ATOMS ANL MOLECULES

Symbols of elements
st letter of name as symbol There are 12 such elements. fydrogen (\mathcal{H}), Boron (\mathcal{B}), Carb on (\mathcal{C}), \mathcal{N} itrogen (\mathcal{N}), Oxygen (O), Sulpfur (S), \mathcal{F} fuorine (\mathcal{F}), Iodine (I), Phosphorus (\mathcal{P}), Vanadium (\mathcal{V}), Yttrium (\mathcal{Y}), Uranium ($\mathcal{U})$.

The symbols of the following elements are the first two letters of the ir full names, The first letter of a symbol is always written in capital, the second letter, if anu, is a smaller letter.

The symbols of the following elements comprise the first and the third letters of their full names:

\mathcal{N} ame of Elements		Symbol	\mathcal{N} ame of Elements	Symbol
1	Berylfium	$\mathcal{B e}$	23 Xenon	Xe
2	Lit fium	$\mathcal{L i}$	24 Barium	$\mathcal{B a}$
3	Helium	$\mathcal{H e}$	25 Lanthanum	La
4	\mathcal{N} e on	$\mathcal{N e}$	26 Tantalum	$\mathcal{T} a$
5	Aluminium	$\mathcal{A l}$	27 Osmium	Os
6	Silic on	$S i$	28 Bismuth	$\mathcal{B i}$
7	Argon	$\mathcal{A r}$	29 Polonium	Po
8	Calcium	Ca	30 Francium	$\mathcal{F} r$
9	Scandium	$S c$	31 Radium	Ra
10	\mathcal{T} itanium	$\mathcal{T} i$	32 Actinium	$\mathcal{A c}$
11	Cobalt	Co	33 Cerium	Ce
12	\mathcal{N} ickel	$\mathcal{N i}$	34 Praseodymium	Pr
13	Gallium	Ga	35 Europium	$\mathcal{E} u$
14	Germanium	Ge	36 Dys prosium	$\mathcal{D} y$
15	Selenium	Se	$37 \mathcal{H o l m i u m}$	$\mathcal{H o}$
16	Bromine	$\mathcal{B r}$	38 Erbium	$\mathcal{E} r$
17	Krypton	$\mathcal{L r}$	39 Lutetium	$\mathcal{L u}$
18	Moly 6 de num	Mo	40 Thorium	$\mathcal{T h}$
19	Rhodium	Rfi	41 Americium	$\mathcal{A} r$
20	Indium	In	42 Nobelium	\mathcal{N}

	\mathcal{N} ame of Elements
1	Magnesium
2	Chlorine
3	Chromium
4	Manganese
5	Zinc
6	Arsenic
7	Rubidium
8	Strontium
9	Zirconium
10	Technetium
11	Rhenium
12	Astatine
13	Samarium
14	Gadolinium
15	$\mathcal{C r}$
16	Plutonium
17	Cadmium
18	Caesium
19	Hafnium

List of Common Electropositive Radicals

List of Common Electronegative Radicals

Monovalent	Divale nt	Trivalent	Tetravalen
\mathcal{F} fuoride, F^{-} Chloride, Cl^{-} Superoxide, O_{2}^{-} Bromide, Br^{-} Iodide, I^{-} Hydride, H^{-} Cyanide, CN^{-} Ace tate, $\mathrm{CH}_{3} \mathrm{COO}^{-}$ Sulphocyanide Or (thiocyanate) SCN ${ }^{-}$ Nitrite, NO_{2}^{-} \mathcal{N} itrate, NO_{3}^{-} Hydrogen S ulphate, HS^{-} $\mathcal{H y d r o g e n ~} \mathrm{Sulphate}, \mathrm{HSO}_{3}^{-}$ Hydrogen Su 亿phate, HSO_{4}^{-} Hydrogen carbonate, HCO_{3}^{-} Chlorate, ClO_{3}^{-} Bromate BrO_{3}^{-} Iodate, IO_{3}^{-} Hypochorite, ClO^{-} Hypobromate, BrO^{-} Hypoiodite, lO $^{-}$ Hypophospfite, $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$ Perchiforate ClO_{4}^{-} Permanganate, MnO_{4}^{-} Cyanate, CNO^{-} Isocyanate, NCO^{-} Isotfioc yanate, NCS^{-} Meta-aluminate, AlO_{2}^{-} Hypopfospfate, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ (Difydrogen Phosphate)	Carbonate, CO_{3}^{2-} Sulpfide, S^{2-} Sulpfite, SO_{3}^{2-} Sulphate, SO_{4}^{2-} Thiosulphate, $S_{2} O_{3}^{2-}$ O xide, O^{2-} Peroxide, O_{2}^{2-} Chromate, CrO_{4}^{2-} Dichromate, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ Oxalate, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ Manganate, MnO_{4}^{2-} Silicate, SiO_{3}^{2-} S tannite, SnO_{2}^{2-} S tannate, SnO_{3}^{2-} Zinc ate, ZnO_{2}^{2-} Plumbite, PbO_{2}^{2-} Plumbate, PbO_{3}^{2-} Hydrogen Phosphate, HPO_{4}^{2-}	Thosphate, PO_{4}^{3-} Arsenate, AsO_{4}^{3-} Phosphite, PO_{3}^{3-} Arsenite, AsO_{3}^{3-} Borate, BO_{3}^{3-} Phosphide, P^{3-} \mathcal{N} itride, N^{3-} Ferricyanide, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ Boride, B^{3-} Arsenate, AsO_{4}^{3-}	Carbide, C^{4-} Fe rrocyanide, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ Silicide, , Si ${ }^{4-}$ Pyrophosphate ion, $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$

Know the Terms

Law of conservation of Mass

It state that matter can neither be created nor be destroyed in a chemical reaction. It means that the total mass of reactants must be equal to the total mass of products. That is why we balance each and everychemical reaction.

This law can be verified by the following experiment

Experiment : To prove experimentally that there is no change in mass during a chemical reaction.

Materials Required: Physical balance, conical flask, small ignition tube, thread, cork to fit the flask, silver nitrate and sodium chloride.

Procedure : Prepare solution of silver nitrate in water and take it in the ignition tube.

- Prepare solution of sodium chloride in water and take it in the conicalflask.
- Hang the ignition tube in the flask carefully so that the solutions do not get mixed. Put the cork on the conicalflask as shown in figure
- Weight the flask with the contents carefully
- Now tilt and shake the flaskso that both the solutions get mixed \backslash
- Weigf again.

Observation: White precipitate of sitver chloride is formed in the flask because chemical reaction has taken place. The mouth of flaskshould be covered so that the contents of solution do not spill out. The mass of flask does not change.

Conclusion : Mass of reactants remains equal to mass of products. Hence the law of conservation of mass is proved.

Experimental set up to prove
law of conservation of mass

Activity / Project - 2

Topic Covered : Demonstration Based Worksheet
Objectives : To enable the students to -
$>$ Observe and understand that the total mass of products and reactants in a chemicalreaction is the same.
> Drawinference / appreciate that mass doesn't change in a chemical reaction.
> Understant the law of conservation of mass, i.e. the mass can neither be created nor be destroyed.

Prepare the solution of barium chloride in water and take it in an ignition tube.

* Prepare solution of sodium sulphate in water and take it in a conical flask.
* Hang the ignition tube in the flask carefully so that the solutions do not get mixed, put the cork on the conicalflask as shown in figure.
* Weigh the flask with the contents carefully.
* Now tilt and shake the flask so that both the solutions get mixed.
* Weigh the flaskagain.

Experimental set up to prove law of conservation of mass

Grade IX

Lesson: 3 Atoms and Molecules

> Objective Type Questions

I. Multiple choice questions

1. 4.48 L of CH_{4} at $\mathcal{S T P}$ is equal to
a) 1.2×10^{22} molecules of CH_{4}
b) 0.5 mol of CH_{4}
c) 3.2 g of CH_{4}
d) 0.1 mol of CH_{4}
2. Which of the following illustrates the law of conservation of mass?
a) 12 g of C reacts with 32 g of O_{2} to form 44 g of CO_{2}
6) 1.70 g of $\mathfrak{A g N O}_{3}$ reacts with 0.01 mol of $\mathcal{H C l}$ to form 1.435 g of $\mathfrak{A g C l}$ and 0.63 g of $\mathcal{H} \mathcal{N} \mathrm{OO}_{3}$
c) $12 g$ of C is heated in vacuum and cooling there is no change in mass
d) 100 g of ice forms 100 g water liquid on melting.
3. If isotopic distribution of $\mathcal{C}-12$ and $\mathcal{C}-14$ are 98% and 2% respectively, then number of $C-14$ atoms in 12 g of carbon is
a) 1.032×10^{22}
b) 1.032×10^{23}
c) 3.88×10^{22}
d) 1.032×10^{22}
4. Anelement has 8% of sulphur. What will be the minimum molecular we ight of the compound?
a) 100
b) 200
c) 300
d) 400
5. Identify the correct symbol of Gold.
a) Go
b) $G d$
c) $\mathcal{G e}$
d) $\mathcal{A} u$
6. Identify the correct one from the following statements
a) Elements can be changed into simpler substances.
6) Compound fias variable composition
c) The mixture has properties similar to its components.
d) $\mathcal{B r a s s}$ is a compound of Copper and Zinc
7. The combining capacity of an element is called.
a) Valency
b) Atomicity
c) Atomic number
d) Valence electron
8. 18 g of water is electrolysed. The weight of oxygen formed will be.
a) 16 g
b) $\mathcal{E} g$
c) $4 g$
d) $2 g$
9. Which is not represented by 1 mole of nitrogengas?
a) 6.023×10^{23} nitrogen molecules
b) $22.4 \operatorname{L}$ of N_{2} at $\mathcal{S T P}$
c) 6.023×10^{23} nitrogen atoms
d) 28 g of nitrogen.
10. The balancing of chemical equation is based on
a) Law of combining volume
6) Law of conservation of mass
c) Law of constant proportion
d) Avogadro's Law
11. 1.5 g of hydrocarbon on combustion in excess of oxygen produces 4.4 g of CO_{2} and 2.7 g of $\mathrm{H}_{2} \mathrm{O}$, the data illustrates
a) Law of conservation of mass
c) Law of multiple proportion
6) Law of constant proportion
d) Both (a) and (b)
12. Which of the following is correct statement
a) $\mathrm{Na}_{2} \mathrm{~S}$ is Sodium sulphide, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is S odium sulphite and $N a_{2} \mathrm{SO}_{4}$ is Sodium sulphate
6) $\mathrm{Na}_{2} \mathrm{~S}$ is Sodium sulphite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is Sodium sulpfide and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is Sodium sulphate
c) $\mathrm{Na}_{2} \mathrm{~S}$ is S odium sulpfite, $\mathrm{Na}_{2} \mathrm{~S}_{3}$ is Sodium sulpfiate and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is Sodium sulpfide
d) $\mathrm{Na}_{2} \mathrm{~S}$ is S odium sulpfide, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is S odium sulphate and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is Sodium thiousulphate.
13. The formula of Ammonium phosphate is
a) $\left(\mathcal{N}_{4}\right)_{3} \mathcal{P O}_{4}$
b) $\left(\mathfrak{N}\left(\mathrm{H}_{4}\right)_{3} \mathrm{PO}_{3}\right.$
c) $\left(\mathfrak{N}\left(H_{4}\right)_{3} \mathcal{P}\right.$
d) $\left(\mathfrak{N}\left(\mathrm{H}_{4}\right) \mathrm{PO}_{4}\right.$
14. Molecular weight of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is equal to
$[C u=63.5 u, S=32 u, O=16 u, \mathcal{H}=1 u]$
a) $249.5 u$
b) $159.5 u$
c) $159.5 \times 90 u$
d) $159.5+10+16 u$
15. 2 moles of \mathcal{H} molecules at $\mathcal{S T P}$ occupy volume of
a) 22.4 L
b) 11.2 L
c) 44.8 L
d) $2 \mathscr{L}$
16. How many moles of electrons weigh equal to one kilogram? [Mass of $1 \mathrm{e}=9.1 \times 10^{-31} \mathrm{~kg}$.
a) 6.022×10^{23}
b) $\frac{1}{9.108} \times 10^{31}$
c) $\frac{6.022}{9.108} \times 10^{22}$
d) $\frac{1 \times 10^{8}}{9.1 \times 6.022}$
17. Arrange the following indecreasing order of mass
i. 10^{23} molecules of H_{2}
ii) 0.1 mol of $\mathrm{H}_{0} \mathrm{O}$
iii. 0.01 mole of atoms of \mathcal{N} itrogen
iv) $2.24 \mathcal{L}$ of O_{2} at $\mathcal{S T P}$
a) $I V, I I, I, I I I$
b) $I \mathcal{V}, I, I I, I I I$
c) $I V, I I I, I, I I$
d) $I \mathcal{V}, I, I I I, I I$
18. Arrange the following in increasing order of number of molecules.
I. $O .5$ mol of $\mathrm{H}_{2} \quad I I .4 .0 \mathrm{~g}$ of $\mathrm{H}_{2} \quad I I I .18 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O} \quad$ IV.2.2g CO_{2}
(a) $I I>I I I>I>I V$
(b) IV $<I<$ III $<I I$
(C) $I<I I<I I I<I \mathcal{V}$
(d) $I V<I I I<I<I I$
$19 \mathcal{H o w}$ many atoms are present in 52 u of $\mathcal{H e}$?
(a) 13 atoms
(b) $13 \times 6.022 \times 10^{23}$ atoms
(C) $52 \times 6.022 \times 10^{23}$ atoms
(d) $4 \times 6.022 \times 10^{23}$ atoms
19. The mass of sodium in 5.85 g of $\mathfrak{N a C l}$ is
(a) 2.3 g
(6) 3.5 g
(c) 5.8 g
(d) 0.23 g
20. The mass of magnesium oxide formed by burning 1.2 g of $\mathfrak{M g}$ in excess of oxygen is
(a) 0.2 g
(b) 2.0 g
(c) 4.0 g
(d) 1.0 g
21. Which of the following contains maximum number of atoms?
(a) 2.0 moles of S_{8}
(6) 6.0 moles of S
(c) 2.0 moles of SO_{2}
(d) $44.8 \operatorname{Lof} \mathrm{SO}_{2}$ at $\mathcal{S T P}$
22. A sample of $A I F_{3}$ contains $3.0 \times 10^{24} F^{-}$ions. The number of formula units of this sample is
(a) 3.0×10^{24}
(6) 1.0×10^{24}
(c) 9.0×10^{24}
(d) 3.0×10^{23}
23. Out of 1.0 g oxygengas, 1.0 g of oxygen atoms and 1.0 g of ozone, the maximum number of atoms are contained in
(a) 1.0 g of atomic oxygen
(6) 1.0 g of oxygen
(c) 1.0 g of ozone
(d) All contain same number of atoms
24. Which pair of species contains same percentage of carbon?
(a) $\mathrm{CH}_{3} \mathrm{COO} \mathcal{H}$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(c) CO_{2} and CH_{4}
(d) CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$
25. The mass of 18 ml of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ at $4^{0} \mathrm{C}$ is equal to
(a) 18 g
(6) $<18 g$
(c) $>18 g$
(d) $4 g$
26. If the density of water is $1 \mathrm{~g} \mathrm{~cm}^{-3}$ then the volume occupied by one molecule of water is approximately
(a) $18 \mathrm{~cm}^{3}$
(b) $22400 \mathrm{~cm}^{3}$
(c) $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
(d) $2.9 \times 10^{-23} \mathrm{~cm}^{3}$
27. The number of atoms present in 0.5 mol of nitrogen atoms is same as in
(a) $12 g$ of C
(b) 24 g of $\mathfrak{M g}$
(c) 8 gof O
(d) 32 g of S
28. $\mathcal{N a O H}(a q)+\mathrm{HNO}_{3}(a q) \longrightarrow \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(1)$ in this reaction Nitric acid acts as
(a) $12 g$ of C
(b) 24 g of $\mathfrak{M g}$
(c) 8 g of 0
(d) 32 g of S
29. Activity:

* Prepare solution of Garium, chloride in water and take it in an ignition tube.
* Prepare solution of sodium sulphate in water and take it in a conical flask.
* Hang the ignition tube in the flask carefully so that the solutions do not get mixed. Put the cork on the conicalflask as shown in figure.
* Weigh the flask with the contents carefully.
* Now tilt and shake the flask so that both the solutions get mixed.
* Weigh again.

Which law is verified by this activity?
a) Las of conservation of mass
6) Law of constant composition
c) Law of multiple proportion
d) 6 oth a and 6
31. Which of the following correctly represents 360 g of water?
i) 2 moles of $\mathrm{H}_{2} \mathrm{O}$
ii) 20 moles of water
iii) 6.022×10^{23} molecules of water
iv) 1.2044×10^{25} molecules of water
a) (i)
6.i) and iv)
c. ii) and iii)
d. ii and iv
32. Which of the following statements is not true about an atom?
a) Atoms are not able to exist independently
6) Atoms are the Gasic units from which molecules and ions are formed
c) Atoms are always neutral in nature
d) Atoms aggregate in large numbers to form the matter that we can see, feelor touch
33. The chemical symbolfor nitrogengas is
a) $\mathfrak{N} i$
b) N_{2}
c) N^{+}
d) ii) and iv
34. The chemical symbolfor sodium is
a) So
b) $S d$
c) $\mathcal{N} \mathcal{A}$
d) $\mathfrak{N a}$
35. Which of the following would we igh the highest?
a) 0.2 mole of sucrose $\left(C_{12} H_{22} \quad O_{11}\right)$
b) 2 moles of CO_{2}
c) 2 moles of $\mathrm{C}_{a} \mathrm{CO}_{3}$
d) 10 moles of $\mathrm{H}_{2} \mathrm{O}$
36. Which of the following has maximum number of atoms?
a) $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b) $18 \mathrm{~g} \mathrm{O}_{2}$
c) $18 \mathrm{~g} \mathrm{CO}_{2}$
d) $18 \mathrm{~g} \mathrm{CH}_{4}$
37. Which of the following contains maximum number of molecules?
a) Ig CO
b) $1 g N_{2}$
c) $1 g H_{2}$
d) $\mathrm{Ig} \mathrm{CH}_{4}$

$1 . c$	2.6	$3 \cdot a$	$4 \cdot d$	$5 \cdot d$	$6 \cdot c$	$7 \cdot a$	$8 \cdot a$	$9 . c$	$10 \cdot 6$
$11 \cdot a$	$12 \cdot a$	$13 \cdot a$	$14 \cdot a$	$15 \cdot a$	$16 \cdot d$	$17 \cdot a$	$18 \cdot 6$	$19 \cdot a$	$20 \cdot a$
21.6	$22 \cdot a$	$23 \cdot 6$	$24 \cdot 6$	$25 \cdot a$	$26 \cdot a$	$27 \cdot d$	$28 \cdot c$	$29 \cdot a$	$30 \cdot a$
$31 \cdot d$	$32 \cdot a$	$33 \cdot 6$	$34 \cdot d$	$35 \cdot c$	$36 \cdot d$	$37 \cdot a$			

38. Match the column I with Column II

Column I	Column II
i) Quick lime	A) $\mathfrak{N a O \mathcal { H }}$
ii) Baking soda	B) CaO
iii) Wasking soda	C) $\mathrm{Ca} \mathrm{(OH)}_{2}$
iv) Lime water	D) $\mathcal{N a H H C O}_{3}$
v) Caustic soda	E) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

i) \mathcal{B}
ii) \mathcal{D}
iii) \mathcal{E}
iv) C
v) \mathcal{A}

```
II. Match the column
```

39. Match the following:

Elements	Symbols
i) Sodium	(A) $\mathcal{A g}$
ii) Mercury	(B) $\mathcal{H g}$
iii) Lead	(C) $\mathcal{N a}$
iv) Silver	(d) $\mathcal{P} b$
i) \mathcal{C} ii) \mathcal{B} ii) \mathcal{D}	

O

I. Fill in the blanks

40. $\mathcal{A n}$ \qquad is a positively or negatively charged atoms.
41. The \qquad of an ion is equal to the charge on the ion

40.ion	41. valency

I. True or False

42.32 g of O_{2} fias volume equal to 22.4 L at STP .
430.2 mol of oxygen atom weighs equal to 3.2 g
44.52 u of $\mathcal{H e}$ contains 13 atoms.

Direction (Q 45 to $Q 49)$: In the following Question, the Assertion and Reason fave been put forward. Read the statements carefully and choose the correct alternative from the following:
a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
c) Assertion is true but the Reason is false
d) The statement of the Assertion is false but the Reason is true.
45. Assertion: The standard unit for expressing the mass of a atom is ' u ' Reason: 'u' is also called unified mass.
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
46. Assertion: Zinc is essential element for life and Cadmium is extremely toxic.

Although both belong to same group in periodic table.
Reason: Zinc is useful as it is integral part of most of the enzymes. Cadmium present in cigarette smoke, it accumulates in kidney and causes its malfunctioning. It replaces some of zinc in enzymes and thus prevents them from working.
a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion
47. Assertion: The mass of 1 atom of hydrogen is $1.66 \times \mathbf{1 0}^{\mathbf{- 2 4}} \mathrm{g}$.

Reason: 1 mass of 1 atom is 1 u
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
48. Assertion: Water obtained by every source contains fydrogen and oxygen in the ratio of 1:8 by mass.

Reason: On electrolysis of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ volume of hydrogen obtained is double than that of oxygen.
6) The Assertion and the Reason are correct but the Reason is not the correct explanation of the Assertion.
49. Assertion: 52 u of $\mathcal{H e}$ contains 13 atoms.

Reason: $4 u$ is mass of one atom of $\mathcal{H e}$
a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion
50. What is an atom?

The smallest particle which may or may not exist in free state in nature but takes part in achemicalreaction.
51. What is a molecule?

It is made up of atoms. It exists in nature in free state.
52. Define atomicity.

Atomicity is the number of atoms present in a molecule.

53. How many atoms are present in one molecule of ozone?

Three atoms are present in 1 molecule of ozone because it is triatomic
54. Give an example of (a) triatomic (6) polyatomic molecule of elements.
a) O_{3} (Ozone)
6) S_{8} (Sulphur) or P_{4} (Phosphorus)
55. Define the law of constant proportion

A compound prepared by any method contains the same elements in the fixed ratio by mass is the law of constant proportion.
56. What is the ratio between masses of (a) hydrogen and oxygen in $\boldsymbol{H}_{2} \mathrm{O}$ (b) nitrogen and hydrogen in $\mathcal{N} \mathbf{H}_{3}$? [Atomic mass of $\mathcal{H}=1 u$, $=16 u, \mathcal{N}=14 u$]
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathcal{N H}_{3}$
2:16
14:3 by mass
1: 8 by mass
57. What is the ratio between masses of carbon and oxygen in CO_{2} ?
[Atomic mass of $C=12 u, O=16 u$]
CO_{2}

12:32

3: $8 \mathcal{B Y}$ mass.
58. As per the law of definite proportions carbon and oxygen combine in a ratio of 3: 8. Compute the mass of oxygen gas that would be required to react completely with 6 g carbon.
$3 g$ of carbon combines with $\mathcal{E} g$ of oxygen
$\therefore 6 \mathrm{~g}$ of carbon will combine with $=\frac{8}{3} \chi 6=16 \mathrm{~g}$ of oxygen.
59. Name the anion and cation which constitute the molecule of magnesium oxide.

$$
\mathrm{Mg}^{2+} \text { is cation } \mathrm{O}^{2-} \text { is anion }
$$

60. An element X has a valency 3. Write the formula of its oxide.

61. Name the international organisation which approves the name given to the elements IUPAC, International Union of Pure and Applied Chemistry.
62. The oxide of aluminium has a chemical formula $\boldsymbol{A I}_{\mathbf{2}} \boldsymbol{O}_{\mathbf{3}}$. State the valency of $\mathcal{A l}$ The valency of $\mathcal{A l}=3$
63. Write the symbol for following elements.
a) Iron
6) Potassium
a) Iron-Fe
7) Potassium- \mathcal{K}
64. Calculate formula unit mass of sugar $\left(\boldsymbol{C}_{\mathbf{1 2}} \boldsymbol{H}_{\mathbf{2 2}} \boldsymbol{O}_{\mathbf{1 1}}\right)$

Formula unit mass of $C_{12} H_{22} O_{11}$

$$
\begin{aligned}
& =12 \mathrm{C}+22 \mathcal{H}+110 \\
& =12 \times 12+22 \times 1+11 \times 16 \\
& =144+22+176=342 u .
\end{aligned}
$$

65. Give the difference between a cation and an anion?

Cations are positively charged particles faving protons more than electrons

Anions are negatively charges particles having electrons more than protons.
66. Write the names of the following compounds
a) $\mathcal{A 1}_{\mathbf{2}}\left(S \boldsymbol{O}_{\mathbf{4}}\right)_{3}$
a) Aluminium sulphate
b) $\mathfrak{N} \mathrm{H}_{4} O \mathcal{H}$
6) Ammonium fydroxide
67. Write the chemical formula of the compound zinc hydroxide.

Zn $(\mathrm{OH})_{2}$ is the formula of zinc hydroxide.
68. Find the formula unit mass of $\mathcal{N a H} \boldsymbol{C O}_{3}$
[Atomic mass of $\mathcal{N} a=23 u, \mathcal{H}=1 u, \mathcal{C}=12 u, O=16 u$.
Formula unit mass of $\mathfrak{N a H C O}$
$=1 \mathcal{N} a+1 \mathcal{H}+1 \mathcal{C}+30$
$=23+1+12+3 \times 16$
$=23+1+12+48=84 u$
69. Calculate the formula unit mass of $\mathcal{N}^{\boldsymbol{N}} \boldsymbol{a}_{\mathbf{2}} \mathrm{CO}_{\mathbf{3}}$
$[\mathcal{A}$ tomic mass of $\mathcal{N} a=23 u, \mathcal{C}=12 u, O=16 u$.

Formula unit mass of $\mathcal{N} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$=2 \mathcal{N} a+1 \mathcal{C}+30$
$=2 \times 23+1 \times 12+3 \times 16$
$=46+12+48=106 u$
70. Write the names of the compounds
a) $\boldsymbol{A} \boldsymbol{g}_{2} O$
b) CuS
a) $\mathcal{A g}_{2} \mathrm{O}$ is called sitver oxide.
6) CuS is called copper (II) sulphide
71. What is the formula of ammonium chloride?
$\mathrm{NH}_{4} \mathrm{Cl}$
72. How many atoms are there in one gram of hydrogen?

1 gram of fydrogen contains 6.022×10^{23} atoms.
73. How many atoms are present in 0.012 kg of C - 12 ? What is the name given to this constant?
6.022×10^{23} atoms are present. It is called Avogadro's constant.
74. What is meant by Avogadro's constant?

Avogadro's constant Is equal to 6.022×10^{23} particles.
75. Select an element that is:
a) More ductile
6) Siquid at room temperature
a) Gold
6) Mercury
76. State the law of constant proportions.

Law of constant proportions (Law of definite proportion): This law states that in a pure chemical compound, the elements are always combined, the elements are always combined in fixed (definite) proportions (ratio) by mass.
77. Show that water illustrates the law of constant proportions.

Water, prepared from any source contains hydrogen and oxygen in the ration of 2 : 16 (i.e. 1: 8 by mass). If 18 g of $\mathrm{H}_{2} \mathrm{O}$ is decomposed we will get 2 g of H_{2} and 16 g of O_{2}

78. Define atomic mass unit.

Atomic mass unit is defined as $\frac{1}{12}$ th of the mass of 1 atom of $\mathcal{C}-12$. It is called unified mass 'u'these days.
79. Hydrogen and oxygen combine in the ratio 1: 8 by mass to form water. What mass of oxygen gas would be required to react completely with $4 g$ of hydrogen gas?

1 g of H_{2} reacts with 8 g of O_{2}
$4 g$ of H_{2} reacts with $8 x 4=32 g$ of O_{2}
80. Give one word for the following
a) Positively charged ion
a) Cation
b) A group of atoms carrying a charge.
6) Polyatomic ion
81. Mention any two important rules for writing a chemical formula
a) Write valency or charge on atoms or radicals
6) Criss -cross the valency, e.g.

82. Calculate the formula unit mass of $\boldsymbol{C a C l}_{\mathbf{2}}$ [Atomic amss of $\left.\mathrm{Ca}=40 \mathrm{u}, \mathrm{Cl}=35.5 u\right)$] Forumula unit mass of CaCl_{2}
$=1 C a+2 C l=40 \times 1+2 \times 35.5$

$$
=40+71=111 u
$$

I. S HORI $\mathcal{A N S}$ WER TYPE QUES TIO $\mathcal{N S}$

83. (a). How would you differentiate between a molecule of an element and a molecule of a compound? Write one example of each type.
(6). Write the chemical formula of baking sode
[CBSE2012]
(a) Molecule of an element contains the same kind of atoms.E.g. P_{4} is a molecule of element which contains all four atoms of phosphorus.

Molecule of a compound contains two or more kinds of atoms. E.g. . $\mathrm{H}_{2} \mathrm{O}$ is a molecule of compound which contains 2 atoms of hydrogen and 1 atom of oxygen.
(6) NaHCO_{3} is the chemicalformula of baking soda.
84. Define atomicity. Give an example of each of monatomic, diatomic, tetra-atomic and polyatomic molecules.

Atomicity is defined as number of atoms present in a molecule. He is monoatomic. H_{2} is diatomic,.P_{4} is tetra-atomic and S_{8} is polyatomic molecules.
85. Classify the following compounds as diatomic, triatomic and polyatomic molecules:

$\mathcal{H C l}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$	and NH_{3}	
Diatomic	$:$	$\mathcal{H C l}, \mathrm{H}_{2}$
Triatomic	$:$	$\mathrm{H}_{2} \mathrm{O}$
Polyatomic	$:$	NH_{3}

86. The percentage of three elements, calcium, carbon and oxygen in a sample of calcium carbonate is given as:

Calcium $=40 \% ;$ Car6on $=12 \% ;$ Oxygen $=48 \%$

If the law of constant proportion is true, what weight of these elements will be present in 1.5 g of another sample of calcium carbonate?
[Atomic mass of $C a=40 u, C=12 u, O=16 u$]
The other compound will also contains the same percentage of elements.

Calcium $=40 \% ;$ Car6on $=12 \% ;$ Oxygen $=48 \%$

10 gg of CaCo_{3} contains 40 g of Ca
1.5 g of CaCo_{3} contains $\frac{40}{100} X 1.5=0.6 \mathrm{~g}$ of Calcium

100 g of CaCo_{3} contains 12 g of Carbon
1.5 g of CaCo_{3} contains $\frac{12}{100} \times 1.5=0.18 \mathrm{~g}$ of $\operatorname{Car} 6$ on
$\mathfrak{A l s o}, 100 \mathrm{~g}$ of CaCo_{3} contains 4 gg of oxygen.
1.5 g of CaCo_{3} contains $\frac{48}{100} \times 1.5=0.72 \mathrm{~g}$ of O xygen

8 7. How will you prove experimentally the law of conservation of mass
$>$ Take copper sulphate solution and dissolve it in water in a conicalflask.
$>\mathcal{N}$ ow take solution of sodium carbonate in the ignition tue and fang it carefully so that the two do not get mixed. Put a cork on the flask.

Experimental set up to prove law of conservation of mass
$>$ Weight the flaskwith its content carefully,
$>\mathcal{N}$ ow tilt and shake the flask so that the solutions of copper sulphate and sodium carbonate get mixed
> Weigh again
> The chemicalreaction takes place in flask.
$>$ Put cork on the mouth of the flaskso that reactants and products do not spill out of flask.
$>$ The mass of flask and its contents remain the same before as well as after the reaction that proves the law of conservation of mass.
88. (a)When 5 g of calc ium is burnt in 2 g of oxygen then 7 g of calcium oxide is produced. What mass of calcium oxide will be produced when 5 g of calcium is burnt in 20 g of oxygen. Which law of chemical combination will govern your answer? State the law.
(6) W rite the chemical formula of calcium oxide.
(a) $2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}$
$80 g$ of Ca reacts 32 g of oxygen
$5 g$ of Ca reacts $\frac{32}{80} X 5=2 g$ of oxygen.

5 g of Ca will react only with 2 g of oxygen out of 20 g of oxygen and 18 g of O_{2} will remain unreacted.

Law of definite proportion: It state the compound formed by any method will contain the same element with the fixed ratio by mass.
(6) CaO is the formula of calcium oxide.

89 (i) Write the full form of IUPAC.
(ii. Hydrogen and oxygen combine in the ration of $1: 8$ by mass to form water. What mass of oxygen gas would be required to react completely with $3 g$ of hydrogen gas [CBST 2016]
(i) International $\mathcal{L n}$ ion of $\mathcal{P u}$ e and Applied Chemistry
(ii) $1 g$ of H_{2} combines with $8 g$ of oxygen. $3 g$ of H_{2} combines with $\& x 3=24 g$ of oxygen.
90. Write the formulae of
(a) Magne sium hydroxide
(c) Potassium chloride
(e) Barium chloride
(a) $\mathrm{Mg}^{2+} \mathrm{OH}^{-}$

$\mathrm{Mg}(\mathrm{OH})_{2}$
c)

KCl
(6) Hydrogen sulphide
(d) Calcium oxide
(f) Sodium Carbonate
6)

d) $\mathrm{H}_{2} \mathrm{~S}$

CaO
e) $\mathrm{Ba}^{2+} \mathrm{Cl}^{-}$

BaCl_{2}
d) $\mathrm{Na}^{+} \quad \mathrm{CO}_{3}{ }^{2-}$

$\mathrm{Na}_{2} \mathrm{CO}_{3}$
91.a) Define atomic mass unit
6) Distinguish between molecular mass and molar mass
c) Give an example for the following.
i) Diatomic
ii) Triatomic molecule of compounds
a) It is defined as $\frac{1}{12}$ th of the mass of 1 atom of C-12
6) Molecular mass is the mass of molecule. Molar mass is the mass of 6.22×10^{23} molecules
c) i) $\mathcal{H C l}$ is diatomic molecule of compound
ii) $\mathrm{H}_{2} \mathrm{O}$ is triatomic molecule of compound.
92. Anelement ' X ' forms an oxide with formula $\boldsymbol{X}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$
a) State the valency of x
6) Write the formula of
i) Chloride of X,
ii) Sulphate of X.
a) X fas valency equal to 3
$\because X^{3+}$
$\mathrm{X}_{2} \mathrm{O}_{3}$
6) i) $X^{3+} C L^{-}$

XCl_{3}
ii) $\mathrm{X}^{3+} \quad \mathrm{SO}_{3}{ }^{2-}$

93. Using criss-cross, method write the chemical formulate of copper chloride, calcium' sulphate and sodium phosphate
i)

CuCl_{2}
ii) $\mathrm{Ca}^{2+} \quad \mathrm{SO}_{4}{ }^{2-}$

CaSO_{4}
(
iii) $\mathrm{Na}+$
$\mathrm{PO}_{4}{ }^{3-}$

$\mathrm{Na}_{3} \mathrm{PO}_{4}$
94) a) What are polyatomic ions?
6) Write the formulae and names of the compounds formed by combination of
i) $\mathcal{F e}^{3+}$ and $\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$
ii) $\mathrm{NH}_{4}{ }^{+}$and $\quad \mathrm{CO}_{3}{ }^{\mathbf{2 -}}$
a) Those icons which contain two or more than two atoms are called polyatomic ions.
b) i) $\mathcal{F e}^{3+}$ and $\mathrm{SO}_{4}{ }^{2-}$
ii) $\mathrm{NH}_{4}{ }^{+} \quad \mathrm{CO}_{3}{ }^{2-}$

$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Iron (III) sulpfate
95. Write the formulae of:
a) Sodium chloride
c) Ammonium sulpfiate
a) $\mathrm{Na}^{+} \bigcirc \mathrm{Cl}^{-}$

c) $\quad \mathrm{NH}_{4}^{+} \quad \mathrm{SO}_{4}{ }^{2-}$

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
96. a) Define polyatomic ion
6) Write the name of the compound $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and mention the ions present in it.
a) Those icons which contain two or more than two atoms are called polyatomic ions.
6) $\mathfrak{A m m o n i u m}$ sulpfiate. $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{SO}_{4}{ }^{2-}$ ions are present in it.
97. Calculate the number of moles present in
a) 60 g of calcium
6) $3.011 \times \mathbf{1 0}^{\mathbf{2 3}}$ number of oxygen atoms.
[Given that $C a=40$ u; Avogadro number $\boldsymbol{N}_{\boldsymbol{a}}=6.022 \times \mathbf{1 0}^{\mathbf{2 3}}$ per mole]
a) $\mathfrak{N u m b e r}$ of moles of $\mathrm{Ca}=\frac{\text { Given mass of Calcium }}{\text { Molare mass of Calcium }}$
$=\frac{60}{40}=1.5 \mathrm{moles}$
6) $\mathcal{N u m b e r}$ of moles $=\frac{\text { Given number of molecules }}{6.022 \times 10^{23}}$

$$
=\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}}=0.5 \mathrm{moles}
$$

98. Calculate the number of motecules of phosphorus $\left(\boldsymbol{P}_{\mathbf{4}}\right)$ present in 248 g of solid phosphorus
[Given Atomic mass of phosphorus =31. Ou.

$$
\begin{aligned}
& \left.\boldsymbol{N}_{\boldsymbol{A}}=6.022 \times \mathbf{1 0}^{\mathbf{2 3}} \text { per mole }\right] \\
& \text { Noumber of molecules of } P_{4} \\
& \quad=\frac{\text { Given mass }}{\text { Molar mass }} \times 6.022 \times 10^{23} \\
& =\frac{248}{31 \times 4}=6.022 \times 10^{23}=2 \times 6.022 \times 10^{23} \\
& =12.044 \times 10^{23}=1.2044 \times 10^{24} \text { molecules }
\end{aligned}
$$

99. If hydrogen and oxygen in a ratio of $1: 8$ by mass respectively to form water molecule. Explain how many moles of water will be formed using 10 moles of hydrogen gas and 5 moles of oxygen gas?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

2 moles of H_{2} reacts with 1 mole of O_{2} to moles of O_{2} to form 2 moles $\mathrm{H}_{2} \mathrm{O}$
$\therefore 2$ moles of H_{2} reacts with 5 mole of O_{2} to moles of O_{2} to form 10 moles of water.
100.Ravi prepared a solution of sodium chloride $6 y$ mixing 5.85 g of salt in 1 litre of water. Find
a) Molar mass of sodium chloride
b) \mathcal{N} (umber of moles of sodium chloride dissolved
[Atomic masses of sodium and chlorine are 23 und 35.5 u respective[y].
c) Concentration of the sodium chloride solution.
a) Molar mass of $\mathfrak{N a C l}=23+35.5$

$$
=58.5 \mathrm{~g} \mathrm{~mol}^{-1}
$$

6) $\mathfrak{N u m b e r}$ of moles of $\mathfrak{N a C l}$
$=\frac{\text { Mass of } \mathrm{Nacl}}{\text { Molare mass of Nacl }}=\frac{5.85}{58.5}=0.1 \mathrm{~mol}$
c) Concentration of solution

$$
\begin{aligned}
& =\frac{\text { Mass of solute }}{\text { mass of solution }} \times 100 \\
& =\frac{5.85}{5.85+1000} \times 100=\frac{5.85}{1005.85} \times 100=0.58 \%
\end{aligned}
$$

101 (a) Define the term mole
(b) Calculate the no. Of
(i) atoms
(ii) molecules in 124 grams of phosphorus, \boldsymbol{P}_{4}
[Given atomic mass of $\mathcal{P}=31.0 u$
$\boldsymbol{N}_{\boldsymbol{A}}=6.023 \times \mathbf{1 0}^{\mathbf{2 3} \mathbf{m o l}^{-\mathbf{1}} \mathrm{J}}$
(a) Mole is defined as counting unit and is equal to 6.022×10^{23} particles,
(b) (i) \mathcal{N} o of atoms
$=\frac{\text { Mass of phosphorus }}{\text { Molar mass of phosphorus }} \times$ Atomicity $\times 6.022 \times 10^{23}$
$=\frac{124}{124} \times 6.022 \cdot 10^{23}$
$=24.088 \times 10^{23}=2.4088 \times 10^{24}$ atoms
(ii) \mathcal{N} o. Of molecules
$=\frac{\text { Mass of phosphorus }}{\text { Molar mass }}$
$=\frac{124}{124} \times 6.022-10^{23}$
$=6.022 \times 10^{23}$ molecules
102. Calculate the number of atoms in 120 g of calcium and 120 g of iron. Which one has more number of atoms and how much is the difference?
[Given atomic mass of Calcium $=40 u$, Iron $=56 u$]
1 mole of $\mathrm{Ca}=40 \mathrm{~g}$
\mathcal{N} o. of atoms of calcium
$=\mathfrak{N}$ o. Of moles $\times 6.022 \times 10^{23}$
$=\frac{\text { Given mass }}{\text { Molar mass }} \times 6.022 \times 10^{23}$
$=\frac{120}{40} \times 6.022 \times 10^{23}$
$=18.066 \times 10^{23}$ atoms
$=1.8066 \times 10^{23}$ atoms

$=18.066 \times 10^{23}$ atoms
$\mathcal{N} o . O f$ atoms of iron
$=\frac{\text { Given mass }}{\text { Molar mass }} \times 6.022 \times 10^{23}$
$=\frac{120}{56} \times 6.022 \times 10^{23}$
$=\frac{72.264 \times 10^{24}}{56}$
$=1.29 \times 10^{24}$

Calcium fias more number of atoms

Difference in number of atoms
$=1.81 \chi 10^{24}-1.29 \times 10^{24}$
$=10^{24}(1.81-1.29)$
$=0.52 \times 10^{24}=5.2 \times 10^{24}$ atoms
103. a) Calculate the number of molecules in 50 g of CaCO_{3}
6) Calculate the mass of 0.5 moles of nitrogen gas.
c) Calculate the number of moles in 50 g of $\mathfrak{N a C l}$.
[Atomic mass of $\mathcal{C a}=40 u, c=12 u, O=16 u \mathcal{N}=14 u, \mathcal{N} a=23 u, \mathcal{C l}=35.5 u$,
$N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$]
a) Molecular mass CaCO_{3}
$=40+12+3 \times 16=40+12+48$
$=100 \mathrm{~g}$
$\because 100 \mathrm{~g} \mathrm{CaCO} 3$ contains 6.022×10^{23} molecules
$\therefore 50 \mathrm{~g} \mathrm{CaCO} O_{3}$ contains $\frac{6.022 \times 10^{23}}{100} \times 50$
$=3.011 \times 10^{23}$ molecules
b) 1 mole of N_{2} gas $=28 \mathrm{~g}$
$\therefore 0.5$ mole of N_{2} gas $=0.5 \times 28=14 g$
c) Molecular mass of $\mathfrak{N a C l}=23+35.5=58.5 \mathrm{~g}$
$\because 58.5 \mathrm{~g} \mathrm{NaCl}=1$ mole
$\therefore 50 \mathrm{~g} \mathrm{NaCl}=\frac{1}{58.5} \times 50$ moles
$=0.855 \mathrm{~mole}$
104. a) Define one mole. How is it related to Avogadro's constant
6) Find the number of sodium ion in one mole of sodium sulphate
a) 1 mole is defined as equal to 6.022×10^{23} particles. It is also equal to molar mass in grams.

1 mole $=$ Avogadro's constant

$$
=6.022 \times 10^{23}
$$

1 mole of $\mathcal{N} \mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 2 moles of Na^{+}
2 moles of $\mathrm{Na}^{+}=2 \times 6.022 \times 10^{23}$
$=12.044 \times 10^{23}=1.2044 \times 10^{24} \mathrm{Na}^{+}$ions
105.a) Which among the following has more number of molecules

1 g of hydrogen $\left(\boldsymbol{H}_{\mathbf{2}}\right)$ or 1 g of methane $\left(\mathrm{CH}_{\mathbf{4}}\right)$?
(Atomic mass of $\mathcal{H}=1 u, \mathcal{C}=12 u)$
6) Calculate the number of particles in 46 g of \mathcal{N} (a atoms.
(Atomic mass of $\mathcal{N}(a=23 u)$
a) 1 g of H_{2} contains number of molecules
$=\frac{1}{2} \times 6.022 \times 10^{23}$
3.011×10^{23}

1 g of CH_{4} contains number of molecules
$=\frac{1}{16} \times 6.022 \times 10^{23}$
$=\frac{60.22}{16} \times 10^{23}=3.76 \times 10^{23}$ molecules
$\therefore 1 \mathrm{~g}$ of H_{2} contains more number of molecules
6) \mathcal{A} tomic mass of $\mathcal{N a}$ atom $=23 \mathrm{~g}$
$\because 23 \mathrm{~g} \mathcal{N}$ a atom contains 6.022×10^{23} particles
$\therefore 46 \mathrm{~g} \mathcal{N a}$ atom will contain
$\frac{60.22 \times 10^{23} \times 46}{1623}$
$=12.044 \times 10^{23}$ particles
106. The atomic mass of Calcium is 40 . What will be the number of Calcium atoms in 0.4 u of Calcium?

40 u of calcium contains 1 atom
0.4 u of calcium contains $\frac{1}{40} \times 0.4=10^{-2}$
I. $\operatorname{LON} \mathcal{N} G \mathcal{A N S} \mathcal{W} \mathcal{E} \mathcal{T Y P E}$ QUESTIONS
107. a) Calculate the number of oxygen atoms in 0.40 mole of $\mathcal{N} \boldsymbol{a}_{\mathbf{2}} \quad \mathrm{CO}_{3} \cdot 10 \boldsymbol{H}_{2} \mathrm{O}$
6) If one mole of sulphur weighs 32 grams. What is the mass (ingrams) of 1 atom of sulpfur?
c) Identify the correct formula for ammonium sulphate from the following formula.
$\left(\mathfrak{N} \mathrm{H}_{4}\right)\left(\mathrm{SO}_{4}\right)_{3}, \quad\left(\mathfrak{N}_{\mathbf{N}} \mathrm{H}_{4}\right)_{2} \quad \mathrm{SO}_{4}, \quad \mathfrak{N}\left(\mathrm{H}_{4} \quad\left(\mathrm{SO}_{4}\right)_{2}\right.$
a) 1 mole of $\mathcal{N} a_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ contains $13 \times 6.022 \times 10^{23}$ atoms of oxygen.
$\therefore 0.10$ moles of $\mathcal{N} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ will contain $=0.10 \times 13 \times 6.022 \times 10^{23}$
$=7.83 \times 10^{23}$ atoms of oxygen.
6) 1 mole of sulpfur $=32 \mathrm{~g}$

Also 1 mole of sulpfur
$=6.022 \times 10^{23}$ atoms
\mathcal{N} ow $=6.022 \times 10^{23}$ atoms of sulphur weigh
$=32 \mathrm{~g}$
$\therefore 1$ atom of sulphur weighs $=\frac{32}{6.022 \times 10^{23}} \mathfrak{g}=5.31 \times 10^{-23} g$
c) $\left(\mathfrak{N}\left(\mathrm{H}_{4}\right)_{2} \mathrm{SO}_{4}\right.$
108. a) Write chemical formulae of all the compounds that can be formed by the combination of the following ions.
$\mathrm{Ca}^{\mathbf{2 +}}, \mathrm{K}^{+}, \mathrm{Fe}^{3+}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}$
6) Molar mass of nitrogen is 14 . What will be the mass of one atom of nitrogen in grams?
a) $\mathrm{Ca}^{2+} \mathrm{Cl}^{-}$

CaCl_{2}
6) Ca^{2+}

c) $\quad \mathrm{K}^{+} \mathrm{Cl}^{-}$

$\mathrm{K}_{2} \mathrm{SO}_{4}$

FeCl_{3}
$\mathrm{Fe}^{3+} \quad \mathrm{SO}_{4}{ }^{2-}$

$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
6) 1 mole of nitrogen atoms $=14 \mathrm{~g}$

1 mole of nitrogen atoms

$$
=6.022 \times 10^{23} \text { atoms }
$$

6.022×10^{23} atoms of nitrogen weigh
$=14 \mathrm{~g}$

1 atom of nitrogen weigh

$$
=\frac{14}{6.022 \times 10^{23}}=2.324 \times 10^{-23} g
$$

109. Verify by calculating the following:
a) $\mathfrak{N u m b e r}$ of molecules in 100 g of $\mathbf{N H}_{\mathbf{3}}$ is more than 100 g of $\mathbf{N}_{\mathbf{2}}$ [\mathfrak{A} tomic mass of $\mathfrak{N}=$ $14 u, \mathcal{H}=1$ u]
6) 60 g of carbon and 60 g of magnesium elements have a molar ratio 2: 1 [Atomic mass of $\quad C=12 u, \mathcal{M g}=24 u]$
\mathcal{N} o. Of moles of NH_{3}
$=\frac{\text { Given mass }}{\text { Molar mass }}$
$=\frac{100}{14+3}=\frac{100}{17}=5.88$ moles
$=\mathcal{N u m b e r}$ of molecules
$=\mathcal{N u m b e r}$ of moles $x 6.022 \times 10^{23}$
$=5.88 \times 6.022 \times 10^{23}$
$=35.4 \times 10^{23}$
$=3.54 \times 10^{23}$ molecules
\mathcal{N} umber of moles of $N_{2}=\frac{\text { Given mass }}{\text { Molar mass }}$
$=\frac{100}{2 \times 14}=\frac{100}{28}=3.57$ moles
Number of N_{2} molecules
$=\mathcal{N u m b e r}$ of moles $\times 6.022 \times 10^{23}$
$=3.57 \times 6.022 \times 10^{23}$
$=21.5 \times 10^{23}=2.15 \times 10^{24}$ molecules
Therefore the number of molecules in 100 g of $\mathcal{N} \mathrm{N}_{3}$ is more
7) $\mathcal{N u m b e r}$ of moles $=\frac{\text { Given mass }}{\text { Molar mass }}$

$$
\frac{60}{12}=5 \text { moles }
$$

\mathcal{N} umber of moles of $\mathcal{M g}=\frac{\text { Given mass }}{\text { Molar mass }}$ $\frac{60}{24}=2.5$ moles

Ratio $=5: 2.5$
\Rightarrow Ratio $=2: 1$.

$\mathcal{N C E R T}$ EXEMPLAR Questions

1. Which of the following represents a correct chemical formula? Name it.
a) CaCl
6) $\mathcal{B i} \mathrm{PO}_{4}$
c) $\mathcal{N} \mathrm{aSO}_{4}$
d) $\mathcal{N a S}$
7) BiPO_{4} is correct formula $\boldsymbol{B i}^{\mathbf{3 +}} \quad \mathcal{P O}_{\mathbf{4}}{ }^{\mathbf{3 -}}$

$\mathcal{B i P O}_{4}$

Bismuth phospfiate is the name of the compound.
2. Write the molecular formula for the following compounds.
a) Copper (II) Gromide
6) Aluminium (III) nitrate
c) Calcium (II) phospfiate
d) Iron (III) sufpfide
e) $\mathcal{M e r c u r y}$ (II) chloride
f) Magnesium (II) acetate
a) CuBr_{2}
b) $\mathcal{A A}\left(\mathrm{NO}_{3}\right)_{3}$
c) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
d) $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
e) HgCl_{2}
$\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}$
3. Write the molecular formulae of all the compound that can be formed by the combination of following ions:
$\mathrm{Ca}^{2+}, \mathrm{Na}^{+}, \mathrm{Fe}^{3+}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$

$\mathrm{Na}^{+} \quad \mathrm{Cl}^{-}$

$\mathfrak{N a C l}$
$\mathrm{Fe}^{3+} \mathrm{Cl}^{-}$
FeCl_{3}

$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

$\mathcal{F e} \mathrm{PO}_{4}$
4. Write the cations and anions present (if any) in the following compounds:
a) $\mathbf{C H}_{3} \operatorname{COON} \mathfrak{N}$
b) $\mathfrak{N a C l}$
c) H_{2}
d) $\mathrm{NH}_{4} \mathcal{N} \mathrm{O}_{3}$
a) $\mathrm{CH}_{3} \mathrm{COO}^{-}$(Anion) and Na^{+}(Cation)
6) Na^{+}(Cation) Cl^{-}(Anion)
c) H_{2} (\mathfrak{N} o Cation and \mathfrak{N} (o Anion)
d) $\mathrm{NH}_{4}{ }^{+}$(Cation) $\mathrm{NO}_{3}{ }^{-}$(Anion)
5. Give the formulae of the compounds formed from the following sets of elements.
a) Calcium and fluorine
c) Nitrogen and hydrogen
e) Sodium and oxygen
6) Hydrogen and hydrogen
d) Carbon and Chlorine
f) Carbon and oxygen
a) Ca^{2+}

CaF_{2}
F^{-}
b) $H^{+} \quad S^{2-}$
$\mathrm{H}_{2} \mathrm{~S}$
c) $\mathrm{N}^{3-} \quad \mathrm{H}^{1+}$

NH_{3}
d) $\mathrm{C}^{4+} \quad \mathrm{Cl}^{1-}$

CCl_{4}
e) $\mathrm{Na}^{+} \quad \mathrm{O}^{2-}$

$\mathrm{Na}_{2} \mathrm{O}$
f) $C^{4+} \quad O^{2-}$

CO_{2}
6. Which of the following symbols of elements are incorrect? Give their correct symbols
a) Cobalt CO
6) Carbon c
c) $\operatorname{Aluminium~} \mathcal{A L}$
d) He Cum He
e) Sodium So

Elements
3
Correct symbols

a) Cobalt
Co
b) Carbon
C

c) $\mathcal{A l u m i n i u m}$	$\mathcal{A l}$
d) $\mathcal{H e l i u m}$	$\mathcal{H e}$
e) Sodium	$\mathcal{N a}$

7. Give the chemical formulae for the following compounds and compute the ratio by mass of the combining elements in each one of them.
a) Ammonia
c) Hydrogen chloride
d) Magne sium sulpfide
a) NH_{3}
b) CO
d) $A l F_{3}$
e) $\mathfrak{M g S}$

Ratio 6y mass	a) $14: 3$	b) $12: 16$	c) $1: 35.5$	d) $27: 57$	e) $24: 32$
Simple Ratio	$14: 3$	$3: 4$	$2: 71$	$9: 19$	$3: 4$

8. State the number of atoms present in each of the following chemical species:
a) $\mathrm{CO}_{3}{ }^{2-}$
a) $\mathrm{CO}_{3}{ }^{2-}$ contains 4 atoms
b) $\mathrm{PO}_{4}{ }^{3-}$
b) $\mathrm{PO}_{4}{ }^{3-}$ contains 5 atoms
c) $\mathrm{P}_{2} \mathrm{O}_{5}$
c) $P_{2} O_{5}$ contains 7 atoms
d) CO
d) CO contains 2 atoms
9. What is the fraction of the mass of water due to neutrons?
\mathcal{N} o. Of neutrons in $\mathrm{H}_{2} \mathrm{O}=\boldsymbol{8}$ [because hydrogen does not have ne utron and oxygen fas 8 neutrons]

Therefore, fraction of the mass of water due to neutrons $=\frac{8}{18}=\frac{4}{9}$
10. Does the solubility of a substance change with temperature? Explain with the help of an example.

Yes, the solubility of solid in liquid increases with increase in temperature, e.g.cold water can dissotve less amount of sugar, whereas hot water can dissolve more amount of sugar.
11. Classify each of the following on the basis of their atomicity.
a) $\boldsymbol{F}_{\mathbf{2}}$
b) NO_{2}
c) $\mathrm{N}_{2} \mathrm{O}$
d) $\boldsymbol{C}_{2} \mathrm{H}_{6}$
e) \boldsymbol{P}_{4}
f) $\mathrm{H}_{2} \mathrm{O}_{2}$
g) $\boldsymbol{P}_{4} O_{10}$
f) \boldsymbol{O}_{3}
i) $\mathcal{H C l}$
j) CH_{4}
(K) $\mathcal{H e}$
C) $\mathfrak{A g}$
a) Diatomic
6) Triatomic
c) Triatomic
d) Octa-atomic
e) Tetra-atomic
f) Tetra-atomic
g) Tetradeca-atomic (14)
h) \mathcal{T} riatomic
i) Diatomic
j) Penta-atomic
K) Monoatomic
c) Monoatomic
12. You are provided with a fine white coloured powder which is either sugar or salt. How would you identify it without testing?
$\mathcal{H e}$ at the given substance. If it turns 6lack on feating, then it is sugar, otherwise salt. because sugar will lose water on heating and black coloured carbon will be left back.

Take ice cold water. If the given substance dissolves easily, it is salt. If it does not dissolve easily, it is sugar.
13. Calculate the number of moles of magnesium present in magnesium ribbon weighing 12 g . Molar atomic mass of magnesium is $24 \mathrm{~g} \mathrm{~mol}^{\mathbf{- 1}}$.

1 mole of $\mathfrak{M g}=24 \mathrm{~g}$

24 g of $\mathrm{Mg}=1 \mathrm{~mole}$

12 g of $\mathcal{M g}=\frac{1}{24} \chi 12=0.5 \mathrm{~mol}$
14. Verify by calculating that
a) 5 moles of $\mathbf{C O}_{2}$ and 5 moles of $\mathbf{H}_{2} \mathrm{O}$ do not have the same mass.
b) 240 g of calcium and 240 g magnesium elements have a mole ratio of $3: 5$.
a) 1 mole of $\mathrm{CO}_{2}=44 \mathrm{~g}$

5 moles of $\mathrm{CO}_{2}=44 \times 5=220 \mathrm{~g}$

1 mole of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$

5 moles of $\mathrm{H}_{2} \mathrm{O}=18 \quad \chi 5=90 \mathrm{~g}$

Clearly, both do not have the same mass.
b) 1 mole of $\mathrm{Ca}=40 \mathrm{~g}$

40 g of $\mathrm{Ca}=1 \mathrm{~mole}$
240 g of $\mathrm{Ca}=\frac{1}{40} \times 240=6 \mathrm{moles}$

24 g of $\mathfrak{M g}=1$ mole
240 g of $\mathfrak{M g}=\frac{1}{24} \times 240=10$ moles
Molar ratio $=6: 10$ i.e. $3: 5$. Hence proved.
15. Find the ratio by mass of the combining elements in the following compounds:
a) CaCO_{3}
6) MgCl_{2}
c) $\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}$ d) $\mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{5}} O \mathcal{H}$
e) NH_{3}
f) $\mathrm{Ca}(\mathbf{O H})_{2}$
a) CaCO_{3}
b) MgCl_{2}
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
e) NH_{3} f) $\mathrm{Ca}(\mathrm{OH})_{2}$
Ratio 6y mass (a) $40: 12: 48$
6) $24: 71$
c) $2: 32: 64$
d) $24: 6: 16$

$$
\text { e) } 14: 3
$$

$$
\text { f) } 40: 32: 2
$$

Simple ratio $10: 3: 12$
24:71
1:16:32 12:3:8
14:3
20:16:1
16. Calcium chloride when dissolved in water dissociates into its ions according to the following equation.

Calculate the number of ions obtained from $\mathrm{CaCl}_{\mathbf{2}}$ when 222 g of it is dissolved in water.
$\mathrm{CaCl}_{2}(a q) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)$
1 mole of $\mathrm{CaCl}_{2}=111 \mathrm{~g}$

111 g of $\mathrm{CaCl}_{2}=1$ mole
222 g of $\mathrm{CaCl}_{2}=\frac{1}{111} \times 222=2$ moles
1 mole of CaCl_{2} gives 3 moles of ion

2 mole of CaCl_{2} gives 6 moles of ion
$=6 \times 6.022 \times 10^{23}$ ions
$=36.132 \times 10^{23}$ ions $=3.6132 \times 10^{24}$ ions
17. The difference in the mass of 100 moles each of sodium atoms and sodium ions is 5.48002 g . Compute the mass of an electron.

18. Cinnabar ($\mathcal{H g S}$) is a prominent ore of mercury. How many grams of mercury are present in 225 g of pure $\mathcal{H g S}$? $\mathcal{M o l a r}$ mass of $\mathcal{H g}$ and \mathcal{S} are 200.6 mol $^{-1}$ respectively.

Molar mass of $\mathcal{H g S}=200.6+32=232.6 \mathrm{~g} \mathrm{~mol}^{-1}$
232.6 g of $\mathcal{H g S}$ contains 200.6 g of pure $\mathcal{H g}$

225 g of $\mathcal{H g S}$ contains $\frac{200.6}{232.6} \times 225=194.04 \mathrm{~g}$
19. The mass of one steelscrew is 4.11 g . Find the mass of one mole of these steel screws. Compare this value with the mass of the Earth $\left(5.98 \times \mathbf{1 0}^{\mathbf{2 4}} \mathrm{kg}\right)$ Which one of the two is heavier and by how many times?

Mass of 1 steelscrew $=4.11 \mathrm{~g}$

Mass of 6.022×10^{23} steelscrews
$=4.11 \times 6.022 \times 10^{23} g=2.475 \times 10^{24} g=2.475 \times 10^{21}$

Therefore, mass of one mole of screws
$=2.475 \times 10^{21}$

$=\frac{\text { Mass of Earth }}{\text { Mass of } 1 \text { mole screws }}=\frac{5.98 \times 10^{24} \mathrm{~kg}}{2.475 \times 10^{21}}=2.4 \times 10^{23}$

Mass of the earth is 2400 times the mass of 1 mole of screws
20. A sample of vitamin C is known to contain $2.58 \times \mathbf{1 0}^{\mathbf{2 4}}$ oxygen atoms.. How many moles of oxygen atoms are present in the sample?
$\mathcal{N u m b e r}$ of moles of oxygen atoms

$$
\begin{aligned}
& =\frac{\text { No.of atoms }}{\text { Avogadro's Number }}=\frac{2.58 \times 10^{24}}{6.022 \times 10^{23}} \\
& =4.28 \text { moles. }
\end{aligned}
$$

21. Raunak took 1 mole of carbon atoms in a container and Krish also took 5 moles of sodium atoms in another container of the same weight.
(a) Whose container is heavier?
(6) Whose container has more number of atoms?
a) 1 mole of carbon atoms $=12 \mathrm{~g}$

5 moles of carbon atoms $=12 \times 5=60 \mathrm{~g}$

1 mole of $\mathcal{N} a=23 \mathrm{~g}$

5 moles of $\mathcal{N} a=23 \quad \chi 5=115 \mathrm{~g}$

Thus, Krish's container is heavier than that of Raunak.
6) Both the containers have same number of atoms as both have the same number of moles and both elements are mono atomic.
22. Fill in the missing data in the Table

Species	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CO}_{\mathbf{2}}$	\mathcal{N} a atom	$\mathcal{M g C l _ { \mathbf { 2 } }}$
Property				
\mathcal{N} o. Of moles	2	-	-	0.5
\mathcal{N} o.Of particles	-	3.011×10^{23}	-	-
$\mathcal{M a s s}$	36 g		115 g	-

1 mole of $\mathrm{H}_{2} \mathrm{O}=1 \times 2+16=18 \mathrm{~g}$

2 mole of $\mathrm{H}_{2} \mathrm{O}=2 \times 18=36 \mathrm{~g}$
2 moles of $\mathrm{H}_{2} \mathrm{O}$ contains $=2 \times 6.022 \times 10^{23}=12.044 \times 10^{23}$ molecules

1 mole of $\mathrm{CO}_{2}=12+2+16=44 \mathrm{~g}$
0.5 mol of $\mathrm{CO}_{2}=44 \times 0.5=22 \mathrm{~g}$

1 mole of CO_{2} will contains 6.022×10^{23} molecules
0.5 mol of CO_{2} will contain $0.5 \times 6.022 \times 10^{23}=3.011 \times 10^{23}$ molecules

1 mole of $\mathfrak{N} a=23 \mathrm{~g}$

5 moles of $\mathfrak{N} a=23 \times 5=115 \mathcal{g}$

1 mole of $\mathcal{N} a=6.022 \times 10^{23}$ atoms

5 moles of $\mathcal{N a}=5 \times 6.022 \times 10^{23}=30.110 \times 10^{23}$ atoms
1 mole of $\mathrm{MgCl}_{2}=24+2 \times 35.5=24+71=95 g$
0.5 mole of $\mathrm{MgCl}_{2}=0.5 \times 95=47.5 \mathrm{~g}$

1 mole of $\mathrm{MgCl}_{2}=6.022 \times 10^{23}$
0.5 mole of $\mathrm{MgCl}_{2}=0.5 \times 6.022 \times 10^{23}=3.011 \times 10^{23}$ formula units.

Species	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{C O}_{\mathbf{2}}$	$\mathcal{N a}$ atom	$\mathbf{M g C l}_{\mathbf{2}}$
\mathcal{N} o. Of moles	2	0.5	5	0.5
\mathcal{N} o. Of Particles	$12.044 \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules	3.011×10^{23}	30.110×10^{23}	3.011×10^{23}
$\mathcal{M a s s}$	36 g	$22 \mathfrak{g}$	115 g	47.5 g

23. The visible universe is estimated to contain $\mathbf{1 0}^{\mathbf{2 2}}$ stars. How many moles of stars are present in the visible universe?

$$
\begin{aligned}
& \mathcal{N} \text { umber of moles of stars }=\frac{10^{22}}{N_{A}}=\frac{10^{22}}{6.022 \times 10^{23}} \\
& =0.167 \times 10^{-1}=0.0167 \mathrm{~mole} .
\end{aligned}
$$

24. What is the SI prefix for each of the following multiples and sub-multiples of a unit?
(a) $\mathbf{1 0}^{\mathbf{3}}$
(b) $\mathbf{1 0}^{\mathbf{- 1}}$
(c) $\mathbf{1 0}^{-\mathbf{2}}$
(d) 10^{-6}
(e)
10^{-9}
(f) 10^{12}
(a) Kilo
(6) deci
(c) centi
(d) micro
(e) nano
(f) pico
25. Express each of the following in Kilograms:
(a) $5.84 \times \mathbf{1 0}^{\mathbf{- 3}} \mathrm{mg}$ (b) $58.34 g$
(c) $0.584 g$
(d) $5.873 \times \mathbf{1 0}^{-\mathbf{2 1}} \boldsymbol{g}$
(a) $5.84 \times 10^{-3} \mathrm{mg} \times 10^{-6}=5.84 \times 10^{-9} \mathrm{~kg}$

$$
\left[\because 1 \mathrm{mg}=10^{-3} g=10^{-6} \mathrm{~kg}\right]
$$

(b) $58.34 \mathrm{~g} \times 10^{-3} \mathrm{~kg}=5.834 \times 10^{-2} \mathrm{~kg}$

$$
\left[\because 1 g=10^{-3} \mathrm{~kg}\right]
$$

(c) $0.584 g=0.584 \times 10^{-3} \mathrm{~kg}=5.84 \times 10^{-4} \mathrm{~kg}$
(d) $5.873 \times 10^{-21} \mathrm{~g} \times 10^{-3}=5.873 \times 10^{-24} \mathrm{~kg}$
26. Compute the difference in masses of $\mathbf{1 0}^{\mathbf{3}}$ moles each of magnesium atoms and magne sium ions.
(Mass of an electron $\left.=9.1 \times \mathbf{1 0}^{\mathbf{- 3 1}} \mathbf{k g}\right) \quad[\mathcal{H O} \mathcal{T S}]$
$\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}$

$$
2_{\bar{e}}
$$

1 mole
1 mole
1000 moles

2 mole
2000 moles

1 electron weighs $=9.1 \times \mathbf{1 0}^{-\mathbf{3 1}} \mathbf{k g}$
$\because 2000 \times 6.022 \times \mathbf{1 0}^{\mathbf{2 3}}$ electrons weight-
$=9.1 \times 10^{-31} \times 2000 \times 6.022 \times 10^{23} \mathrm{~kg}$
$=109.6004 \times 10^{-5} \mathrm{~kg}=1.096004 \times 10^{-3} . \mathrm{kg}$
27. Which has more number of atoms?

$$
\begin{aligned}
& 100 \mathrm{~g} \text { of } \mathrm{N}_{2} \text { or } 100 \mathrm{~g} \text { of } \mathrm{NH}_{3} \\
& 1 \mathrm{~mole} \text { of } N_{2}=28 \mathrm{~g} \\
& 28 \mathrm{~g} \text { of } N_{2}=1 \mathrm{~mole}
\end{aligned} \begin{aligned}
& 100 \mathrm{~g} \text { of } N_{2}=\frac{1}{28} \times 100=\frac{25}{7} \mathrm{moles} \\
&=\frac{25}{7} \nprec 6.022 \times 10^{23} \nprec 2 \text { atoms } \\
&=\frac{301.100}{7} \times 10^{23} \text { atoms } \\
&=43.01 \times 10^{23} \text { atoms } \\
&=4.30 \times 10^{24} \text { atoms }
\end{aligned}
$$

1 mole of $\mathrm{NH}_{3}=17 \mathrm{~g}$

17 g of $\mathrm{NH}_{3}=1 \mathrm{~mole}$
$100 \mathrm{~g} \mathrm{NH}_{3}=\frac{1}{17} \times 100$ mole

$$
\begin{aligned}
& \frac{100}{17} \times 4 \times 6.022 \times 10^{23} \text { atoms } \\
& =\frac{24.088}{17} \times 10^{25} \text { atoms } \\
& 1.417 \times 10^{25} \text { atoms }
\end{aligned}
$$

Therefore 100 g of NH_{3} contains more number of atoms.
28. Compute the number of ions present in 5.85 g of sodium chloride.

$$
\begin{aligned}
& \mathcal{N a} \longrightarrow \mathcal{N} a^{+}+e^{-} \\
& 1 \text { mole of } \mathcal{N a c l}=23+35.5=58.5 \mathrm{~g} \\
& 58.5 \mathrm{~g} \text { of } \mathfrak{N a c l}=1 \mathrm{~mole} \\
& 5.85 \mathrm{~g} \text { of } \mathcal{N a c l}=\frac{1}{58.5} \times 5.85=0.1 \mathrm{~mol} \\
& 1 \text { mole of } \mathcal{N a c l} \text { of gives } 2 \text { moles of ions } \\
& 0.1 \mathrm{~mol} \text { of } \mathcal{N a c l g i v e s} 2 \times 0.1=0.2 \mathrm{~mol} \\
& =0.2 \times x 6.022 \times 10^{23} \text { ions }=1.2044 \times 10^{23} \text { ions }
\end{aligned}
$$

29. A gold sample contains 90% of gold and the rest copper. How many atoms of gold are present in one gram of this sample of gold?

Amount of gold in 1 g of 90% pure gold
$=\frac{1 \times 90}{100}=0.9 \mathrm{~g}$
1 mole of $\mathcal{A} u=197 \mathcal{g}$
1 mole of $\mathfrak{A u}=6.022 \times 10^{23}$ atoms
0.9 g of gold contains $\frac{6.022 \times 10^{23} \times 0.9}{197}$
$=2.75 \times 10^{21}$ atoms
30. What are ionic and molecular compounds? Give examples

Ionic compounds are those compounds which are solid and form ions in aqueous solution, have figh melting and boiling points, do not conduct electricity in solid state but conduct electricity in molten state or in aque ous solution, e.g. $\mathfrak{N a C l}, \mathrm{KCl}, \mathrm{MgO}$, Cao, etc.,

Molecular compounds may be solids, liquids or gases, do not form ions in aqueous solution, have low melting and boiling points, do not conduct electricity e.g. $\mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{NH}_{3}, \mathrm{PH}_{3}$, etc.,
31. Compute the difference in masses of one mole each of aluminium atoms and one mole of its ions (Mass of an electron is $9.1 \times \mathbf{1 0}^{-\mathbf{2 8} g}$) [$\mathcal{H O T S}$] Which one is heavier?
$\mathcal{A l} \longrightarrow A l^{3+} \quad+\quad 3_{e}^{-}$
1 mole 1 mole 3 mole
Mass of 1 electron $=9.1 \times 10^{-28} g$
$\mathcal{M a s s}$ of $3 \times 6.022 \times 10^{23}$
$=9.1 \times 10^{-28} \times 3 \times 6.022 \times 10^{23}$
Mass of 3 miles of electrons $=164.400 \times 10^{-5} \mathrm{~g}$
$=0.00164 \mathrm{~g}$
Molar mass of Al^{3+} ions $=27-0.00164 \mathrm{~g}$
$=26.9984 \mathrm{~g} \mathrm{~mol}^{-1}$
Difference in mass between $\mathcal{A l}$ and $\mathrm{Al}^{3+}=0.00164 \mathrm{~g}$
32. A silver ornament of mass 'm'gram is polished with gold equivalent to 1% of the mass of silver. Compute the ratio of the number of atoms of gold and silver in the ornament [$\mathcal{H O} \mathcal{T S}$]

Mass of gold in the ornament
$=m \chi \frac{1}{100}=\frac{m}{100}=0.01 \mathrm{mgram}$
108 g of $\mathfrak{A g}$ contains 6.022×10^{23} atoms
$m \operatorname{gram}$ of $\mathcal{A g}$ contains $\frac{6.022 \times 10^{23}}{108} \chi \mathrm{~m}$
$=\frac{m}{100}=6.022 \times 10^{23}$ atoms
197 g of $\mathcal{A} u$ contains 6.022×10^{23} atoms
$=\frac{m}{100} g$ of Au contains $\frac{6.022 \times 10^{23}}{197} \times \frac{m}{100}$ atoms

Ratio of number of atoms of gold and silver $=\mathcal{A} u: \mathcal{A g}$

$$
\begin{aligned}
& =\frac{6.022 \times 10^{23}}{197} \times \frac{m}{100}: \frac{6.022 \times 10^{23} \times m}{108} \\
& =108: 19700=1: 182.41
\end{aligned}
$$

33. A sample of ethane $\left(\boldsymbol{C}_{\mathbf{2}} \boldsymbol{H}_{\mathbf{6}}\right)$ gas has the same mass as $1.5 \times \mathbf{1 0}^{\mathbf{2 0}}$ molecules of methane $\left(\mathbf{C H}_{\mathbf{4}}\right)$, How many $\boldsymbol{C}_{\mathbf{2}} \boldsymbol{H}_{\mathbf{6}}$ molecules does the sample of gas contain?

1 mole of $\mathrm{CH}_{4}=16 \mathrm{~g}$
1 mole of CH_{4} contains 6.022×10^{23} molecules
6.022×10^{23} molecules of CH_{4} has mass $=16 \mathrm{~g}$
1.5×10^{20} molecules of CH_{4} has mass
$=\frac{16}{6.022 \times 10^{23}} \times 1.5 \times 10^{20} \mathrm{~g}$
\mathcal{N} ow, 1 mole of $C_{2} H_{6}=6.022 \times 10^{23}$ molecules
30 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6.022×10^{23} moles
$\therefore \frac{16 \times 1.5 \times 10^{-3}}{6.022}$ g of $C_{2} H_{6}$ contains
$==\frac{6.022 \times 10^{23}}{30} \times \frac{16 \times 1.5 \times 10^{-3}}{6.022}$
$=\frac{24}{30} \times 10^{20}=0.8 \times 10^{20}$
$=8 \times 10^{19}$ molecules
34. Fill in the blanks"
a) In a chemical reaction, the sum of the masses of the reactants and products remains unchanged. This is called \qquad
6) \mathcal{A} group of atoms carrying a fixed charge on them is called \qquad .
c) The formula unit mass of $\boldsymbol{C a}_{\mathbf{3}}\left(\mathbf{P O}_{4}\right)_{2}$ is \qquad $[\mathrm{Ca}=40 \mathrm{u}, \mathrm{P}=31$ u, $O=16$ u]
d) Formula of sodium carbonate is \qquad - And that of ammonium sulphate is

a) Law of conservation of mass
6) Polyatomic ions [radicals]
c) $40 \times 3+2 \times 31+8+16=120+62+128=310 u$
d) $\mathrm{Na}_{2} \mathrm{CO}_{3} ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
35. Complete the following crosswor4d puzzle by using the name of the chemical elements. Ulse the data given in Table.

Across
2. The element used by Rutherford during fis \propto-scattering experiment (4)
3. Anelement which forms rust on exposure to moist air (4)
5. A very reactive non-metal stored under water (10)
7. Zinc metal when treated with difute fydrochloric acid produces a gas of this element which when tested with burning splinter produces a pop sound (8)

Down

1. A white lustrous metalused for making ornaments and which tends to get tarnisfed 6/ack in the presence of moisture (6)
2. Both 6rass and 6ronze are alloys of the element (6)
3. The metal which exists in the liquid state at room temperature (7)
4. An element with symbol Pb (4)

Across
2. $\mathcal{G O L D}$
3. $I R O \mathcal{N}$
5. PHOS PHO RUS
7. $\mathcal{H Y D R O}$ GEN

Down

36. (a) In the given crossword puzzle, names of 11 elements are fidden, the symbols of these elements are given below. Complete the puzzle

1. C
2. \mathcal{H}
3. $\mathcal{A r}$
4. O
5. Xe
6. \mathcal{N}
7. $\mathcal{H e}$
8. \mathcal{F}
9. $\mathcal{L r}$
10. Rn
11. Ne

6) Identify the total number of inert gases, their names and symbols from this crossword puzzle.
1. $\mathrm{Cl}-\mathrm{CH} \mathcal{H} O \mathcal{R} I \mathcal{N} \mathcal{E}$
2. $\mathcal{H}-\mathcal{H} \mathcal{A D R O G E N}$
3. $\mathcal{A r}-\mathcal{A R G O \mathcal { N }}$
4.O-OYGEN
4. $\mathrm{xe}-\mathrm{XEN} \mathcal{N} O \mathcal{N}$
5. $\mathcal{N}-\mathcal{N E T R O}$ GEN
6. $\mathcal{H e}-\mathcal{H E L I} \mathcal{U M}$
7. $\mathcal{F}-\mathcal{F L U O} \mathcal{R I N E}$
8. \mathcal{K}^{2} - KRSVPIO N
9. $R n-R \mathcal{A D O} \mathcal{N}$
10. $\mathcal{N e} \cdot \mathcal{N} \mathcal{E} O \mathcal{N}$

(6) $\mathcal{H e l i u m}(\mathcal{H e})$, $\mathcal{N e}$ on $(\mathcal{N}(e)$, $\operatorname{Argon}(\mathcal{A r})$, $\mathcal{L r y p t o n}(\mathcal{L r})$, Xenon (Xe), and Radon (Rn) are six inert gases.
11. Write the formulae for the following and calculate the molecular mass for each one of them.
a) Caustic potash
6) baking powder
c) Lime stone
d) Caustic soda
e) Ethanol
f) Common salt
a) Caustic potash is KOH , Molecular mass

$$
=39+16+1=56 u
$$

6) Baking powder is NaHCO_{3} Molecular mass

$$
=23+1+12+48=84 u
$$

c) Lime stone is CaCO_{3} Molecular mass

$$
=40+12+48=100 u
$$

d) Caustic soda is $\mathcal{N a O \mathcal { H } , \mathfrak { M o l e c } u l a r m a s s}$

$$
=23+16+1=40 u
$$

e) Ethanol is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Molecular mass

$$
=24+5+16+1=46 u
$$

f) Common salt is $\mathfrak{N a C l}$ Molecular mass

$$
=23+35.5=58.5 u
$$

38. In photosynthesis, 6 molecules of carbon dioxide combine with an equal number of water molecules through a complex series of reactions to give a molecule of glucose faving a molecular formula $\boldsymbol{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}}$. How many grams of water would be required to produce 18 g of glucose? Compute the volume of water so consumed, assuming the density of water to be $1 \mathrm{~g} \mathrm{~cm}^{-3}[\mathcal{H O} \mathcal{T S}]$
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \frac{\text { Chlorophyll }}{\text { Sunlight }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
(Gluc ose)

Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$=6 \times 12 \times 12 \times 1+6 \times 16$
$=72+12+96=180 \mathrm{~g} \mathrm{~mol}^{-1}$
180 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ needs 108 g of $\mathrm{H}_{2} \mathrm{O}$
18 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ needs $\frac{108}{180} \not x 18$
$=10.8 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$
Volume of water $=\frac{\text { Mass of water }}{\text { Density of Water }}=\frac{10.8 \mathrm{~g}}{1 \mathrm{~g} \mathrm{~cm}^{-3}}$
Volume of water $=10.8 \mathrm{~cm}^{3}$

