## Grade IX

Lesson : 6 LINES AND ANGLES BASIC TERMS AND DEFINITIONS


## ANGLE SUM PROPERTY OF TRIANGLE AND EXTERIOR ANGLE PROPERTY



$$
\text { Exterior angle }=\text { sum of two interior opposite angles }
$$

$$
\angle 4=\angle 1+\angle 2 ; \angle 5=\angle 2+\angle 3 ; \angle 6=\angle 1+\angle 3 \text { and } \angle 4+\angle 5+\angle 6=360^{\circ}
$$

- The sum of the angles of a triangle is $180^{\circ}$
- If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.
- Exterior angle of a triangle is greater than either of its interior opposite angles



## Objective Type Questions

## I. Multiple choice questions 6.1

1. In the given figure, $\angle x$ is
a) obtuse angle
b) acute angle
c) reflex angle
d) straight angle

2. In the given figure, a pair of adjacent angles is

a) $\angle C O A$ and $\angle B O A$
b) $\angle C O A$ and $\angle B O C$
c) $\angle A O B$ and $\angle B O C$
d) none of these

Sol. c
3. In figure if $x: y=1: 4$, then values of $x$ and $y$ are respectively
a) $36^{0}$ and $144^{0}$
b) $18^{0}$ and $72^{0}$
c) $144^{0}$ and $36^{0}$
d) $72^{\circ}$ and $18^{0}$


Sol. Given, $x: y=1: 4$

$$
\Rightarrow \quad \frac{x}{y}=\frac{1}{4}=\frac{K}{4 K} \Rightarrow x=K \text { and } y=4 K
$$

From the figure,

$$
\begin{aligned}
& x+y=180^{\circ} \quad \text { (Linear pair axiom) } \\
\Rightarrow & k+4 k=180^{\circ} \Rightarrow 5 k=180^{\circ} \Rightarrow k=36^{\circ}
\end{aligned}
$$

Hence, $x=k=36^{0}$
And $\mathrm{y}=4 \mathrm{k}=4 \times 36^{0}=144^{0}$
$\therefore$ Correct option is (a)
4. In the given figure, $P O S$ is a line, then $\angle Q O R$ is
a) $60^{0}$
b) $40^{0}$
c) $80^{0}$
d) $20^{0}$

Sol. c

5. If the difference between two complementary angles is $10^{0}$ then the angles are,
a) $50^{\circ}, 60^{0}$
b) $50^{\circ}, 40^{0}$
c) $80^{\circ}, 10^{0}$
d) $35^{\circ}, 45^{0}$

Sol. Let an angle be $x$. Then other angle $=x-10^{0}$.
Since the two angles are complementary, So,

$$
\begin{aligned}
& x+x-10^{0}=90^{0} \\
\Rightarrow \quad & \\
& 2 x=90^{0}+10^{0}=100^{0} \\
& \Rightarrow \quad x=\frac{100^{0}}{2}=50^{\circ}
\end{aligned}
$$

So, one angle $=50^{\circ}$, Then, other angle $=x-10^{\circ}=50^{\circ}-10^{\circ}=40^{\circ}$

## $\therefore$ Correct option is (b)

6. Diagonals of a rhombus $A B C D$ intersect each other at 0 , then, what are the measurements of vertically opposite angles $\angle A O B$ and $\angle C O D$ ?
a) $\angle A B O=\angle C D O$
b) $\angle A D O=\angle B C O$
c) $60^{\circ}, 60^{\circ}$
D) $90^{\circ}, 90^{\circ}$

Sol. d
7. In the given figure, if $\angle A O C=50^{\mathbf{0}}$, then $(\angle A O D=\angle C O B)$ is equal to
a) $60^{\circ}$
b) $140^{\circ}$
c) $260^{\circ}$
d) $130^{\circ}$

Sol. c

8. In the given figure, if $A O B$ is a line then find the measure of $\angle B O C, \angle C O D$, and $\angle D O A$

[CBSE 2011]

Sol. We have, $\angle B O C+\angle C O D+\angle D O A=180^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & 2 y+3 y+5 y=180^{\circ} \\
\Rightarrow & 10 y=180^{\circ} \Rightarrow y=18^{\circ}
\end{array}
$$

$$
\therefore \angle B O C=2 y=2 \times 18^{0}=36^{\circ}
$$

$$
\begin{aligned}
& \angle C O D=3 y=3 \times 18^{0}=54^{0} \\
& \angle D O A=5 y=5 \times 18^{0}=90^{0}
\end{aligned}
$$

9. Check whether the following statements are true or not?
(i) $a+b=d+c$
(ii) $a+c+e=180^{\circ}$
(iii) $b+f=c+e$


Oenerakian


Sol. From figure, we have
$a+b=d+e$ (Vertically opposite angles)
But $e \neq c$
$\therefore \quad a+b \neq d+c$
$\Rightarrow \quad$ Hence, statement $(i)$ is incorrect.
From the figure, we have $a+f+e=180^{\circ}$ [Linear pair axiom]

But $f=c$
(Vertically opposite angles)
$\Rightarrow \quad a+c+e=180^{\circ}$
[From (i)]
Hence, statement (ii)is true..
Again $b+c=f+e \quad$ [Vertically opposite angles]
But, $\quad c=f$
[Vertically opposite angles]

$$
B+f=c+e
$$

[On interchanging c and f]
Hence, statement (iii) is also true.
Therefore, statement (ii) and (iii) are correct.
10. Ray $O D$ stands on line $A O B$, if ray $O C$ and $O E$ bisects $\angle B O D$ and $\angle A O D$, respectively, Find the $\angle C O E$.

Sol. We have

$$
\angle B O C=\angle C O D=\frac{1}{2} \angle B O D
$$

( $\because$ OC is angle bisector of $\angle B O D$ )
And $\angle A O E=\angle E O D=\frac{1}{2} \angle A O D$
$(\because$ OE is angle bisector of $\angle A O D)$
Now, $\angle A O D+\angle B O D=180^{\circ}$
[Linear pair axiom]
$\Rightarrow \frac{1}{2} \angle A O D+\frac{1}{2} \angle B O D=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle E O D+\angle C O D=90^{\circ}$
$\Rightarrow \quad \angle C O E=90^{\circ}$
11. In the given figure, find the value $x$,


Sol: Ray OC stands on line $A O B$
$\therefore \angle A O C+\angle B O C=180^{\circ}$ [Linear pair axiom]
$\Rightarrow \quad 4 x+2 x=180^{\circ}$
$\Rightarrow \quad 6 x=180^{\circ} \Rightarrow x=\frac{180^{\circ}}{6}=30^{\circ}$
12. In the given figure, find the value of $y$


Sol : Ray $O P$ and $O Q$ stands on line $A O B$
$\therefore \quad \angle A O Q+\angle Q O P+\angle P O B=180^{\circ}$ [Linear pair axiom]
$\Rightarrow \quad 3 y+40^{\circ}+2 y=180^{\circ}$
$\Rightarrow \quad 5 y=180^{\circ}-40^{\circ}=140^{\circ}$

$$
\Rightarrow \quad y=\frac{140^{0}}{5}=28^{0} \Rightarrow y=28^{0}
$$

13. If ray $O C$ stands on line $A B$ such that $\angle A O C=\angle B O C$, then show that $\angle B O C=90^{\circ}$

Sol : Ray OC stands on line $A O B$


$$
\begin{array}{ll}
\Rightarrow & 2 \angle B O C=180^{\circ}[\because \angle B O C=\angle A O C] \\
\Rightarrow & \angle B O C=90^{\circ} \text { Hence Proved. }
\end{array}
$$

## II. Multiple choice questions 6.2

1. In the given figure $\angle 4$ and $\angle 5$ are known as

(a) alternate interior angles
(b) alternate exterior angles
(c) corresponding angles
(d) interior angles on the same side of transversal

Sol : d

2. In the given figure, the relation between line $I$ and line $m$ is

(a) I\| m
(b) I is not parallel to m
(c) lines I and $m$, intersect when produced
(d) none of these

Sol : a
3. Line $I$ is perpendicular to line $m$ and line $m$ is perpendicular to line $n$, the line $I$ is $\qquad$ to line $n$
(a) parallel
(b) perpendicular
(d) intersecting
(d) none of these

Sol : Given, $I \perp m$ and $m \perp n$


So line I is parallel to line $n$,
$\therefore$ correct option is (a)
4. In the given figure, $p \| q$, Find the value $\circ \times$.
[CBSE2010]


Sol : Since $p \| q$ and $r$ is transversal,
$\therefore$ angle which the line $r$ makes with line $p$ is $70^{\circ}$ (Corresponding angle)
and
$2 x+70^{\circ}=180^{\circ} \quad$ [Linear pair axiom]
$\Rightarrow \quad 2 x+110^{0} \Rightarrow x+55^{0}$
5. In the given figure, if $l \| m$ and $\angle a: \angle b=2: 3$ then find the value of $\angle y$.


Sol : Given $\angle a: \angle b=2: 3$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{a}}{\mathrm{~b}}=\frac{2}{3}=\frac{2 \mathrm{k}}{3 \mathrm{k}} \\
\Rightarrow & \mathrm{a}=2 \mathrm{k} \text { and } \mathrm{b}=3 \mathrm{k}
\end{array}
$$

Now, $\angle a: \angle b=180^{\circ}$ [Linear pair axiom]

$$
\begin{array}{ll}
\Rightarrow & 2 \mathrm{k}+3 \mathrm{k}=180^{0} \\
\Rightarrow & 5 \mathrm{k}=180^{\circ} \Rightarrow k=36^{\circ} \\
\therefore & \angle a=2 k=2 \times 36^{\circ}=72^{0}
\end{array}
$$

Now, $\angle a$ and $\angle y$ are the alternate exterior angles,
$\therefore \quad \angle a=\angle y$ or $\angle y=\angle a=72^{\circ}$
6. If a transversal intersects a pair of lines in such a way that a pair of alternate angles are equal, then what conclusion would you like to draw?

Sol:By alternate interior angles theorem, we conclude that a pair of lines are parallel to each other.
7. If a line $l \| m, n$ is a transversal in the given figure, Find the value of $x$.


Sol : $l \| m$, and $n$ is transversal. Then sum of pair of interior adjacent angles on the same side of transversal is supplementary.

$$
\begin{aligned}
& \therefore x+80^{0}=180^{0} \\
& \quad \Rightarrow \quad \mathrm{x}=100^{0}
\end{aligned}
$$

8. Check whether I is parallel to $m$ or not?


Sol : $\angle 1+60^{\circ}=180^{\circ}$ [Linear pair axiom]
$\angle 1=180^{\circ}-60^{\circ}$
$=120^{\circ}$


So from the figure, the corresponding angles which makes transversal $n$ with I and $m$ are not equal. Hence, $l$ is not parallel to $m$.

## III. Multiple choice questions 6.3

1. What is common between the three angles of a triangle and a linear pair axiom?
(a) angles are equal
(b) in both cases, sum of angles is $180^{\circ}$
(c) In triangle, there are three angles and in linear pair, there are two angles
(d) None of these

Sol : b
2. In the given figure, $\angle 1=\angle 2$ then the measurements of $\angle 3$ and $\angle 4$ respectively are
(a) $58^{0}, 61^{0}$
(b) $61^{0}, 61^{\circ}$
(c) $119^{0}, 61^{0}+$
(d) $119^{0}, 119^{0}$


Sol : From the figure, $\angle 1+\angle 2+58=180^{\circ}$ (Angle sum property of triangle]
But, given $\angle 1=\angle 2$
( $\because$ Exterior Angle Property)

$$
=58^{0}+61^{0}=119^{0}
$$

Also,

$$
\angle 4=58^{\circ}+\angle 1 \quad(\because \text { Exterior Angle Property })
$$

$$
=58^{\circ}+61^{\circ}=119^{\circ}
$$

$\therefore \quad$ Correct option is (d)
3. In the given figure, $A B \| C D$, the value of $x$ is

a) $45^{0}$
b) $60^{0}$
c) $90^{0}$
d) $105^{0}$

Sol : Given
$A B \| C D$,
$\Rightarrow \quad \angle B A E+\angle A E D=180^{\circ}$
$\Rightarrow \quad \begin{aligned} & \text { (since Interior angles } \\ & 75^{\circ}+\angle A E D=180^{\circ}\end{aligned}$

Also $\quad \angle A E D=\angle C E F$
( $\because$ Vertically opposite Angles)

$$
\begin{aligned}
& \text { So } \angle 1+\angle 1+58^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 \angle 1=122^{\circ} \\
& \Rightarrow \quad \angle 1=\frac{122^{0}}{2}=61^{\circ} \\
& \text { So, } \\
& \angle 2=61^{0} \\
& \text { Now, } \\
& \angle 3=58^{0}+\angle 2
\end{aligned}
$$

$$
\Rightarrow \quad \angle C E F=105^{\circ}
$$

Now in $\triangle C E F$

$$
\begin{array}{cc}
\Rightarrow & \angle C E F+\angle E F C+\angle F C E=180^{\circ} \\
& (\because \text { Angle sum property of a triangle ) } \\
\Rightarrow & 105^{\circ}+30^{\circ}+x=180^{\circ} \\
\Rightarrow & 135^{\circ}+x=180^{\circ} \Rightarrow x=45^{\circ}
\end{array}
$$

$\therefore \quad$ Correct option is (a)
4. In the given figure, $P Q \| R S$ and $\angle A C S=127^{\circ}, \angle B A C$ is


Sol:
b) $77^{\circ}$
c) $50^{\circ}$
d) $107^{\circ}$

Since $P Q \| R S$, so

$$
\Rightarrow \quad \angle P A C=\angle A C S
$$

( $\because$ Alternate interior angles )

$$
\begin{array}{cc}
\Rightarrow & \angle P A B=\angle B A C=127^{0} \\
\Rightarrow & 50^{\circ}=\angle B A C=127^{\circ} \\
\Rightarrow & \angle B A C=77^{0}
\end{array}
$$

$\therefore \quad$ Correct option is (b)
5. In the given figure, measure of $\angle Q P R$ is

a) $10.5^{0}$
b) $42^{0}$
c) $111^{0}$
d) $50^{\circ}$

Sol : Using exterior angle property, we have

$$
\angle T R S=\angle Q T R+\angle T Q R(\operatorname{In} \triangle Q T R)
$$

And $\angle P R S=\angle Q P R+\angle P Q R(\operatorname{In} \triangle Q P R)$

$$
\begin{array}{ll}
\Rightarrow & 2 \angle T R S=\angle Q T R+2 \angle T Q R \\
\Rightarrow & 2(\angle T R S-\angle T Q R)=\angle Q T R \tag{i}
\end{array}
$$

Similarly, $2(\angle T R S-\angle T Q R)=2 \angle Q T R$
Hence, using (i) and (ii), we get

$$
\begin{aligned}
& \angle Q P R=2 \angle Q T R \\
& =2 \times 21^{\circ}=42^{\circ}
\end{aligned}
$$

$\therefore \quad$ Correct option is (b)
6. Number of triangles which can be drawn with angles $42^{\circ}, 65^{\circ}$ and $74^{\circ}$ are
a) one triangle
b) two triangles
c) many triangles
d) no triangle

Sol: d) angle sum cannot be more than $180^{\circ}$
7. A triangle can have two obtuse angles.
a) True
b) False

Sol: (b) angle sum cannot be more that $180^{\circ}$
8. An exterior angle of a triangle is $105^{\circ}$ and its two interior opposite angles are equal. Each of these equal angles is
[NCERT Exemplar]
a) $37 \frac{1}{2}^{0}$
b) a) $52 \frac{1}{2}^{0}$
c) $72 \frac{1^{0}}{2}$
d) $75^{\circ}$

Sol : b
9. In the given figure, find the $\angle x$


Sol: We have $\angle Q P R=\angle T P V$
....(Vertically opposite angles)
$\Rightarrow \quad \angle Q P R=30^{\circ}$
From exterior angle theorem,

$$
\begin{array}{cc} 
& \angle Q P R+\angle P Q R=\angle P R S \\
\Rightarrow & 30^{0}+x=110^{\circ} \\
\Rightarrow \quad x=110^{0}-30^{\circ} \\
& =80^{\circ}
\end{array}
$$

10. In the given figure, $\angle E B C=115^{\circ}$ and $\angle D A B=100^{\circ}$. Find $\angle A C B$,


Sol: From the figure, $\angle E B C+\angle A B C=180^{\circ}$
[Linear pair axiom]
$\Rightarrow \quad 115^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \quad \angle A B C=180^{\circ}-115^{\circ}=65^{\circ}$
Now, in $\angle A B C, \angle B A D=\angle A B C+\angle A C B$
[Exterior angle theorem]
$\begin{array}{ll}\Rightarrow & 100^{\circ}=65^{\circ}+\angle A C B \\ \Rightarrow & \angle A C B=100^{\circ}-65^{\circ}=35^{\circ}\end{array}$
Hence, $\angle A C B=35^{\circ}$
11. The angle of a triangle $A B C$ are in the ratio $2: 3: 4$ Find the largest angle of the triangle.

Sol : Given $\angle A: \angle B: \angle C=2: 3: 4$
Let

$$
\angle A=2 x, \angle B=3 x, \angle C=4 x
$$

Using angle sum property of a triangle, we have

$$
\begin{array}{rrrl} 
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & 2 x+3 x+4 x=180^{\circ} \\
\Rightarrow & 9 x=180^{\circ}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & x=20^{0} \\
\therefore & \angle A=2 x=2 \times 20^{\circ}=40^{\circ} \\
\angle B=3 x=3 \times 20^{0}=60^{\circ} \\
& \angle C=4 x=4 \times 20^{\circ}=80^{\circ}
\end{array}
$$

Hence largest angle of the triangle is $80^{\circ}$
12. In the given figure, find the value of $x$.


Sol : We know that sum of exterior angle of $\triangle P Q R$ is $360^{\circ}$

$$
\begin{aligned}
\Rightarrow & 130^{\circ}+x+115^{0} & =360^{\circ} \\
\Rightarrow & 245^{\circ}+x & =360^{\circ} \\
\Rightarrow & x & =360^{\circ}-245^{\circ}=115^{\circ}
\end{aligned}
$$

## I. Short Answer Type

1. In the given figure, if $x$ is greater than $y$ by one third of a right angle, find the values of $x$ and $y$.


Sol:

$$
x=\frac{1}{3} \times 90^{0}+y
$$

(Given)

$$
\Rightarrow \quad x=30^{0}+y
$$

Now, $\angle A O C+\angle B O C=180^{\circ}$ [Linear pair axiom]

$$
\begin{aligned}
& \Rightarrow \quad x+y=180^{\circ} \Rightarrow 30^{0}+y+y=180^{\circ} \\
& \Rightarrow \quad 2 y=150^{\circ} \Rightarrow y=\frac{150^{0}}{2}=75^{0}
\end{aligned}
$$

So, $\quad x=30^{0}+y=30^{0}+75^{0}=105^{0}$
2. Lines $I$ and $m$ intersect at $O$, if $x=45^{\circ}$, find $y, z$ and $u$.


Sol : $\angle x$ and $\angle z a r e$ vertically opposite angles
$\therefore \quad \angle x=\angle z=45^{\circ} \Rightarrow \angle z=45^{\circ}$
But $x$ and $y$ are linear pair angles
So, $\angle x+\angle y=180^{\circ}$ [Linear pair axiom]
$\Rightarrow 45^{\circ}+\angle y=180^{\circ} \Rightarrow \angle y=180^{\circ}-45^{\circ}=135^{\circ}$
Also, $\angle y$ and $\angle u$ are vertically opposite angles
$\therefore \quad \angle u=\angle y=135^{\circ} \Rightarrow \angle u=135^{\circ}$
Hence, $\angle z=45^{\circ} \angle y=135^{\circ}$ and $\angle u=135^{\circ}$

## II. Short Answer Type

1. Find the value of $x$ and $y$ in the given figure, if $l \| m$ and $p \| q$.

Sol : As l\|m and line $p$ is transversal
So,

$$
x=100^{\circ} \quad \text { [Corresponding angles] }
$$

Now,

$$
z=80^{\circ} \text { [Vertically opposite angle }
$$

But,

$$
y=180^{\circ}-z \quad \text { [Corresponding angles] }
$$



$$
\therefore \quad y=180^{\circ}-80^{\circ}=100^{\circ}
$$

2. In the given figure, $A B \| C D, \angle 2=120^{\circ}+x$ and $\angle 6=6 x$. Find the measure of $\angle 2$ and $\angle 6$


Sol : Given $A B \| C D$,

$$
\begin{array}{ll}
\Rightarrow & \angle 2=\angle 6 \text { (Corresponding angles) } \\
\Rightarrow & 120^{\circ}+x=6 x \quad[\angle 2=120+x] \\
\Rightarrow & 120^{\circ}=6 x-x=5 x \\
\Rightarrow & x=\frac{120^{0}}{5}=24^{0} \\
\therefore & \angle 2=120^{\circ}+x=120^{\circ}+24^{0}=144^{0} \\
\text { And } & \angle 6=6 x=6 \times 24^{0}=144^{\circ}
\end{array}
$$

3. In the given figure, if $I \| n$, find the value of $x$


Sol : Draw a line ' $n$ ' through $O$ such that $n \| l$ and $n \| m$.
As $l \| n$, $O P$ is transversal.
$\Rightarrow \quad \angle 1=35^{\circ}$ (Alternate interior angles)
Also, $n \| m, O Q$ is transversal

$$
\angle 2=40^{\circ} \text { (Alternate interior angles) }
$$

$\therefore$
So,

$$
\angle P O Q=\angle 1+\angle 2=35^{\circ}+40^{\circ}=75^{\circ}
$$

$$
x=\text { reflex } \angle P O Q
$$

$$
=360^{\circ}-\angle P O Q=360^{\circ}-75^{\circ}=285^{\circ}
$$

## III. Short Answer Type

1. Lines $l \|$ mand $p \| q$ in the given figure, then find the value of $a, b, c$, and $d$.


Sol : Given $l \| m$ and $p$ is transversal
$\Rightarrow \quad a+60^{\circ}=180^{\circ}$
(Co-interior angles on the same side of transversal)
$\Rightarrow \quad a=120^{\circ}$
But $p \| q$ [Given]
$\Rightarrow \quad c=a=120^{\circ}$ (Corresponding angles)
And $\quad c=b$ (Alternate interior angles as $l \| m$ )
$\Rightarrow \quad b=120^{\circ}$
Also, $c+d=180^{\circ}$ [Linear pair axiom]
$\Rightarrow \quad d=180^{\circ}-c=180^{\circ}-120^{\circ}=60^{\circ}$
2. In the given figure, $n \| m$ and $p \| q$ of $\angle 1=75^{\circ}$, prove that $\angle 2=\angle 1+\frac{1}{3}$ of a right angle.



Sol : Given $\angle 1=75^{\circ}$
Now, $m \| n$ and $p$ is transversal

$$
\begin{array}{ll}
\Rightarrow & \angle 1+\angle 3=180^{\circ}(\text { Co - interior angles }) \\
\Rightarrow & 75^{\circ}+\angle 3=180^{\circ} \\
\Rightarrow & \angle 3=180^{\circ}-75^{\circ}=105^{\circ}
\end{array}
$$

Now $p \| q$ and $m$ is transversal
$\Rightarrow \quad \angle 2=\angle 3=105^{\circ}$ (Corresponding angles)

$$
\begin{aligned}
& =75^{\circ}+30^{0}=75^{\circ}+\frac{1}{3} \times 90^{\circ} \\
& \angle 2=\angle 1+\frac{1}{3} \times \text { right angle } .
\end{aligned}
$$

Hence, Proved
3. In the given figure, $\angle 1=55^{\circ}, \angle 2=20^{\circ}, \angle 3=35^{\circ}$ and $\angle 4=145^{\circ}$. Prove that $A B \| C D$


Sol: We have, $\angle B M N=\angle 2+\angle 3=20^{\circ}+35^{\circ}=55^{\circ}$
$\angle 1=\angle A B M$
But these are the alternate angles formed by transversal $B M$ on $A B$ and $M N$.
So, by converse of alternate interior angles theorem,
$A B|\mid M N$
Now $\angle 3+\angle 4=35^{\circ}+145^{\circ}=180^{\circ}$
This shows that sum of the co-interior angles is $180^{\circ}$
Hence $C D \| M N$
From (i) and (ii), we have $A B \| C D$. Hence proved.

## IV. Short Answer Type

1. Two angles of triangle are equal and the third angle is greater than each of these angles by $30^{0}$ Find all the angles of the triangle.

Sol : Let each of the two equal angles be $x$. According to the question,
third angle $=x+30^{0}$
Now, sum of angles of $\Delta=180^{\circ}$
[Angle sum property of a triangle]

$$
\begin{array}{ll}
\Rightarrow & x+x+x+30^{0}=180^{\circ} \\
\Rightarrow & 3 x=180^{\circ}-30^{0}=150^{\circ} \\
\Rightarrow & x=\frac{150^{\circ}}{3}=50^{\circ}
\end{array}
$$

Thus, angles of triangle are $50^{\circ}, 50^{\circ}$ and $80^{\circ}$ respectively.
2. One of the angles of triangle is $75^{\circ}$, find the remaining two angles if their difference is $35^{\circ}$.

Sol : Let in $\triangle A B C, \angle A=75^{\circ}$ and $\angle B-\angle C=35^{\circ}$

$$
\Rightarrow \quad \angle B=\angle C+35^{\circ}
$$

Now, $\angle A+\angle B+\angle C=180^{\circ}$
(Angle sum property of a triangle)

$$
\begin{array}{cc}
\Rightarrow & 75^{0}+\angle C+35^{\circ}+\angle C=180^{\circ} \\
\Rightarrow & 110^{\circ}+2 \angle C=180^{\circ} \\
\Rightarrow & 2 \angle C=180^{\circ}-110^{\circ}=70^{\circ} \\
\Rightarrow & \angle C=\frac{70^{\circ}}{2}=35^{\circ}
\end{array}
$$

And

$$
\angle B=\angle C+35^{\circ}
$$

$$
\text { (9) } Y=35^{0}+35^{0}=70^{\circ}
$$

3. Prove that if one angle of a triangle is equal to the sum of the other two angles, then the triangle is right angled.

Sol : Given: In $\triangle \mathrm{ABC}, \angle A=\angle B+\angle C$
Now, $\angle A+\angle B+\angle C=180^{\circ}$
(Angle sum property of a triangle)
$\begin{array}{lrl}\Rightarrow & \angle A+(\angle B+\angle C) & =180^{\circ} \\ \Rightarrow & \angle A+\angle A=180^{\circ} \\ \Rightarrow & \angle \angle A=180^{\circ} \\ \Rightarrow & \angle A=\frac{180^{\circ}}{2}=90^{\circ}\end{array}$
Hence, with $\angle A=90^{\circ}$ the given triangle is right angled triangle.
4. The exterior angles obtained on producing the base of a triangle both ways are $100^{0}$ and $120^{0}$, Find all the angles.

## [CBSE 2011]

Sol : In $\triangle A B C, \angle A B E+\angle A B C=180^{\circ}$
[Linear pair axiom]

$$
\begin{array}{lrl}
\Rightarrow & 100+\angle A B C=180^{\circ} \\
\Rightarrow & \angle A B C=180^{\circ}-100^{\circ}=80^{\circ}
\end{array}
$$



Similarly, $\angle A C B+\angle A C D=180^{\circ}$
[Linear pair axiom]

$$
\begin{gathered}
\Rightarrow \quad \angle A C B+120^{\circ}=180^{\circ} \\
\Rightarrow \quad \angle A C B=180^{\circ}-120^{\circ}=60^{\circ}
\end{gathered}
$$

Now, again in $\triangle A B C$,

$$
\begin{aligned}
& \angle A B C+\angle A C B+\angle B A C=180^{\circ} \text { (Angle sum property of triangle) } \\
& \Rightarrow \quad 80^{\circ}+60^{\circ}+\angle B A C=180^{\circ} \\
& \Rightarrow \\
& \text { Hence, } \angle B A C=180^{\circ}-140^{\circ}=40^{\circ} \\
& \text { and } \angle A B C=60^{\circ}
\end{aligned}
$$

5. In the given figure, if $A B \| C D \angle A P Q=60^{\circ}$ and $\angle P R D=137^{\circ}$, then find the value of $x$ and $y$
[CBSE 2010]


Sol: Given $A B \| C D$,
$P Q$ is transversal

$$
\begin{array}{ll}
\Rightarrow & \angle A P Q=\angle P Q R \quad \text { [Alternate interior angles] } \\
\Rightarrow & 60^{\circ}=x
\end{array}
$$

Again in $\triangle P Q R$, exterior angle is $\angle P R D$

$$
\text { So, } \angle P R D=\angle P Q R+\angle Q P R
$$

[ $\because$ Exterior angle theorem]

$$
\begin{aligned}
\Rightarrow & 137^{0} & =x+y \\
\Rightarrow & 137^{0} & =60^{0}+y \\
\Rightarrow & y & =137^{0}-60^{0}=77^{0}
\end{aligned}
$$

6. In the given figure, side $B C$ of $\triangle A B C$ is produced in both the directions. Prove that the sum of two exterior angles so formed is greater than $180^{\circ}$.


Sol : The exterior angles in the given $\triangle A B C$ are $\angle A B E$ and $\angle A C D$


To prove, $\angle A B E+\angle A C D>180^{\circ}$

Proof : In $\triangle A B C$

$$
\begin{equation*}
\angle 5=\angle 1+\angle 3 \tag{i}
\end{equation*}
$$

(Exterior angle theorem)
and $\angle 4=\angle 1+\angle 2$
Adding (i) and (ii) we get

$$
\angle 4+\angle 5=\angle 1+\angle 3+\angle 1+\angle 2
$$

$$
=\angle 1+(\angle 1+\angle 2+\angle 3)
$$

$$
=\angle 1+180^{\circ} \quad \text { [Angle sum property of a triangle] }
$$

$$
\Rightarrow \quad \angle 4+\angle 5=180^{\circ} \text { Hence proved. }
$$

## V. Short Answer Type

1. In $\triangle A B C$, the bisector of $\angle B$ and $\angle C$ meets at $O$. Prove that $\angle B O C=90^{\circ}+\frac{\angle A}{2}$

Sol : Given the bisector of $\angle B$ and $\angle C$ of $\triangle A B C$ meets at $O$ as shown in figure.

$O B$ is bisector of $\angle B$

$$
\Rightarrow \quad \angle 1=\angle 2=\frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \angle B
$$

Similarly, $O C$ is bisector of $\angle C$

$$
\Rightarrow \bigcirc \angle 3=\angle 4=\frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle C
$$

Now in $\triangle A B C$,

```
\angleA+\angleB+\angleC=180
```

$$
\begin{array}{ll}
\Rightarrow & \angle B+\angle C=180^{\circ}-\angle A \\
\Rightarrow & \frac{1}{2} \angle B+\frac{1}{2} \angle C=90^{\circ}-\frac{\angle A}{2} \tag{i}
\end{array}
$$

$\angle 2+\angle 3=90^{\circ}-\frac{\angle A}{2}$

In $\angle B O C$
$\angle O B C+\angle B O C+\angle B C O=180^{\circ}$
[Angle sum property of a triangle]

$$
\begin{array}{ll}
\Rightarrow & \angle 2+\angle B O C+\angle 3=180^{\circ} \\
\Rightarrow & (\angle 2+\angle 3)+\angle B O C=180^{\circ} \\
\Rightarrow & 90^{\circ}-\frac{\angle A}{2}+\angle B O C=180^{\circ} \\
\Rightarrow & \angle B O C=180^{\circ}-90^{\circ}+\frac{\angle A}{2} \\
\Rightarrow & \angle B O C=90^{\circ}+\frac{\angle A}{2}
\end{array}
$$

Hence proved.
2. The sides EF, FD and DE of a triangle DEF are produced in order forming three exterior angles DFP, EDQ and FER respectively. Prove that
$\angle D F P+\angle E D Q+\angle F E R=360^{\circ}$


Sol : By using exterior angle theorem, we have

$$
\begin{equation*}
\angle 4=\angle 1+\angle 2 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\angle 5=\angle 2+\angle 3 \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
\angle 6=\angle 1+\angle 3 \tag{iii}
\end{equation*}
$$



Adding (i), (ii) and (iii), we get

$$
\angle 4+\angle 5+\angle 6=(\angle 1+\angle 2)+(\angle 2+\angle 3)+(\angle 1+\angle 3)
$$

$$
\begin{aligned}
= & 2(\angle 1+\angle 2+\angle 3) \\
& =2 \times 180^{\circ}\left(\because \angle 1+\angle 2+\angle 3=180^{\circ}\right) \\
= & 360^{\circ} \\
& (\text { Angle sum property of a triangle }) \\
\Rightarrow \angle D F P+\angle E D Q+ & \angle F E R=360^{\circ} \quad \text { Hence Proved. }
\end{aligned}
$$

3. Side $Q R$ of $\triangle P Q R$ is produced to a point $S$ as shown in the figure. The bisector of $\angle P$ meets $Q R$ at $T$. Prove that $\angle P Q R+\angle P R S=2 \angle P T R$.


Sol : $\angle P R S$ is the exterior of $\triangle P Q R$
$\therefore \quad \angle \mathrm{PRS}=\angle \mathrm{QPR}+\angle \mathrm{PQR}$
[Exterior angle theorem]

$$
=2 \angle T P Q+\angle P Q R
$$

Adding $\angle P Q R$ on both sides, we get
[ PT is bisector of $\angle P: \quad \angle \mathrm{TPQ}=\frac{1}{2} \angle Q P R$ ]

$$
\begin{align*}
\angle P Q R+\angle P R S & =\angle P Q R+2 \angle T P Q+\angle P Q R \\
& =2(\angle T P Q+\angle P Q R) \tag{i}
\end{align*}
$$

Now in $\triangle$ PTQ, $\angle P T R$ is exterior angle

$$
\begin{equation*}
\angle P T R=\angle T P Q+\angle P Q R) \tag{ii}
\end{equation*}
$$

Thus from (i) and (ii), we get
() $\angle P Q R+\angle P R S=2 \angle P T R$
Hence proved.
4. In the given figure, $A B$ and $C D$ are two parallel lines intersected by a transversal $E F$. Bisector of interior angles $B P Q$ and DQP intersect at $R$. Prove that $\angle P R Q=\mathbf{9 0}^{\circ}$


Sol : Given $\boldsymbol{A B} \|$ CDand EFis transversal

$$
\therefore \quad \angle B \mathrm{PQ}+\angle D Q P=180^{\circ}
$$

(Interior angles on the same side of transversal is supplementary)

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{2} \angle B P Q+\frac{1}{2} \angle D Q P=180^{\circ} \times \frac{1}{2}=90^{\circ} \tag{i}
\end{equation*}
$$

Now, PR is the bisector $\angle B \mathrm{PQ}$
$\Rightarrow \quad \angle \mathrm{RPQ}=\frac{1}{2} \angle \mathrm{BPQ}$
and $Q R$ is the bisector $\angle D Q P$
$\Rightarrow \quad \angle \mathrm{PQR}=\frac{1}{2} \angle D Q P$
From (i), we have $\angle \mathrm{RPQ}+\angle \mathrm{PQR}=90^{\circ}$
In $\triangle P Q R, \angle R P Q+\angle P Q R+\angle P R Q=180^{\circ}$
(Angle Sum property of a triangle)
$\Rightarrow \quad 90^{\circ}+\angle P R Q=180^{\circ}$
$\Rightarrow \quad \angle P R Q=180^{\circ}-90^{\circ}=90^{\circ}$
Hence Proved.


## 1. Long Answer Type

1. In the given figure, bisectors of the exterior angles $B$ and $C$ formed by producing sides $A B$ and $A C$ of $\triangle A B C$ intersect each other at the point $O$.

Prove. That $\angle \mathrm{BOC}=\mathbf{9 0}^{\circ}-\frac{1}{2} \angle A$


Sol : Ray $B O$ is the bisector of $\angle C B E$
$\Rightarrow \quad \angle 4=\angle 5=\frac{1}{2} \angle C B E$
Now, $\angle 2+\angle 4+\angle 5=180^{\circ}$ [Linear pair axiom]

$$
\begin{array}{lrl}
\Rightarrow & \angle 2+2 \angle 4=180^{\circ} & (\because \angle 4=\angle 5) \\
\Rightarrow & \angle 4=90^{\circ}-\frac{\angle 2}{2} & \ldots . . \text { (i) } \tag{i}
\end{array}
$$

Similarly, ray $O C$ bisect $\angle B C D$

$$
\begin{gather*}
\angle 6=\frac{1}{2} \angle \mathrm{BCD}=\frac{1}{2} 180^{\circ}-\angle 3 \\
=90^{\circ}-\frac{\angle 3}{2} \tag{ii}
\end{gather*}
$$

Now, in $\angle B O C$

$$
\angle 4+\angle 6+\angle 8=180^{\circ}
$$

(Angle Sum property of a triangle)

$$
\begin{align*}
& \Rightarrow\left(90^{0}-\frac{\angle 2}{2}\right)+\left(90^{0}-\frac{\angle 3}{2}\right)+\angle 8=180^{0} \\
& \Rightarrow \angle 8=\frac{1}{2}(\angle 2+\angle 3) \tag{iii}
\end{align*}
$$

Again in $\triangle A B C$

$$
\angle 1+\angle 2+\angle 3=180^{\circ}
$$

(Angle Sum property of a triangle)
$\Rightarrow \quad \angle 2+\angle 3=180^{\circ}-\angle 1$
Substituting in (iii) we get

$$
\angle 8=\frac{1}{2}\left(180^{\circ}-\angle 1\right)
$$

$\Rightarrow \angle 8=90^{\circ}-\frac{\angle 1}{2}$
Or $\quad \angle B O C=90^{\circ}-\frac{\angle B A C}{2}$ or $\angle B O C$

$$
=90^{\circ}-\frac{1}{2} \angle A
$$

Hence, proved.
2. Side, $B C, C A$ and $B A$ of triangle $\triangle A B C$ produced to $D, Q, P$ respectively as shown in the figure. If $\angle A C D=100^{\circ}$ and $\angle Q A P=35^{\circ}$ find all the angles of a triangle. [CBSE 2014]


Sol : We have $\quad \angle B A C=\angle Q A P$
[Vertically opposite angles]
$\Rightarrow \angle B A C=35^{\circ}$
.... (Given that $\angle Q A P=35^{\circ}$ )
Also, $\angle A C B+\angle A C D=180^{\circ}$
[Linear pair axiom]

$$
\begin{aligned}
& \Rightarrow \angle A C B+100^{\circ}=180^{\circ} \\
& \Rightarrow \angle A C B=180^{\circ}-100^{\circ}=80^{\circ}
\end{aligned}
$$

In $\triangle A B C$,

$$
\angle A B C+\angle A C B+\angle B A C=180^{\circ}
$$

(Angle Sum property of a triangle)

$$
\angle A B C+80^{\circ}+35^{\circ}=180^{\circ}
$$

$$
\angle A B C+115^{\circ}=180^{\circ}
$$

$\Rightarrow \angle A C B=180^{\circ}-115^{\circ}=65^{\circ}$
Hence, $\angle A B C=65^{\circ}+\angle B A C=35^{\circ}$ and $\angle A C B=80^{\circ}$
3. In the given figure, $A B \| D C, \angle B D C=35^{\circ}$ and $\angle B A D=80^{\circ}$, Find $x, y, z$


Sol : Given $A B \| D C$
BD is transversal

$$
\Rightarrow \quad x=35^{\circ} \text { [Alternate interior angles] }
$$

In $\triangle A B D, \angle A B D+\angle A D B+\angle B A D=180^{\circ}$
(Angle Sum property of a triangle)

$$
\begin{array}{lll}
\Rightarrow & x+y+35^{0}=180^{\circ} \\
\Rightarrow & 35^{\circ}+\mathrm{y}+80^{0}=180^{\circ} \quad\left(\because x=35^{\circ}\right) \\
\Rightarrow & y=180^{\circ}-115^{\circ}=65^{\circ} \\
\therefore & \angle D B C=y-30^{\circ}=65^{\circ}-30^{\circ}=35^{\circ}
\end{array}
$$

Again in $\triangle \mathrm{BCD}$

$$
\angle D B C+\angle B C D+\angle C D B=180^{\circ}
$$

(Angle Sum property of a triangle)
$\Rightarrow \quad 35^{0}+z+35^{0}=180^{0}$
$\Rightarrow \quad z=180^{\circ}-70^{\circ}=110^{\circ}$
Hence, $x=35^{\circ}, y=65^{\circ}$, and $z=110^{\circ}$


