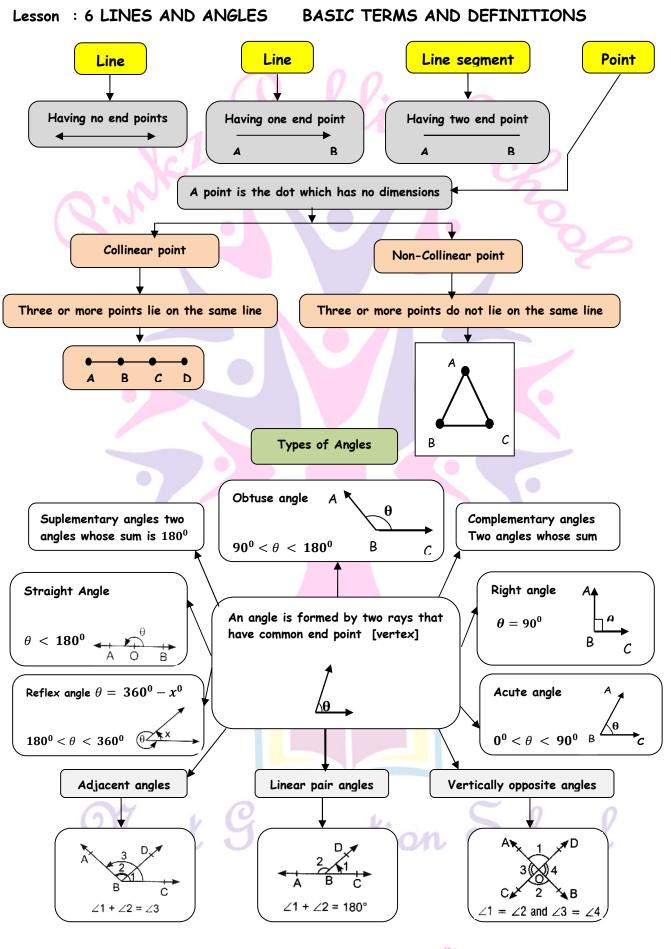
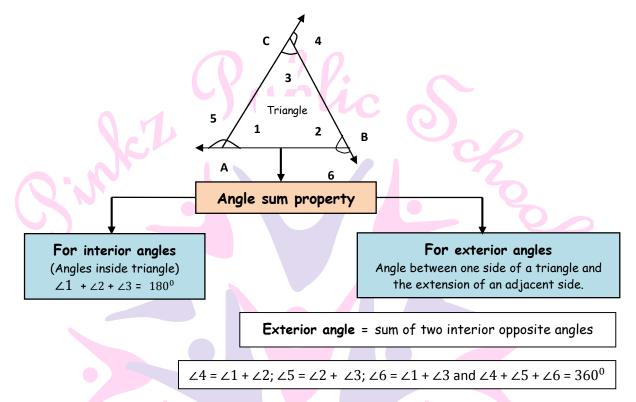


Grade IX

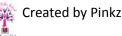


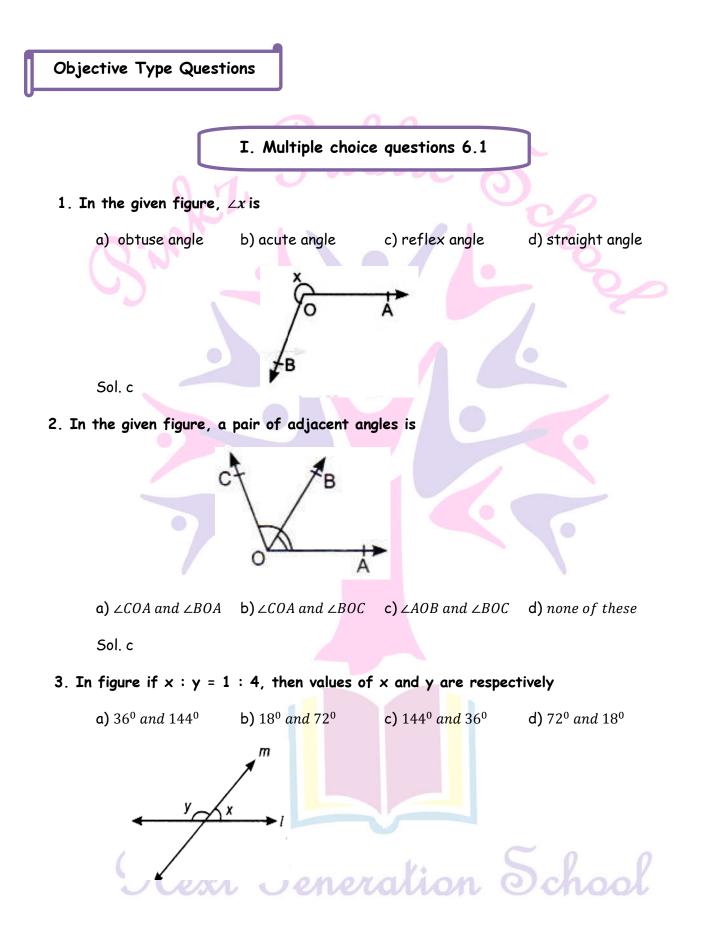
Created by Pinkz

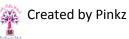
ANGLE SUM PROPERTY OF TRIANGLE AND EXTERIOR ANGLE PROPERTY



- The sum of the angles of a triangle is 180°
- If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.
- Exterior angle of a triangle is greater than either of its interior opposite angles







Given, x: y = 1:4Sol. $\frac{x}{y} = \frac{1}{4} = \frac{K}{4K} \implies x = K \text{ and } y = 4K$ \Rightarrow From the figure, $x + y = 180^{\circ}$ (Linear pair axiom) $k + 4k = 180^{\circ} \implies 5k = 180^{\circ} \implies k = 36^{\circ}$ Hence, $x = k = 36^{\circ}$ And y = $4k = 4 \times 36^{\circ} = 144^{\circ}$ \therefore Correct option is (a) 4. In the given figure, POS is a line, then $\angle QOR$ is b) 40° **a)** 60⁰ 5x - 20° d) 20⁰ c) 80° 55 O Sol. c 5. If the difference between two complementary angles is 10^0 then the angles are, a) 50° , 60° b) $50^{\circ}, 40^{\circ}$ c) $80^{\circ}, 10^{\circ}$ d) 35⁰, 45⁰ Sol. Let an angle be x. Then other angle = $x - 10^{\circ}$. Since the two angles are complementary, So, $x + x - 10^0 = 90^0$ $2x = 90^{\circ} + 10^{\circ} = 100^{\circ}$ \Rightarrow $\Rightarrow x = \frac{100^{\circ}}{2} = 50^{\circ}$ So, one angle = 50° , Then, other angle = x - 10° = 50° - 10° = 40° \therefore Correct option is (b) 6. Diagonals of a rhombus ABCD intersect each other at O, then, what are the measurements of vertically opposite angles $\angle AOB$ and $\angle COD$?

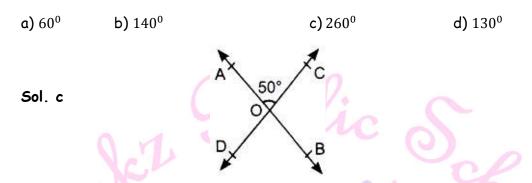
a) $\angle ABO = \angle CDO$ b) $\angle ADO = \angle BCO$ c) $60^{\circ}, 60^{\circ}$ D) $90^{\circ}, 90^{\circ}$

Created by Pinkz

Sol. d

[CBSE 2011]

7. In the given figure, if $\angle AOC = 50^{\circ}$, then ($\angle AOD = \angle COB$) is equal to



D

5y

8. In the given figure, if AOB is a line then find the measure of $\angle BOC, \angle COD, and \angle DOA$

Sol. We have, $\angle BOC + \angle COD + \angle DOA = 180^{\circ}$

$$\Rightarrow 2y + 3y + 5y = 180^{\circ}$$

$$\Rightarrow$$
 10y = 180° \Rightarrow y = 18

 $\therefore \angle BOC = 2y = 2 \times 18^0 = 36^0$

$$\angle COD = 3y = 3 \times 18^0 = 54^0$$

$$\angle DOA = 5y = 5 \times 18^{\circ} = 90^{\circ}$$

9. Check whether the following statements are true or not?

Sol. From figure, we have

a + b = d + e (Vertically opposite angles)

But e≠c

 $\therefore \qquad a+b \neq d+c$

 \Rightarrow Hence, statement (i) is incorrect.

From the figure, we have

a + f + e = 180° [Linear pair axiom](i)

But f = c (Vertically opposite angles)

 $\Rightarrow a + c + e = 180^{0}$ [From (i)]

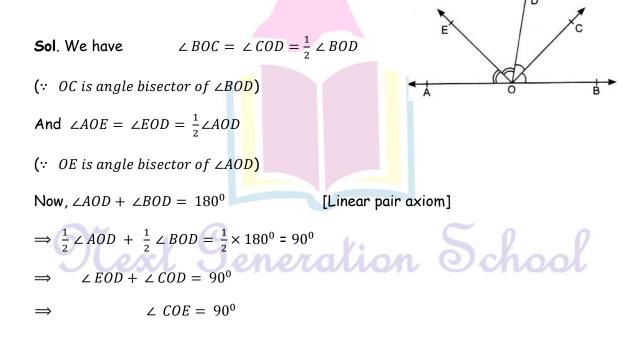
Hence, statement (ii) is true..

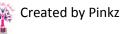
But, c = f [Vertically opposite angles] B + f = c + e [On interchanging c and f]

Hence, statement (iii) is also true.

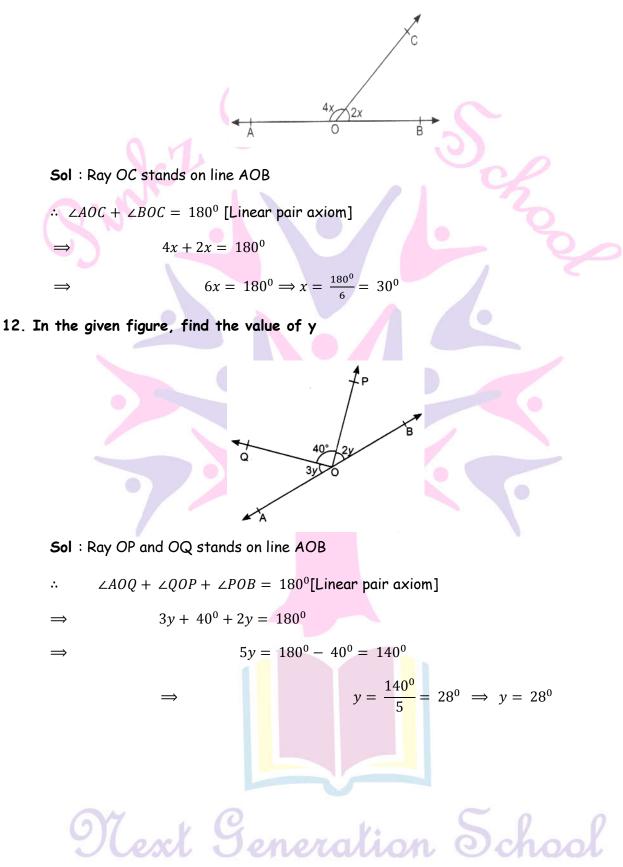
Therefore, statement (ii) and (iii) are correct.

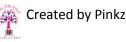
10. Ray OD stands on line AOB, if ray OC and OE bisects $\angle BOD$ and $\angle AOD$, respectively, Find the $\angle COE$.





11. In the given figure, find the value x,





- 13. If ray OC stands on line AB such that $\angle AOC = \angle BOC$, then show that $\angle BOC = 90^{\circ}$
 - Sol : Ray OC stands on line AOB

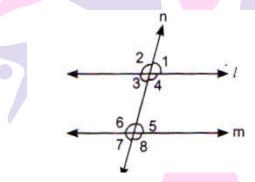
$$\therefore \quad \angle AOC + \angle BOC = 180$$

$$\Rightarrow \quad 2\angle BOC = 180^{\circ} [\because \angle BOC = \angle AOC]$$

$$\Rightarrow \quad \angle BOC = 90^{\circ} \text{ Hence Proved.}$$

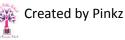
II. Multiple choice questions 6.2

1. In the given figure $\angle 4$ and $\angle 5$ are known as

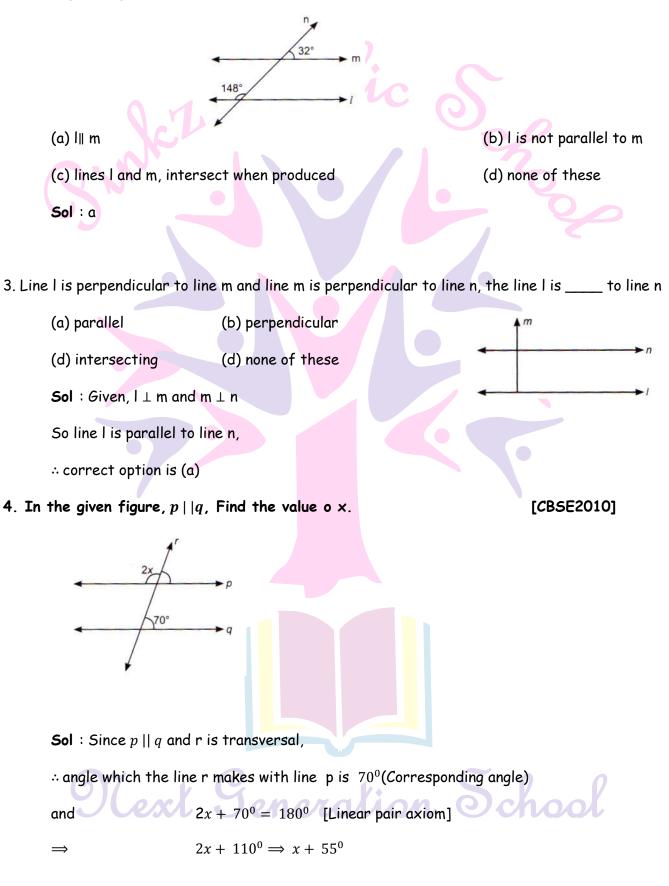


- (a) alternate interior angles
- (b) alternate exterior angles
- (c) corresponding angles
- (d) interior angles on the same side of transversal
- Sol:d

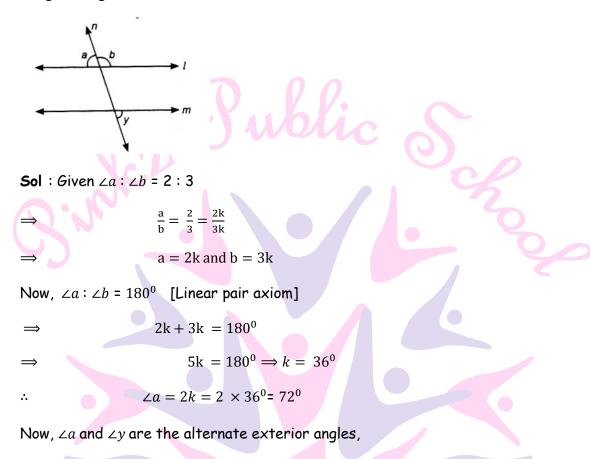
Next Generation School



2. In the given figure, the relation between line I and line m is



5. In the given figure, if l||m and $\angle a : \angle b = 2 : 3$ then find the value of $\angle y$.

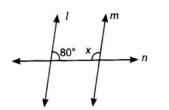


$$\angle a = \angle y \text{ or } \angle y = \angle a = 72^{\circ}$$

6. If a transversal intersects a pair of lines in such a way that a pair of alternate angles are equal, then what conclusion would you like to draw?

Sol : By alternate interior angles theorem, we conclude that a pair of lines are parallel to each other.

7. If a line $l \mid\mid m, n$ is a transversal in the given figure, Find the value of x.

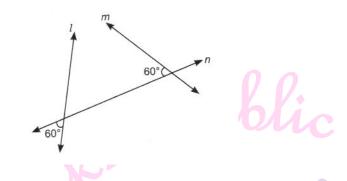


:.

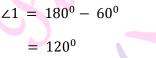
Sol: $l \parallel m$, and n is transversal. Then sum of pair of interior adjacent angles on the same side of transversal is supplementary.

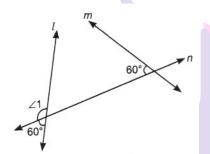
 $\therefore \qquad x + 80^{\circ} = 180^{\circ}$ $\implies x = 100^{\circ}$

8. Check whether I is parallel to m or not?



Sol: $\angle 1 + 60^\circ = 180^\circ$ [Linear pair axiom]





So from the figure, the corresponding angles which makes transversal n with I and m are not equal. Hence, I is not parallel to m.

III. Multiple choice questions 6.3

- 1. What is common between the three angles of a triangle and a linear pair axiom?
 - (a) angles are equal
 - (b) in both cases, sum of angles is 180°
 - (c) In triangle, there are thre<mark>e</mark> angles and in linear <mark>pa</mark>ir, there are two angles
 - (d) None of these

Sol : b

2. In the given figure, $\angle 1 = \angle 2$ then the measurements of $\angle 3$ and $\angle 4$ respectively are

11

(b) $61^{\circ}, 61^{\circ}$

(a) 58°, 61°

(c)119⁰,61⁰+

(d) 119⁰, 119⁰

Sol : From the figure, $\angle 1 + \angle 2 + 58 = 180^{\circ}$ (Angle sum property of triangle] But, given $\angle 1 = \angle 2$ $\angle 1 + \angle 1 + 58^{\circ} = 180^{\circ}$ So $2 \angle 1 = 122^{0}$ \Rightarrow $\angle 1 = \frac{122^0}{2} = 61^0$ \Rightarrow $\angle 2 = 61^{\circ}$ So, $\angle 3 = 58^{\circ} + \angle 2$ Now, (* Exterior Angle Property) $= 58^{\circ} + 61^{\circ} = 119^{\circ}$ ∠4 = 58° + ∠1 (·· Exterior Angle Property) Also, = 58° + 61° = 119° Correct option is (d) :. 3. In the given figure, AB||CD, the value of x is **b)** 60⁰ **c)**90⁰ **a)** 45⁰ **d)** 105⁰ Sol : Given $AB \mid\mid CD$, $\angle BAE + \angle AED = 180^{\circ}$ ⇒ (since Interior angles on the same side of the transversal are supplementary) $75^0 + \angle AED = 180^0$ $\angle AED = 105^{\circ}$ Also $\angle AED = \angle CEF$ (: Vertically opposite Angles)

12

Created by Pinkz

$$\angle CEF = 105^{\circ}$$

Now in $\triangle CEF$

 \Rightarrow

 $\angle CEF + \angle EFC + \angle FCE = 180^{\circ}$ \Rightarrow (: Angle sum property of a triangle) $105^0 + 30^0 + x = 180^0$ $135^{0} + x = 180^{0} \implies x = 45^{0}$ Correct option is (a) ÷ 4. In the given figure, PQ||RS and $\angle ACS = 127^{\circ}$, $\angle BAC$ is b) 77° a) 53° d) 107° c) 50° R Sol: Since PQ || RS, so $\angle PAC = \angle ACS$ (: Alternate interior angles) $\angle PAB = \angle BAC = 127^{\circ}$ $50^0 = \angle BAC = 127^0$ \rightarrow $\angle BAC = 77^{\circ}$ *Correct option is (b)* :. 5. In the given figure, measure of $\angle QPR$ is **c)**111⁰ **a)** 10.5⁰ b) 42⁰ d) 50⁰ Sol : Using exterior angle property, we have $\angle TRS = \angle QTR + \angle TQR(In \Delta QTR)$

And $\angle PRS = \angle QPR + \angle PQR(In \, \triangle QPR)$

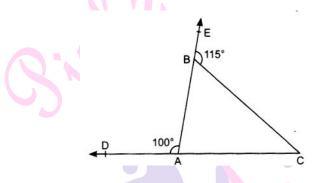
$\implies 2\angle TRS = \angle QTR + 2\angle TQR$
$\Rightarrow 2(\angle TRS - \angle TQR) = \angle QTR \dots (i)$
Similarly, $2(\angle TRS - \angle TQR) = 2 \angle QTR$ (ii)
Hence, using (i) and (ii), we get
$\angle QPR = 2 \angle QTR$
$= 2 \times 21^0 = 42^0$
∴ Correct option is (b)
6. Number of triangles which can be drawn with angles 42°, 65° and 74° are
a) one triangle b) two triangles c) many triangles d) no triangle
Sol: d) angle sum cannot be more than 180°
7. A triangle can have two obtuse angles.
a) True b) False
Sol: (b) angle sum cannot be more that 180°
8. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is [NCERT Exemplar]
a) $37\frac{1}{2}^{0}$ b) a) $52\frac{1}{2}^{0}$ c) $72\frac{1}{2}^{0}$ d) 75^{0}
Sol : b
9. In the given figure, find the $\angle x$
$r + \frac{110^{\circ}}{R}$
Sol: We have $\angle QPR = \angle TPV$ (Vertically opposite angles)
$\Rightarrow \angle QPR = 30^{\circ}$
From exterior angle theorem,

 $\angle QPR + \angle PQR = \angle PRS$ 30^{0} + x = 110^{0} \implies $x = 110^{\circ} - 30^{\circ}$

 $= 80^{0}$

 \Rightarrow

10. In the given figure, $\angle EBC = 115^{\circ}$ and $\angle DAB = 100^{\circ}$. Find $\angle ACB$,



Sol : From the figure, $\angle EBC + \angle ABC = 180^{\circ}$

[Linear pair axiom]

 $115^{\circ} + \angle ABC = 180^{\circ}$

 $\angle ABC = 180^{\circ} - 115^{\circ} = 65^{\circ}$

Now, in $\angle ABC$, $\angle BAD = \angle ABC + \angle ACB$

[Exterior angle theorem]

 $100^{\circ} = 65^{\circ} + \angle ACB$ \Rightarrow

$$\Rightarrow \qquad \angle ACB = 100^{\circ} - 65^{\circ} = 35^{\circ}$$

 $\angle ACB = 35^{\circ}$ Hence,

11. The angle of a triangle ABC are in the ratio 2 : 3 : 4 Find the largest angle of the [CBSE 2016] triangle.

Sol : Given
$$\angle A : \angle B : \angle C = 2 : \frac{3}{3} : 4$$

Let

 \Rightarrow

 \Rightarrow

 $\angle A = 2x, \ \angle B = 3x, \ \angle C = 4x$

Using angle sum property of a triangle, we have

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $2x + 3x + 4x = 180^{\circ}$

 $9x = 180^{\circ}$

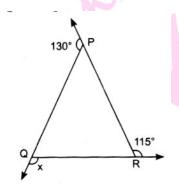
School

 $\Rightarrow \qquad x = 20^{0}$ $\therefore \qquad \angle A = 2x = 2 \times 20^{0} = 40^{0}$ $\angle B = 3x = 3 \times 20^{0} = 60^{0}$

 $\angle C = 4x = 4 \times 20^0 = 80^0$

Hence largest angle of the triangle is 80°

12. In the given figure, find the value of x.

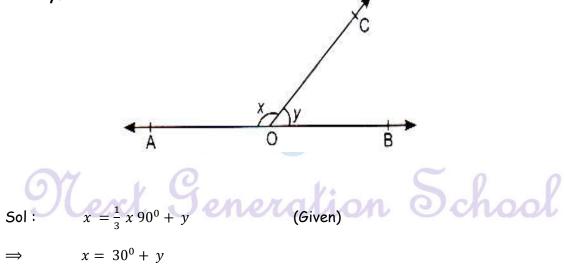


Sol : We know that sum of exterior angle of ΔPQR is 360°

 $\Rightarrow 130^{\circ} + x + 115^{\circ} = 360^{\circ}$ $\Rightarrow 245^{\circ} + x = 360^{\circ}$ $\Rightarrow x = 360^{\circ} - 245^{\circ} = 115^{\circ}$

I. Short Answer Type

1. In the given figure, if x is greater than y by one third of a right angle, find the values of x and y.



Now, $\angle AOC + \angle BOC = 180^{\circ}$ [Linear pair axiom]

 $\Rightarrow \qquad x + y = 180^0 \Rightarrow 30^0 + y + y = 180^0$

$$2y = 150^{\circ} \implies y = \frac{150^{\circ}}{2} = 75^{\circ}$$

 \Rightarrow

So,
$$x = 30^{\circ} + y = 30^{\circ} + 75^{\circ} = 105^{\circ}$$

2. Lines I and m intersect at O, if $x = 45^{\circ}$, find y, z and u.

Sol : $\angle x$ and $\angle z$ are vertically opposite angles

$$\therefore \qquad \angle x = \angle z = 45^0 \implies \angle z = 45$$

But x and y are linear pair angles

So, $\angle x + \angle y = 180^{\circ}$ [Linear pair axiom]

$$\Rightarrow 45^{\circ} + \angle y = 180^{\circ} \Rightarrow \angle y = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

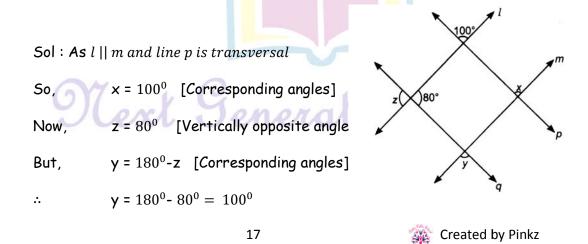
Also, $\angle y$ and $\angle u$ are vertically opposite angles

$$\therefore \qquad \angle u = \angle y = 135^0 \implies \angle u = 135^0$$

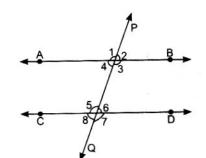
Hence, $\angle z = 45^{\circ} \angle y = 135^{\circ} \text{ and } \angle u = 135^{\circ}$

II. Short Answer Type

1. Find the value of x and y in the given figure, if $l \parallel m and p \parallel q$.



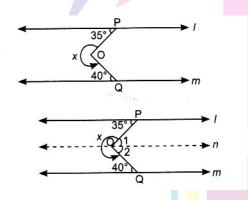
2. In the given figure, $AB \mid | CD, \angle 2 = 120^0 + x$ and $\angle 6 = 6x$. Find the measure of $\angle 2$ and $\angle 6$



Sol : Given AB || CD,

 $\Rightarrow \qquad \angle 2 = \angle 6 \text{ (Corresponding angles)}$ $\Rightarrow \qquad 120^{0} + x = 6x \qquad [\angle 2 = 120 + x]$ $\Rightarrow \qquad 120^{0} = 6x - x = 5x$ $\Rightarrow \qquad x = \frac{120^{0}}{5} = 24^{0}$ $\therefore \qquad \angle 2 = 120^{0} + x = 120^{0} + 24^{0} = 144^{0}$ And $\angle 6 = 6x = 6 \times 24^{0} = 144^{0}$

3. In the given figure, if $\| \|$ n, find the value of x



Sol : Draw a line 'n' through O such that $n \parallel l$ and $n \parallel m$. As $l \parallel n$, OP is transversal.

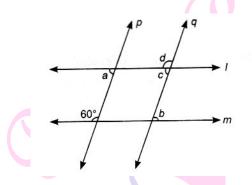
 $\Rightarrow \qquad \angle 1 = 35^{\circ} \text{ (Alternate interior angles)}$

Also, n || m, OQ is transversal

$$\therefore \qquad \angle 2 = 40^{\circ} \text{ (Alternate interior angles)} \\ \angle POQ = \angle 1 + \angle 2 = 35^{\circ} + 40^{\circ} = 75^{\circ} \\ \text{So,} \qquad x = \text{reflex } \angle POQ \\ = 360^{\circ} - \angle POQ = 360^{\circ} - 75^{\circ} = 285^{\circ} \end{cases}$$

III. Short Answer Type

1. Lines $l \parallel m$ and $p \parallel q$ in the given figure, then find the value of a,b,c, and d.



Sol : Given $l \parallel m$ and p is transversal

$$\implies \qquad a + 60^0 = 180^0$$

(Co - interior angles on the same side of transversal)

$$a = 120^{\circ}$$

But p||q [Given]

 \Rightarrow

 \Rightarrow

$$\Rightarrow$$
 $c = a = 120^{\circ}$ (Corresponding angles)

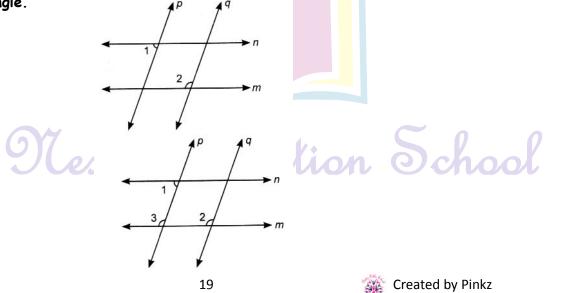
And c = b (Alternate interior angles as l||m)

 $\Rightarrow \qquad b = 120^{\circ}$

Also, $c + d = 180^{\circ}$ [Linear pair axiom]

 $d = 180^{\circ} - c = 180^{\circ} - 120^{\circ} = 60^{\circ}$

2. In the given figure, $n \parallel m$ and $p \parallel q$ of $\angle 1 = 75^{\circ}$, prove that $\angle 2 = \angle 1 + \frac{1}{3}$ of a right angle.



Sol : Given $\angle 1 = 75^{\circ}$

Now, m || n and p is transversal

 \Rightarrow $\angle 1 + \angle 3 = 180^{\circ}$ (Co - interior angles)

$$\Rightarrow$$
 75⁰ + $\angle 3 = 180^{\circ}$

_

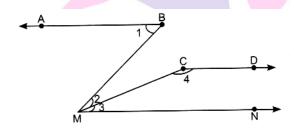
$$\angle 3 = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Now p||q and m is transversal

$$\Rightarrow \qquad \angle 2 = \angle 3 = 105^{\circ} \text{ (Corresponding angles)}$$
$$= 75^{\circ} + 30^{\circ} = 75^{\circ} + \frac{1}{3} \times 90^{\circ}$$
$$\angle 2 = \angle 1 + \frac{1}{2} \times \text{ right angle.}$$

Hence, Proved

3. In the given figure, $\angle 1 = 55^{\circ}$, $\angle 2 = 20^{\circ}$, $\angle 3 = 35^{\circ}$ and $\angle 4 = 145^{\circ}$. Prove that AB||CD|



Sol : We have, $\angle BMN = \angle 2 + \angle 3 = 20^{\circ} + 35^{\circ} = 55^{\circ}$

$$\angle 1 = \angle ABM$$

But these are the alternate angles formed by transversal BM on AB and MN.

So, by converse of alternate interior angles theorem,

.....(i)

.....(ii)

Now $\angle 3 + \angle 4 = 35^{\circ} + 145^{\circ} = \frac{180^{\circ}}{180^{\circ}}$

This shows that sum of the co-interior angles is 180°

Hence CD || MN

From (i) and (ii), we have AB || CD. Hence proved.

School

IV. Short Answer Type

- 1. Two angles of triangle are equal and the third angle is greater than each of these angles $by30^0$ Find all the angles of the triangle.
 - Sol : Let each of the two equal angles be x. According to the question,

third angle =
$$x + 30^{\circ}$$

Now, sum of angles of $\Delta = 180^{\circ}$

[Angle sum property of a triangle]

$$x + x + x + 30^{\circ} = 180^{\circ}$$

 $3x = 180^0 - 30^0 = 150^0$

 \Rightarrow

 \rightarrow

 \Rightarrow

 $x = \frac{150^{\circ}}{3} = 50^{\circ}$

Thus, angles of triangle are 50°, 50° and 80° respectively.

2. One of the angles of triangle is 75° , find the remaining two angles if their difference is 35° .

Sol : Let in \triangle ABC , $\angle A = 75^{\circ}$ and $\angle B = \angle C = 35^{\circ}$

 \Rightarrow

$$\angle B = \angle C + 35^{\circ}$$

Now, $\angle A + \angle B + \angle C = 180^{\circ}$

(Angle sum property of a triangle)

$$\Rightarrow 75^{\circ} + \angle C + 35^{\circ} + \angle C = 180^{\circ}$$

$$\Rightarrow 110^{\circ} + 2 \angle C = 180^{\circ}$$

$$\Rightarrow 2 \angle C = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\Rightarrow \angle C = \frac{70^{\circ}}{2} = 35^{\circ}$$
And
$$\angle B = \angle C + 35^{\circ}$$

$$= 35^{\circ} + 35^{\circ} = 70^{\circ}$$

3. Prove that if one angle of a triangle is equal to the sum of the other two angles, then the triangle is right angled.

Sol : Given : In $\triangle ABC$, $\angle A = \angle B + \angle C$ Now, $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow \qquad \angle A + (\angle B + \angle C) = 180^{\circ}$ $\Rightarrow \qquad \angle A + \angle A = 180^{\circ}$ $\Rightarrow \qquad \angle A = 180^{\circ}$ $\Rightarrow \qquad \angle A = \frac{180^{\circ}}{2} = 90^{\circ}$

Hence, with $\angle A = 90^{\circ}$ the given triangle is right angled triangle.

4. The exterior angles obtained on producing the base of a triangle both ways are 100^0 and 120^0 , Find all the angles. [CBSE 2011]

Sol : In
$$\triangle ABC$$
, $\angle ABE + \angle ABC = 180^{\circ}$

[Linear pair axiom]

 $\Rightarrow \qquad 100 + \angle ABC = 180^{\circ}$

 $\angle ABC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Similarly, $\angle ACB + \angle ACD = 180^{\circ}$

[Linear pair axiom]

$$\angle ACB + 120^{\circ} = 180^{\circ}$$

 $\Rightarrow \qquad \angle ACB = 180^{\circ} - 120^{\circ}$

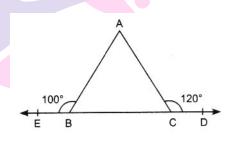
$$0^0 = 60^0$$

Now, again in $\triangle ABC$,

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ (Angle sum property of triangle)

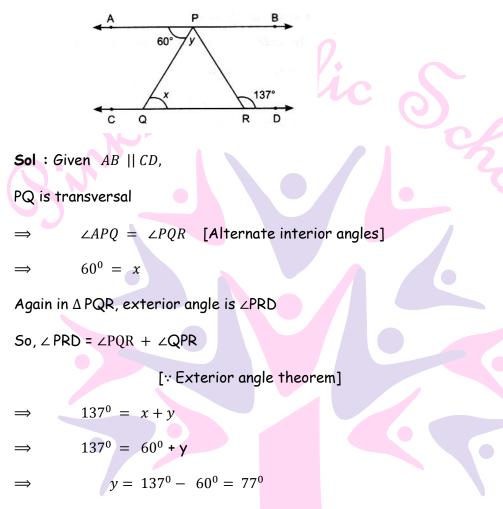
$$\Rightarrow 80^{0} + 60^{0} + \angle BAC = 180^{0}$$
$$\angle BAC = 180^{0} - 140^{0} = 40^{0}$$
Hence, $\angle BAC = 40^{0}, \angle ABC = 80^{0}$

and $\angle ABC = 60^{\circ}$

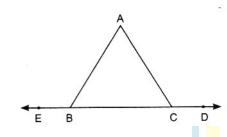


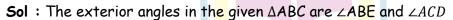
Created by Pinkz

5. In the given figure, if $AB \parallel CD \angle APQ = 60^{\circ}$ and $\angle PRD = 137^{\circ}$, then find the value of x and y [CBSE 2010]



6. In the given figure, side BC of $\triangle ABC$ is produced in both the directions. Prove that the sum of two exterior angles so formed is greater than 180° .





To prove , $\angle ABE + \angle ACD > 180^{\circ}$

 $\mathsf{Proof}: \mathsf{In} \ \Delta \mathsf{ABC}$

∠5 = ∠1 + ∠3(i)

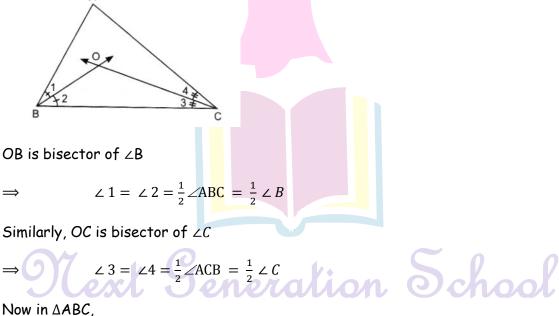
(Exterior angle theorem)
and
$$\angle 4 = \angle 1 + \angle 2$$
(ii)
Adding (i) and (ii) we get
 $\angle 4 + \angle 5 = \angle 1 + \angle 3 + \angle 1 + \angle 2$
 $= \angle 1 + (\angle 1 + \angle 2 + \angle 3)$
 $= \angle 1 + 180^{\circ}$ [Angle sum property of a triangle]
 $\Rightarrow \qquad \angle 4 + \angle 5 = 180^{\circ}$ Hence proved.

V. Short Answer Type

1. In \triangle ABC, the bisector of \angle B and \angle C meets at O. Prove that \angle BOC = $90^0 + \frac{\angle A}{2}$

[CBSE 2014]

Sol : Given the bisector of $\angle B$ and $\angle C$ of $\triangle ABC$ meets at O as shown in figure.



 $\angle A + \angle B + \angle C = 180^{\circ}$

[Angle sum property of a triangle]

\Rightarrow	$\angle B + \angle C = 180^{\circ} - \angle A$	
\Rightarrow	$\frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^0 - \frac{\angle A}{2}$	
$\angle 2 + \angle 3 = 90^{\circ} - \frac{\angle A}{2}$ (i)		
$\texttt{In} \angle \texttt{BOC}$	Rublic	
$\angle OBC + \angle BOC + \angle BCO = 180^{\circ}$		
	[Angle sum property of a triangle]	
	$\angle 2 + \angle BOC + \angle 3 = 180^{\circ}$	
\Rightarrow	$(\angle 2 + \angle 3) + \angle BOC = 180^{\circ}$	
\Rightarrow	$90^{0} - \frac{\angle A}{2} + \angle BOC = 180^{0}$	
\Rightarrow	$\angle BOC = 180^{\circ} - 90^{\circ} + \frac{\angle A}{2}$	
\Rightarrow	$\angle BOC = 90^0 + \frac{\angle A}{2}$	

Hence proved.

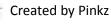
2. The sides EF, FD and DE of a triangle DEF are produced in order forming three exterior angles DFP, EDQ and FER respectively. Prove that

$$\angle DFP + \angle EDQ + \angle FER = 360^{\circ}$$

$$\int_{R}^{0} \int_{R}^{0} \int_{R}^{0}$$

Adding (i), (ii) and (iii), we get

 $\angle 4 + \angle 5 + \angle 6 = (\angle 1 + \angle 2) + (\angle 2 + \angle 3) + (\angle 1 + \angle 3)$



= 2 ($\angle 1 + \angle 2 + \angle 3$)

=
$$2 \times 180^{\circ}$$
 (:: $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$)

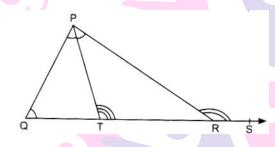
= 360⁰

(Angle sum property of a triangle)

 $\Rightarrow \angle \text{DFP} + \angle \text{EDQ} + \angle \text{FER} = 360^{\circ}$

Hence Proved.

3. Side QR of \triangle PQR is produced to a point S as shown in the figure. The bisector of \angle P meets QR at T. Prove that \angle PQR + \angle PRS = 2 \angle PTR.



Sol : $\angle PRS$ is the exterior of $\triangle PQR$

$$\therefore \qquad \angle PRS = \angle QPR + \angle PQR$$

[Exterior angle theorem]

= 2 ∠TPQ + ∠PQR

Adding \angle PQR on both sides, we get

[PT is bisector of
$$\angle P \therefore \angle TPQ = \frac{1}{2} \angle QPR$$
]

 \angle PQR + \angle PRS = \angle PQR + 2 \angle TPQ + \angle PQR

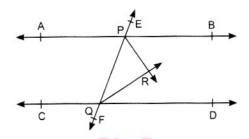
Now in $\triangle PTQ$, $\angle PTR$ is exterior angle

$$\angle PTR = \angle TPQ + \angle PQR$$

Thus from (i) and (ii), we get

.....(ii)

4. In the given figure, AB and CD are two parallel lines intersected by a transversal EF. Bisector of interior angles BPQ and DQP intersect at R. Prove that $\angle PRQ = 90^{\circ}$



Sol : Given AB || CDand EFis transversal

$$\therefore \qquad \angle BPQ + \angle DQP = 180^{\circ}$$

(Interior angles on the same side of transversal is supplementary)

$$\Rightarrow \qquad \frac{1}{2} \angle \mathsf{BPQ} + \frac{1}{2} \angle \mathsf{DQP} = 180^{\circ} \times \frac{1}{2} = 90^{\circ} \quad \dots (i)$$

Now, PR is the bisector $\angle BPQ$

$$\Rightarrow \angle RPQ = \frac{1}{2} \angle BPQ$$

and QR is the bisector $\angle DQP$

$$\Rightarrow \qquad \angle P QR = \frac{1}{2} \angle DQP$$

From (i), we have $\angle RPQ + \angle PQR = 90^{\circ}$ (ii)

In ΔPQR , $\angle RPQ + \angle PQR + \angle PRQ = 180^{\circ}$

(Angle Sum property of a triangle)

$$\implies \qquad 90^0 + \angle PRQ = 180^0$$

 $\Rightarrow \qquad \angle PRQ = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Hence Proved.

Next Generation School

1. Long Answer Type

1. In the given figure, bisectors of the exterior angles B and C formed by producing sides AB and AC of \triangle ABC intersect each other at the point O.

 $\angle 4 + \angle 6 + \angle 8 = 180^{\circ}$

(Angle Sum property of a triangle)

 $\Rightarrow \left(90^{0} - \frac{\angle 2}{2}\right) + \left(90^{0} - \frac{\angle 3}{2}\right) + \angle 8 = 180^{0}$ $\Rightarrow \angle 8 = \frac{1}{2}(\angle 2 + \angle 3)$(iii)

 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

 $\angle 2 + \angle 3 = 180^{\circ} - \angle 1$

Again in \triangle ABC

(Angle Sum property of a triangle)

Substituting in (iii) we get

$$\angle 8 = \frac{1}{2}(180^0 - \angle 1)$$

 $\Rightarrow \angle 8 = 90^{\circ} - \frac{\angle 1}{2}$

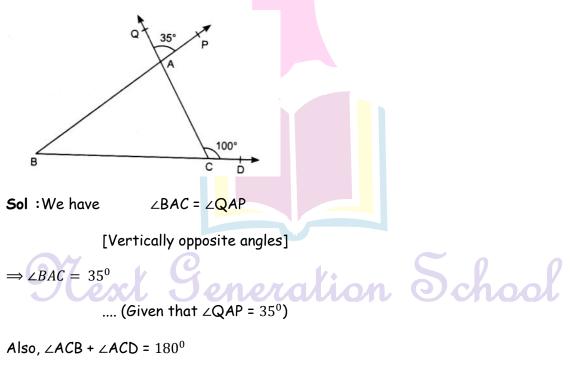
0

$$\Delta BOC = 90^{0} - \frac{\angle BAC}{2} \text{ or } \angle BOC$$

$$= 90^{\circ} - \frac{1}{2} \angle A$$

Hence, proved.

2. Side, BC, CA and BA of triangle \triangle ABC produced to D, Q, P respectively as shown in the figure. If $\angle ACD = 100^{\circ}$ and $\angle QAP = 35^{\circ}$ find all the angles of a triangle. [CBSE 2014]



[Linear pair axiom]

$$\Rightarrow \angle ACB + 100^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ACB = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

In $\triangle ABC$,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

(Angle Sum property of a triangle)

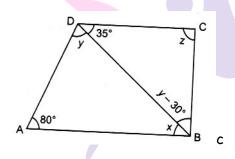
 $\angle ABC + 80^{\circ} + 35^{\circ} = 180^{\circ}$

$$\angle ABC + 115^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ACB = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

Hence, $\angle ABC = 65^{\circ} + \angle BAC = 35^{\circ}$ and $\angle ACB = 80^{\circ}$

3. In the given figure, $AB \parallel DC$, $\angle BDC = 35^{\circ}$ and $\angle BAD = 80^{\circ}$, Find x, y, z



Sol : Given AB||DC

BD is transversal

 \Rightarrow $x = 35^{\circ}$ [Alternate interior angles]

In $\triangle ABD$, $\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$

(Angle Sum prop<mark>er</mark>ty of a triangle)

$$\Rightarrow x + y + 35^{\circ} = 180^{\circ}$$

$$\Rightarrow 35^{\circ} + y + 80^{\circ} = 180^{\circ} (\because x = 35^{\circ})$$

$$\Rightarrow y = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

$$\therefore \angle DBC = y - 30^{\circ} = 65^{\circ} - 30^{\circ} = 35^{\circ}$$

Again in ∆BCD

 $\angle DBC + \angle BCD + \angle CDB = 180^{\circ}$

31

Next Generation School

Hence, $x = 35^{\circ}$, $y = 65^{\circ}$, and $z = 110^{\circ}$

 $z = 180^{0} - 70^{0} = 110^{0}$ \Rightarrow

 $35^0 + z + 35^0 = 180^0$ \Rightarrow

(Angle Sum property of a triangle)

