200 km at the start of the trip and 4460 km at the end of his trip. If Rajeevtook 4 h 20 min to complete fis trip, find the average speed and average velocity in $\mathrm{Km}^{\mathbf{- 1}}$ as well as $\mathrm{m}^{\mathbf{- 1}}$

Distance covered $=4460 \mathrm{~km}-4200 \mathrm{~km}$
$=260 \mathrm{~km}$
Time taken $=4 \curvearrowleft 20 \mathrm{~min}=4 \frac{1}{3} \hbar=\frac{13}{3}$ h
Ave rage speed $=\frac{\text { Total distance travelled }}{\text { Total time taken }}$
$=\frac{260 \mathrm{~km}}{\left(\frac{13}{3}\right) \mathrm{h}}=60 \mathrm{~km} / \mathrm{h}$
$=$ In m / s, average speed $=\left(60 \times \frac{5}{18}\right)=16.67 \mathrm{~m} / \mathrm{s}$.
89. The velocity-time graph of a body is shown below:
a) State the kind of motion represented by $O \mathcal{A}$ and $\mathcal{A B}$.
6) Find the velocity of the body after 10 s and after 40 s .
c) What is the negative acceleration of the body?
d) Find the distance travelled between $10^{\text {th }}$ and $30^{\text {th }}$ second.

a) $O \mathcal{A}$: Uniform acceleration; $\mathfrak{A B}$: Constant velocity
6) Velocity after $10 \mathrm{~s}=20 \mathrm{~ms}^{-1}$; velocity after $40 \mathrm{~s}=$ zero
c) $\mathcal{N e g a t i v e ~ a c c e l e r a t i o n ~}=$ slope of $\mathcal{B C}=\frac{0-20}{40-30}=-2 \mathrm{~ms}^{-2}$
d) Distance travelled between $10^{\text {th }}$ and $30^{\text {th }}$ second

$$
\begin{aligned}
& =\mathcal{A r e} \text { a of rectangle } \mathfrak{A B E \mathcal { F }} \\
& =\mathcal{A B} \not \chi \mathcal{A F}=(30-10)(20)=400 \mathrm{~m}
\end{aligned}
$$

90. While arriving gayant travels 30 km with a uniform speed of $40 \mathrm{~km} / \mathrm{h}$ and next 30 km with a uniform speed of $20 \mathrm{~km} / \mathrm{h}$. Find his average speed.

Distances, $s_{1}=30 \mathrm{~km} ; s_{2}=30 \mathrm{~km}$

Speeds, $v_{1}=40 \mathrm{~km} / \mathrm{h} ; v_{2}=20 \mathrm{~km} / \mathrm{h}$
To find average speed $\left(v_{a v}\right)$
$\mathcal{A v e r a g e}$ speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{s_{1}+s_{2}}{t_{1}+t_{2}}$
$s_{1}+s_{2}=30 \mathrm{~km}+30 \mathrm{~km}=60 \mathrm{~km}$
$t_{1}=\frac{s_{1}}{v_{1}}=\frac{30}{20}=0.75 \mathrm{f}+1.5=2.25 \mathrm{~h}$
$\therefore t_{1}+t_{2}=0.75+1.5=2.25 h$
$\therefore v_{a v}=\frac{60 \mathrm{~km}}{2.25 \mathrm{~h}}=16.67 \mathrm{~km} / \mathrm{h}$.
91. A car is moving along a straigft line. It moves from 0 to \mathcal{P} in 18 s and returns from P to Q in $6 s$. Find its average velocity and average speed in going from (i) 0 to P and back to Q.

Distance $O P=360 \mathrm{~m}, \mathcal{P Q}=360-240=120 \mathrm{~m}$ and $O Q=240 \mathrm{~m}$
ii) Distance $O P+\mathcal{P Q}=360+120=480 \mathrm{~m}$

Time $=18 s+6 s=24 s$

Displacement $=O Q=240 \mathrm{~m}$
\therefore Average velocity $=\frac{240 \mathrm{~m}}{24 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}$.
92. \mathcal{A} powerful motorcycle can accelerate from rest to $20 \mathrm{~m} / x$ in only 4 s .
a) what is its average acceleration?
6) How far does it travel in that time? Initial velocity, $u=0$, final velocity $v=28 \mathrm{mS}^{-1}$, time $t=4 \mathrm{~s}$.
a) Acceleration, $a=\frac{v-u}{t}=\frac{28-0}{4}=7 m S^{-2}$
b) Distance, $s=u t+\frac{1}{2} a t^{2}$
$=0+\frac{1}{2} \times 7 \times[4]^{2}=56 \mathrm{~m}$
93. Name a device that measures distance travelled by automobiles. A body travels a distance of 15 m from \mathcal{A} to \mathcal{B} and then moves a distance of 20 mat right angle to $\mathcal{A B}$. Calculate the total distance travelled and the displacement.
$\mathcal{A n}$ odometer measures the distance travelled in automobiles.

Distance $=\mathcal{A B}+\mathcal{B C}$

$$
=15 \mathrm{~m}+20 \mathrm{~m}=35 \mathrm{~m}
$$

Displacement $=\mathcal{A C}=\sqrt{A B^{2}+B C^{2}}$
$=\sqrt{(15)^{2}+(20)^{2}}$
$=\sqrt{625}=25 \mathrm{~m}$
94. a) \mathcal{A} train 100 m along is moving with a constant velocity of $60 \mathrm{~km}^{\mathbf{- 1}}$. Find the time it takes to cross the bridge 1 km long.
6) The slope of the line on a position time graph reveals information about an object's velocity. What conclusion can you draw regarding the motion of an object, if the position - time graph is a:
i) horizontal line parallel to time axis
ii) straight line at $\mathbf{4 5}$ 㕵 to time axis
iii) curve
a) Distance travelled by train = length of bridge + length of train = $1000 \mathrm{~m}+100 \mathrm{~m}=$ 1100 m .

$$
\mathcal{V}=60 \mathrm{~km} / \mathrm{h}=60 \times \frac{5}{18}=\frac{50}{3} \mathrm{~ms}^{-1}
$$

Time taken, $t=\frac{1100 \mathrm{~m}}{\left(\frac{50}{3}\right) \mathrm{ms}^{-1}}=66 \mathrm{~s}$
6) i) The object is at rest
ii) The object is moving at constant velocity
iii) The motion of the object is non-uniform.
95. The brakes applied to a car produce as acceleration of $6 \boldsymbol{m s}^{\mathbf{- 2}}$ in the opposite direction to the motion. If the car takes $2 s$ to stop after the application of brakes, calculate the distance it travels during this time.

Acceleration $a=-6 m s^{-2}$

Final velocity $\quad v=0$

Time, $t=2 s$

Initial velocity, $u=v-a t=0-(-6)(2)=12 \mathrm{~ms}^{-1}$
Distance travelle d, $x=\frac{v^{2}-u^{2}}{2 a}=\frac{0-(12)^{2}}{2 \times(-6)}=12 \mathrm{~m}$
96. The graph given below shows the position of a body at different times. Calculate the speed of the body as it moves from:

i) \mathcal{A} to \mathcal{B}
6) \mathcal{B} to C
c) C to \mathcal{D}
i) Speed from \mathcal{A} to $\mathcal{B}=S$ lope $\mathcal{A B}$
$=\frac{(3-0) \mathrm{cm}}{(5-2) \mathrm{s}}=1 \mathrm{~cm} / \mathrm{s}$.
ii) Speed from \mathcal{B} to $\mathcal{C}=$ slope $\mathcal{B C}=$ zero
iii) Speed from \mathcal{C} to $\mathcal{D}=\operatorname{slope} \mathcal{C D} \frac{(7-3) \mathrm{cm}}{(9-7) \mathrm{s}}=2 \mathrm{~cm} / \mathrm{s}$
97. a) Define average speed
6) \mathcal{A} bus travels a distance of 120 km with a speed of $40 \mathrm{~km} / \mathrm{h}$ and returns with a speed of $30 \mathrm{~km} / \mathrm{h}$. Calculate the average speed for the entire journey.
a) Average speed is the total distance travelled by a body divided by the total time taken.

$$
\text { b) } s=129 \mathrm{~km}, u_{1}=40 \mathrm{~km} / \mathrm{h}
$$

$$
t=\frac{s}{u_{1}}=\frac{120}{40}=3 \mathfrak{h}
$$

$$
u_{2}=30 \mathrm{~km} / \hbar, t_{2}=\frac{s}{u_{2}}=\frac{120}{30}=4 \mathrm{~h}
$$

$$
\left[t=t_{1}+t_{2}=3+4=7 \mathrm{hr}\right]
$$

Ave rage speed $=\frac{120 \mathrm{~km}}{7 \mathrm{~h}}=17.14 \mathrm{~km} / \mathrm{h}$
98. Study the given graph and answer the following questions.
i. Which part of the graph shows accelerated motion?
ii. Which part of the graph shows retarded motion?
iii. Calculate the distance travelled by the body in first 4 seconds of journey graptically.

i) $\mathfrak{A B}$ shows uniformly accelerated motion.
ii) CD shows uniformly retarded motion.
iii) Distance $=$ area of $\Delta \mathcal{A B E}$

$$
=\frac{1}{2} \times \mathcal{A E} \times \mathcal{B E}=\frac{1}{2} \times 4 \times 4=8 \mathrm{~m}
$$

99. A boy runs for 10 min at a uniform speed of 9 kmh . At what speed should be run for the next 20 min so that the average speed comes to $12 \mathrm{~km} / \mathrm{hr}$?

$$
\begin{aligned}
& \text { Speeds } v_{1}=9 \mathrm{~km} / \mathfrak{h}, v 2=\text { ? } \\
& \text { Times } t_{1}=10 \mathrm{~min}=(1 / 6) \mathfrak{h}, t_{2}=20 \mathrm{~min}=\frac{1}{3} \\
& \text { Ave rage speed }=\frac{\text { Total distance }}{\text { Total time }} \\
& v_{\text {av }}=\frac{v_{1} t_{1}+v_{2} t_{2}}{t_{1}+t_{2}} \\
& 12=\frac{\left(9 \times \frac{1}{6}\right)+\left(\frac{v_{2 / 3}}{\left(\frac{1}{6}+\frac{1}{3}\right)}\right.}{12=2\left[\frac{3}{2}+\frac{v_{2}}{3}\right]} \\
& \Rightarrow 6=\frac{9+2 v_{2}}{6} \\
& \text { Or } v_{2}=\frac{27}{2}=13.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

100. a) Define uniform acceleration. What is the acceleration of a body moving with uniform velocity?
6) \mathcal{A} particle moves over three quarters of a circle of radius r. What is the magnitude of its displacement?
a) The acceleration of a body is said to be uniform if its velocity increases or decreases by equal amounts in equal intervals of time. When a body moves with uniform velocity, its acceleration is zero.
7) If a particle starts from \mathcal{A} and stops at \mathcal{C}, then displacement $=\mathcal{A C}$

\mathcal{B} P Pythagoras Theorem, $\mathcal{A C}=r \sqrt{2}$
101. Velocity - time graph for the motion of an object in a straight line parallel to the time $a x i s$.
a) Identify the nature of motion of the object.
6) Find the acceleration of the object.
c) Draw the shape of distance -time graph for this type of motion.
a) Uniform motion
b) Zero

102. The speed - time graphs of two cars are represented by P and Q as shown below.

a) Find the difference in the distance travelled by the two cars (in m) after $4 s$
6) Do they ever move with the same speed? If so when?
c) What type of motion car P and Q are undergoing?
a) Distance travelled by $\mathcal{P}=$ area of $\triangle \mathcal{A B C}$

$$
\begin{aligned}
& =\frac{1}{2} \times \mathcal{B C} \times \mathcal{A C} \\
& =\frac{1}{2} \times 6 \times 4 \\
& =12 \mathrm{~m}
\end{aligned}
$$

Distance travelled by $\mathcal{P}=$ area of $\Delta \mathcal{A B C}$

$$
\begin{aligned}
& =\mathcal{A D} \not \subset \mathscr{A C} \\
& =1.5 \times 4=6 \mathrm{~m}
\end{aligned}
$$

$$
\text { Difference } \quad=12 m-6 m=6 m
$$

6) Their speed is same at $t=2.8$
c) $\mathcal{P}:$ Uniform acceleration
$Q:$ Constant speed
103. A boy runs for 10 min at a uniform speed of $9 \mathrm{~km} / \mathrm{h}$. At what speed should be run for the next 20 min so that the average speed comes to $12 \mathrm{~km} / \mathrm{h}$?

Total time $=10 \mathrm{~min}+20 \mathrm{~min}$

$$
=30 \mathrm{~min}=0.5 \mathrm{f}
$$

Let speed for second interval $=v$
Totaldistance $=\left(9 \mathrm{~km} / \hbar \times \frac{10}{60} h\right)+\left(v \times \frac{20}{60} \mathrm{~h}\right)$

$$
=\left(\frac{3}{2}+\frac{v}{3}\right) k m
$$

Ave rage speed $=\frac{\text { Total distance }}{\text { Total time }}$
$\Rightarrow 12 \mathrm{~km} / \mathrm{K}=\frac{\frac{3}{2}+\frac{v}{3}}{0.5}$
$\Rightarrow v=13.5 \mathrm{~km} / \mathrm{h}$
104. What does the odometer of an automobile measure? Which of the following is moving faster ? Iustify your answer
i) \mathcal{A} scooter moving with a speed of 300 m per minute
ii) \mathcal{A} car moving with a speed of 36 km per four.

The odometer of an automobile measures the distance travelled by it.
a) Speed of scooter $=300 \mathrm{~m} / \mathrm{min}$

$$
=\frac{300 \mathrm{~m}}{60 \mathrm{~s}}=5 \mathrm{~m} S^{-1}
$$

6) Speed of car $=36 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& =\frac{300 \mathrm{~m}}{60 \mathrm{~s}}=5 \mathrm{mS}^{-1} \\
& =36 \times \frac{5}{18} \mathrm{mS}^{-1}=10 \mathrm{mS}^{-1}
\end{aligned}
$$

Thus, car is moving faster.
105. \mathcal{A} car travels from stop \mathcal{A} to shop \mathcal{B} with a speed of $30 \mathrm{~km} / \mathrm{h}$. Find
i) displacement of the car
ii) distance Travelled $\mathcal{B y}$ The Car
iii) Average speed of car
i) Displacement of the car =zero, as it returns back to initial point.
ii) Let distance from \mathcal{A} to $\mathcal{B}=x$

Thus total distance from \mathcal{A} to \mathcal{B} and \mathcal{B} to $\mathcal{A}=2 x$
iii) Time taken from \mathcal{A} to $\mathcal{B}=\frac{x}{30} h$ and from \mathcal{B} to $\mathcal{A}=\frac{x}{50} h$

$$
\text { Total time }=\frac{x}{30}+\frac{x}{50}=\frac{8 x}{150}
$$

Ave rage speed $=\frac{\text { Total distance travelled }}{\text { Time taken from }}$

$$
=\frac{2 x}{\frac{8 x}{150}} \kappa=37.5 \mathrm{kmh}^{-1}
$$

106. A car moves with a speed of $30 \mathrm{~km} / \mathrm{h}$ for half an hour. $25 \mathrm{~km} / \mathrm{h}$ for one hour and $40 \mathrm{~km} / \mathrm{h}$ for two hours. Calculate the average speed of the car

Ave rage speed $=\frac{\text { Total distance travelled }}{\text { Time taken from }}$
Time $=0.5 \hat{h}+1 \mathfrak{h}+2 \mathfrak{h}=3.5 \hat{h}$

Distance $=\left(\begin{array}{lll}30 & \times 0.5\end{array}\right)+(25 \times 1)+(40 \times 2)$
[as distance $=$ speed χ time]
$=15+25+80=120 \mathrm{~km}$
Ave rage speed $=\frac{120 \mathrm{~km}}{3.5 \mathrm{~h}}=34.28 \mathrm{~km} / \mathrm{h}$
107. A bus accelerates uniformly from $54 \mathrm{~km} / \mathrm{h}$ to $72 \mathrm{~km} / \mathrm{h}$ in 10 seconds, calculate
i) acceleration in $\boldsymbol{m} / \boldsymbol{s}^{\mathbf{2}}$
ii) distance covered by the bus in metres during this interval. $u=54 \mathrm{~km} / \mathfrak{h}=54 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$.

i) $a=\frac{v-u}{t}=\frac{20-15}{10}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
ii) $s=\frac{v^{2}-u^{2}}{2 a}=\frac{(20)^{2}-(15)^{2}}{(2 \times 0.5)}=175 \mathrm{~m}$
108. Draw the shape of the distance-time graph for uniform and non- uniform motion of object, \mathcal{A} bus starting from rest moves with uniform acceleration of $0.1 \mathbf{m s}^{-\mathbf{2}}$ for 2 minutes. Find.
a) the speed acquired
6) the distance travelled
$u=0, a=0.1 \mathrm{~ms}^{-2}, t=120 \mathrm{~s}$

Uniform motion

\mathcal{N} on Uniform motion
a) $v=u+a t=0+0.1 \times 120=120.1 \mathrm{~ms}^{-1}$
6) $s=\frac{v^{2}-u^{2}}{2 a}=\frac{(12)^{2}-0}{2 \times 0.1}=720 \mathrm{~m}$
$109 \mathcal{A}$ car travels at $54 \mathbf{k m} / \boldsymbol{h}$ for first $20 \mathrm{~s}, 36 \frac{\mathbf{k m}}{\boldsymbol{h}}$ for next 30 s and finally $18 \mathrm{~km} / \boldsymbol{h}$ for next 10 s . Find its average speed.

Speeds $\quad v_{1}=\frac{54 k m}{h}=\frac{15 m}{s}: v_{2}=\frac{36 k m}{h}$

$$
=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot v_{3}=18 \frac{\mathrm{~km}}{\mathrm{~h}}=5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Time $\quad: t_{1}=20 s, t_{2}=30 s, t_{3}=10 s$
Distance $\quad: s_{1}=15 \times 20=300 \mathrm{~m}$

$$
s_{2}=10 \times 30=300 \mathrm{~m}
$$

$$
s_{3}=5 \times 10=50 \mathrm{~m}
$$

Total Distance

$$
: s=s_{1}+s_{2}+s_{3}
$$

$$
=300+300+50
$$

$$
=650 \mathrm{~m}
$$

Totaltime $=t_{1}+t_{2}+t_{3}$

$$
=20 s+30 s+10 s=60 s
$$

Average speed $\quad=\frac{650}{60}=10.83 \frac{\mathrm{~m}}{\mathrm{~s}}$
110. Distinguish between uniform motion and non-uniform motion. Is uniformly accelerated motion uniform motion? Give one example each of uniform and non-uniform motion.
i) When a body trave hs equal distance in equal intervals of time. Its motion is uniform.

When the body trave ls unequal distance in equal intervals of time. Its motion is nonuniform.
ii) $\mathfrak{N} o$
iii) Example of Uniform motion: \mathcal{A} car moving on a straight road with constant speed.

Example of \mathcal{N} (on-uniform motion: \mathcal{A} car moving in a crowded market.
111. The speedometer readings of a car are shown below. Find the acceleration of the car and its displacement.

Time	Speedometer
9.25 am	$36 \mathrm{~km} / \mathrm{h}$
9.45 am	$72 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& u=36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s} . \mathcal{V}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}, t=20 \mathrm{~min}=1200 \mathrm{~s} \\
& a=\frac{v-u}{t}=\frac{20-10}{1200}=\frac{10}{1200}=\frac{1}{120} \mathrm{~ms}^{2} \\
& s=u t+\frac{1}{2} a t^{2} \\
& =10 \times 1200+\frac{1}{2}=\frac{1}{120} \times 1200 \times 1200
\end{aligned}
$$

$$
=12000+6000=18000 \mathrm{~m}=18 \mathrm{~km}
$$

112. A particle moves 3 m north then 4 m east and finally 6 m south. Calculate the displacement.
[CBSE 2012]

The particle starts from 0 , moves to \mathcal{A}, then to \mathcal{B}, then reaches \mathcal{D},

$$
\begin{aligned}
& O \mathcal{A}=3 \mathrm{~m} \\
& \mathfrak{A B}=4 \mathrm{~m} \\
& \mathcal{B D}=6 \mathrm{~m}
\end{aligned}
$$

$$
\text { Since, } \mathcal{B C}=\mathcal{A} O=3 \mathrm{~m}
$$

$$
\Rightarrow \quad C D=3 \mathrm{~m}
$$

$$
O C=\mathcal{A B}=4 \mathrm{~m}
$$

[Pythagoras theorem]
$\mathcal{T h u s}, O \mathcal{D}=\sqrt{(4)^{3}+(3)^{2}}=\sqrt{16+9}=5 \mathrm{~m}$

I. $\operatorname{LON} \mathcal{N} \mathcal{A N S}$ WER TVPE QUES TIO $\mathcal{N} S$

113. Answer the following questions:
i) An object moves on a circular path of radius r. What will be the distance and displacement when it completes half revolution?
ii) Give the name of physical quantity that corresponds to the rate of change of velocity and write its SI unit
iii) Why is the motion in a circle with constant speed called accelerated motion?
(i) Distance $=\frac{1}{2}$ of circumference $=\pi r$

Displacement $=$ Diameter $=2 r$
(ii) Acceleration

Unit $: m / s^{2}$
(iii) Velocity of object changes due to change indirection. So, it is called accelerated motion.
114. Draw velocity time graph for a body that has initial velocity ' u ' and is moving with uniform acceleration ' a '. Use it to derive $v=u+a t$;
$S=u t+\frac{1}{2} a t^{2}$ and $v^{2}=u^{2}+2 a s$

Slope of graph $=a=$ acceleration
$\therefore a=\frac{v-u}{t}$

Orv=u+at
$s=$ area of $\mathcal{A B C D}$
$s=\frac{1}{2}(\mathcal{A B}+\mathcal{C D})(\mathcal{A D})$
$s=\frac{1}{2}(u+v)(t)$
$s=\frac{1}{2}(u+u+a t)(t)($ from list equation $)$

$s=\frac{1}{2}(2 u+a t) t$
or $s=u t+\frac{1}{2} a t^{2}$
$s=\frac{1}{2}(u+v) \frac{(v-u)}{a}=\frac{\left(v^{2}-u^{2}\right)}{2 a}$
or $v^{2}=u^{2}+2 a s$.
115. Define uniform circular motion. Is it an accelerated motion? If yes, what is the direction of acceleration? Give an example of this type of motion?

Uniform circular motion:
i) \mathcal{A} body moving with uniform speed along a circular path is said to be in uniform circular motion.
ii) Direction of motion changes at every point. Thus, velocity changes though speed is constant. Thus it is also called accelerated motion.
iii) Acceleration is directed towards centre of circular path. Direction of velocity is given by a tangent drawn at any point of the path

Example: A stone tied to a thread and whirled around, rotating fan etc.
116. a) Draw a velocity -time graph for an object in uniform motion. Show that the slope of velocity time-graph gives acceleration of the body.
6) $\mathcal{A n}$ aeroplane starts from rest with an acceleration of $3 \boldsymbol{m s}^{-2}$ and tasks a run for 35 s before taking off. What is the minimum length of runway and with what velocity the plane took off?

Acceleration $=\frac{\text { Velocity change }}{\text { Time interval }}$
Or $\quad a=\frac{y \text {-intercept in } v-t \text { graph }}{x-\text { intercept in } v-t \text { graph }}$

Or $a=$ Slope of $v-t$ graph

Hence, proved
6) Initial velocity $u=0$

Acceleration $a=3 \mathrm{~ms}^{-2}$

Time $t=35 \mathrm{~s}$

Velocity of taken off $=105 v=u+a t$
$0+3 \times 35=105 \mathrm{~ms}^{-1}$

Length of runway,
$S=u t+\frac{1}{2} a t^{2} \quad=0+\frac{1}{2} \times 3 \times 35 \times 35$
$=1837.5 \mathrm{~m}$
117. The velocity - time graph for motion of two bodies \mathcal{A} and \mathcal{B} is shown. Read the graph carefully and answer the following questions:

a) Which of the two bodies has a higher velocity at time (a) $t=2 \mathrm{~s}$ (b) $t=4 \mathrm{~s}$?
6) Which of the two Godies has (a) constant velocity (6) increasing velocity?
c) $\mathcal{A} t$ what time is the velocity of the two bodies same?
d) W hat are the velocities of \mathcal{A} and \mathcal{B} at time $t=I s$?
e) What is the change is the velocity of 6 ody \mathcal{R} in an interval of $2 s$?
a) At $t=2 s$, velocity of $\mathcal{A}, v_{a}=30 \mathrm{~ms}^{-1}$

Velocity of $\mathcal{B}, v_{a}=20 \mathrm{~ms}^{-1}$
$\therefore v_{A}>v_{B}$
$\mathcal{A} t \quad t=4 s, v_{A}=30 \mathrm{~ms}^{-1}, \quad v_{b}=40 \mathrm{~ms}^{-1}$,
$\therefore v_{B}>v_{A}$
6) \mathcal{A} has constant velocity and \mathcal{B} has increasing velocity.
c) $\mathcal{A t} t=3 \mathrm{~s}$, velocity of 6 oth \mathcal{A} and \mathcal{B} is same,

$$
\text { i.e.. } 30 \mathrm{~ms}^{-1}
$$

d) $\mathcal{A t} t=1 \mathrm{~s}, v_{A}=30 \mathrm{~ms}^{-1}$, and $v_{B}=10 \mathrm{~ms}^{-1}$
e) In $2 s$, velocity of \mathcal{B} changes from 0 to $20 \mathrm{~ms}^{-1}$
$\therefore \Delta v_{B}=20 \mathrm{~ms}^{-1}$
118. The graph given alongside shows how the speed of a car changes with time.

(i) What is the initial speed of the car?
(ii) What is the maximum speed attained by the car?
(iii) Which part of the graph shows zero acceleration?
(iv) Which part of the graph shows varying retardation?
(v) Find the distance travelled in first \mathcal{B} fours.
(i) $10 \mathrm{Km} / \mathrm{h}$ (at \mathcal{A})
(ii) $35 \mathrm{~km} / \mathrm{h}$
(iii) $\mathcal{B C}$ (iv) $\mathcal{C D}$
(v) Are a of the graph as shown shaded
$=\mathcal{A r e a}$ of trapezium $\mathcal{A B E \mathcal { F }}+\mathcal{A r e a}$ of rectangle $\mathcal{B C D F}$

$$
\begin{aligned}
& =\left[\frac{1}{2}(E A+F B \times E F) \times E F\right]+(B C \times F B) \\
& =\left(\frac{1}{2} \times 45 \times 3\right)+(5 \times 35)=242.5 \mathrm{~m}
\end{aligned}
$$

119. Study the velocity-time graph and calculate.

a) The acceleration from \mathcal{A} to \mathcal{B}
6) The acceleration from \mathcal{B} to \mathcal{C}
c) The distance covered in the region $\mathcal{A B E}$
d) The ave rage velocity from C to \mathcal{D}
e) The distance covered in the region $\mathcal{B C F E}$
(a) $a=\frac{v_{A}-v_{B}}{t}=\frac{25}{3}=8.33 \mathrm{~m} / \mathrm{s}^{2}$
b) $a=\frac{17-25}{4-3}=\frac{-8}{1}=8 \mathrm{~m} / \mathrm{s}^{2}$
c) $s=$ area of $\triangle A B E=\frac{1}{2} \times 3 \times 25=37.5 \mathrm{~m}$
d) v

$$
\text { vavg }=\frac{\text { area of } \triangle A C F D}{F D}=\frac{\frac{1}{2} \times 2 \times 17}{2}
$$

$$
=8.5 \mathrm{~m} / \mathrm{s}
$$

e) $s=\mathcal{A r e a}$ of trapezium $\mathcal{B C F E}$

$$
\begin{aligned}
& =\frac{1}{2}(C F+B E) \times E F=\frac{1}{2} \times 42 \times 1 \\
& =21 \mathrm{~m}
\end{aligned}
$$

120. An Insect moves along a circular path of radius 10 cm with a constant speed. It takes 1 min to move from a point on the path to the diametrically opposite point, find (i) the distance covered (ii) the speed (iii) the displacement (iv) the average velocity. [CBSE2014]

(i) Distance covered $=$ Length of arc $\mathcal{A B}$

$$
\begin{aligned}
& =\pi r \\
& =3.14 \times 10 \mathrm{~cm} \\
& =31.4 \mathrm{~cm}
\end{aligned}
$$

(ii) Speed $==\frac{\text { Distance }}{\text { Time }}=\frac{31.4 \mathrm{~cm}}{60 \mathrm{~s}}$

$$
=0.52 \mathrm{~cm} / \mathrm{s}
$$

(iii) Displacement $=$ Diameter

$$
=2 r=20 \mathrm{~cm}
$$

(iv) Average velocity $=\frac{\text { Displacement }}{\text { Time }}$

$$
=\frac{20 \mathrm{~cm}}{60 \mathrm{~s}} 0.3 \mathrm{~cm} / \mathrm{s}
$$

121. The following table gives the data about motion of a car

Time (f)	$11: 00$	$11: 30$	$12: 00$	$12: 30$	$1: 00$
Distance (km)	0	30	30	65	100

Plot the graph.
(i) Find the speed of the car between 12:00 fours and 12:30 fours
(ii) What is the average speed of the car?
(iii) ic

(i) Speed $=$ Slope between 12:00-12:30

$$
=\frac{65-30}{30}=1.17 \mathrm{~km} / \mathrm{min}
$$

(ii) Average speed $=\frac{100 \mathrm{~km}}{2 \mathrm{~h}}=50 \mathrm{~km} / \mathrm{h}$
(iii) \mathcal{N} (o. Gecause it covers unequal distance in equal time intervals.
()) Cext
Oeneralion

122. The velocity-time grapf of a particle of mass 50 g moving in a definite direction is shown in the following figure. Answer the questions based on this figure.

a) What is the velocity of the particle at point 'A'?
6) Find the momentum of the particle at time $\boldsymbol{t}=\mathbf{4 s}$
c) What does the slope of a graph represent?
d) Calculate the distance travelled in 4 seconds.
a) Velocity at $\mathcal{A}=2 \mathrm{~m} / \mathrm{s}$
6) $\mathcal{A} t t=4 s, p=m v=\frac{50}{1000} \mathrm{~kg} \times 2 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
=0.1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

c) Acceleration
d) $\operatorname{Distance}=\mathcal{A r e}$ a of $\triangle O \mathcal{A P}$

$$
=\frac{1}{2} \times 4 \times 2=4 m
$$

123. The position-time grapfs of two objects \mathcal{A} and \mathcal{B} in three different situations for a particular duration are as shown below.

(i)

(ii)

(iii)
a) In which situation the distance between them will remain same?
6) In which situation they are moving in opposite directions?
c) Are they crossing each other in any situation (s)?, If so, fow is it possible is occur?
a) In (iii) as the grapfs are parallel to eachother
7) in (i) point \mathcal{A} moves towards the origin in opposite direction to \mathcal{B}.
c) They cross in (i) and (ii) at point where graphs intersect each other.
1. The displacement of a moving object in a given interval of time is zero. Would the distance travelled by the object also be zero? I ustify your answer.
\mathcal{N} o the object might have travelled some distance, provided the initial position and final position of the body coincide.
2. How will the equations of motion for an object moving with a uniform velocity then v=u and $a=0$.

$$
\begin{aligned}
& \therefore v=u+a t \Rightarrow v=u \\
& S=u t+\frac{1}{2} a t^{2} \Rightarrow s \quad=u t \\
& v^{2}=u^{2}+2 a s \Rightarrow v^{2}=u^{2}
\end{aligned}
$$

3. \mathcal{A} girl walks along a straight path to drop aletter in the letter box and comes back to fer initial position. Her displacement-time graph is shown in figure. Plot a velocity-time graph for the same.

4. \mathcal{A} car starts from rest and moves along the \bar{x}-axis witf constant acceleration of $\mathbf{5 m s} \mathbf{m}^{\mathbf{2}}$ for 8 seconds. It then continues with constant velocity. What distance will the car cover in 12 seconds since it started from rest?
$u=o, a=5 m s^{-2}, t=8 s$
$\therefore \quad s_{1}=u t+\frac{1}{2} a t^{2}=\frac{1}{2} \times 5 \times 8 \times 8$
$=160 \mathrm{~m}$ [for first 8 s]
Velocity at the end of $8 s$,
$v=u+a t=0+5 \chi 8$
$=40 \boldsymbol{m s}^{\mathbf{- 1}}$. (for last 4 s)
$\therefore \quad s_{2}=v t=40 \times 4=160 m$
Total Distance $=s_{1}+s_{2}=160 m+160 m$

$$
=320 \mathrm{~m}
$$

5. A motorcyclist drives from \mathcal{A} to \mathcal{B} with a uniform speed of $\mathbf{3 0 k m} / \boldsymbol{h}^{\mathbf{- 1}}$ and returns back with a speed of $\mathbf{2 0} \mathbf{k m} / \mathbf{h}^{\mathbf{- 1}}$, Find its average speed.

Let distance travelled from \mathcal{A} to $\mathcal{B}=\chi$
\therefore Total Distance $=x+x=2 x$
Time taken to travel from \mathcal{A} to $\mathcal{B}=t_{1}=\frac{x}{30} h$
Time taken to travel from \mathcal{B} to $\mathcal{A}=t_{2}=\frac{x}{20} h$
Total time,$t=t_{1}+t_{2}=\frac{x}{30}+\frac{x}{20}=\frac{x}{12} h$
Average speed $=\frac{2 x}{x / 12}=24 \mathrm{~km} / \mathrm{h}$
6. Draw a velocity versus time graph of a stone thrown vertically upwards and then coming downwards after attaining the maximum height.

Long Answer $\mathcal{T} y p e$ Questions

1. An object is dropped from rest at a height of 150 m and simultaneously another object is dropped from rest at a height 100 m . What is the difference in the ir heights after $2 s$ if both the objects drop with the same acceleration? How does the difference in heights vary with time?

Object 1:
$u=o, h=150 \mathrm{~m}, t=2 \mathrm{~s}, a=10 \mathrm{~m} / \mathrm{s}^{2}$
After $2 \mathrm{~s}, v=u+a t=20 \mathrm{~m} / \mathrm{s}$
Distance, $s=\frac{v^{2}-u^{2}}{2 a}=\frac{400}{20}=20 \mathrm{~m}$
Height $h_{1}=150 m-20 m=130 m$

Object 2
$u=o, h=100 m, t=2 s, a=10 \mathrm{~m} / \mathrm{s}^{2}$
$\mathcal{V}=u+a t=20 \mathrm{~m} / \mathrm{s}$
$s=\frac{v^{2}-u^{2}}{2 a}=\frac{400}{20}=20 \mathrm{~m}$
$h_{2}=100 m-20 m=80 m$
Difference $=h_{1}-h_{2}=50 \mathrm{~m}$
2. An object starting from rest travels 20 m in first $2 s$ and 160 m in next 4 s . What will be the velocity after $7 s$ from the start?

3. Using following data, draw time-displacement graph for a moving object:

Time (h)	0	2	4	6	$\mathcal{8}$	10	12	14	16
Displacement (m)	0	2	4	4	4	6	4	2	0

Ulse this graph to find average velocity for first $4 s$, for ne $\chi t 4 s$ and for last $6 s$

$v_{\text {avg }}$ for first $4 s=S$ lope from $t=0 s$ to $t=4 \mathrm{~s}$
$=\frac{4-0}{4}=1 \mathrm{~m} / \mathrm{s}$
$v_{\text {avg }}($ for $t=4 s$ to $t=8 s)$ is 0 as slope is zero,
$v_{\text {avg }}($ for $t=10 \mathrm{~s}$ to $t=16 \mathrm{~s})=\frac{-6}{6}=-1 \mathrm{~m} / \mathrm{s}$

Or the body is moving towards the origin.
4. An electron moving with a velocity of $5 \times \mathbf{1 0}^{\mathbf{4}} \mathbf{m s}^{\mathbf{- 1}}$ enters into a uniform electric field and acquires a uniform acceleration of $\mathbf{1 0}^{\mathbf{4}} \mathbf{m s}^{\mathbf{- 1}}$ in the direction of its initial motion.
i) Calculate the time in which the electron would acquire a velocity double of its initial velocity.
ii) How much distance the electron would cover in this time?
$u=5 \times 10^{4} \mathrm{~ms}, a=10^{4} \mathrm{~m} / \mathrm{s}^{2}, v=2 u$
(i) $v=u+a t$
$2 u=u+10^{4} t$.
$u x 10^{-4}=t$
$5 \times 10^{4} \times 10^{-4}=t$

Ort $=5 s$
(ii) $s=u t+\frac{1}{2} a^{2}$

$$
\begin{aligned}
= & 5 \times 10^{4} \times 5+\frac{1}{2} \times 10^{4} \times(5)^{2} \\
& =3.75 \times 10^{5} \mathrm{~m}
\end{aligned}
$$

5.O6tain a relation for the distance travelled by an object moving with a uniform acceleration in the interval between $4^{\text {th }}$ and $5^{\text {th }}$ seconds.

If $u=$ initial velocity, then final velocity $=2 u$.

For accelerationa.
$\mathscr{A} t \bigcirc t=4 s, s_{1}=u t+\frac{1}{2} a t^{2}==4 u+8 a$

$\mathcal{A} t \quad t=5 s, s_{2}=u t+\frac{1}{2} a t^{2}=5 u+\frac{25 a}{2}$
$s_{2}-s_{1}=(5-4) u+\frac{a}{2}(25-16)=u+\frac{9 a}{2}$
6. Two stones are thrown vertically upwards simultaneously with their initial velocities u_{1} and u_{2} respectively, Prove that the ratio of heights reached by them would be in the ration of heights reached by them would be in the ratio of $\boldsymbol{u}_{\mathbf{1}}^{\mathbf{2}}: \boldsymbol{u}_{\mathbf{2}}^{\mathbf{2}}$ (Assume upward acceleration is $-g$ and downward acceleration is $-g$ and downward acceleration to $b e+g$)

Given: velocities u_{1} and u_{2}
$\mathcal{H e}$ ight h_{1} and h_{2}
Accelerations $-g$ and $-g$
At fighest points, velocities $v_{1}=v_{2}=0$
Thus, $v^{2}=u^{2}+2 a s$
$\Rightarrow \quad v_{1}^{2}=u_{1}^{2}-2 g h_{1}$
$\mathcal{A n d} v_{2}^{2}=u_{2}^{2}-2 g h_{2}$
$\Rightarrow \quad 0=u_{1}^{2}-2 g h_{1}$
And $0=u_{2}^{2}-2 g h_{2}$
$\Rightarrow \quad u_{1}^{2}=2 g h_{1}$
And $u_{2}^{2}=2 g h_{2}$
$\frac{u_{1}^{2}}{u_{2}^{2}}=\frac{2 g h_{1}}{2 g h_{2}}$
or $u_{1}^{2}: u_{2}^{2}=h_{1}: h_{2}$

