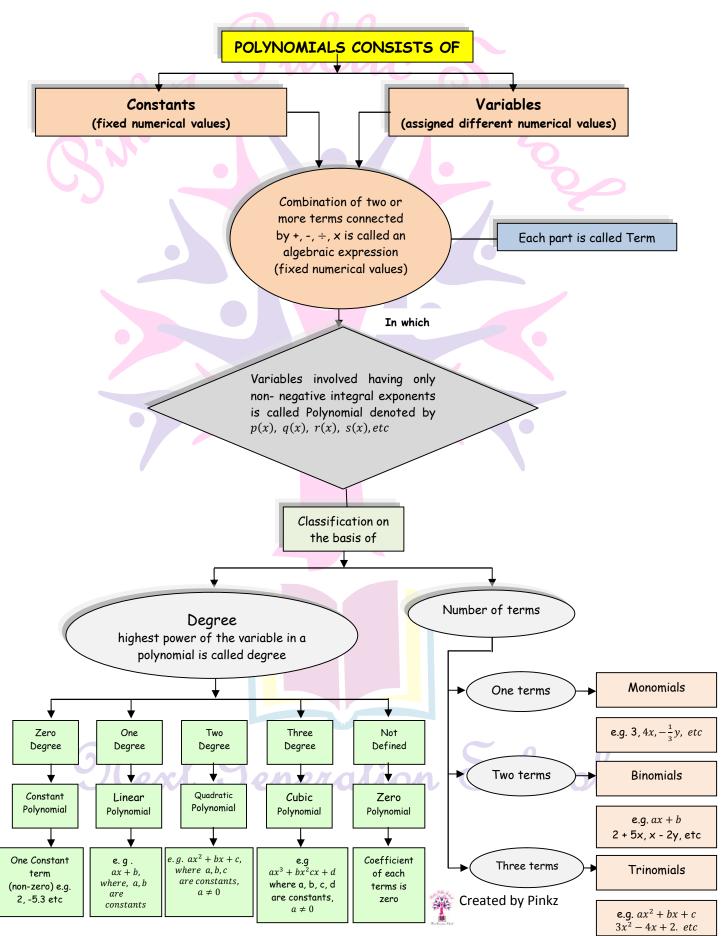


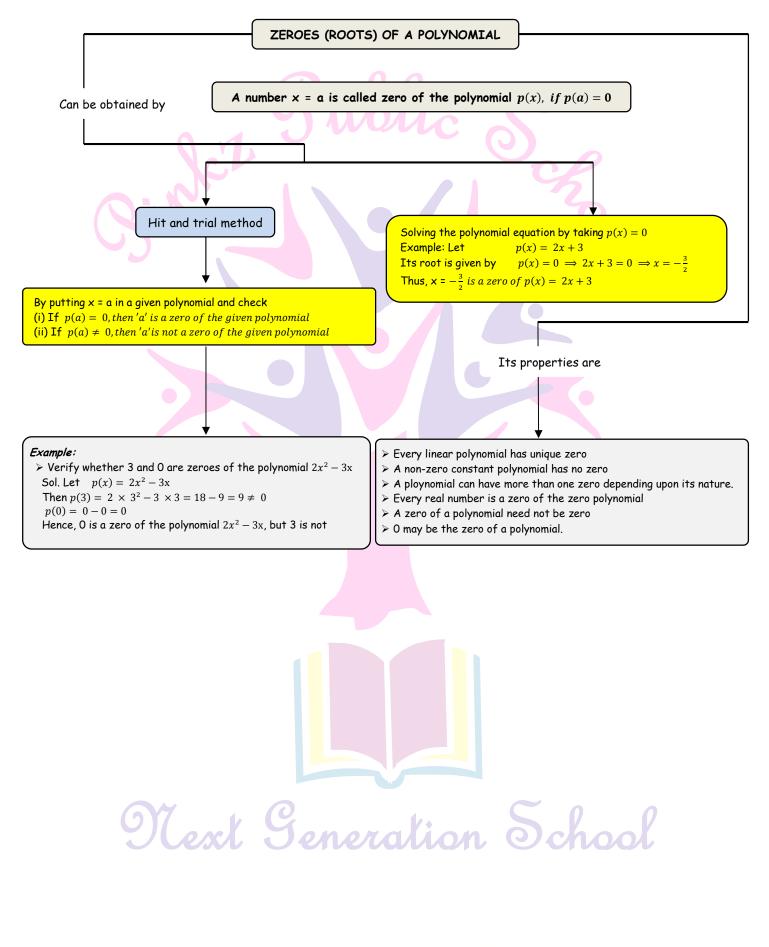
Grade IX

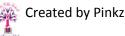
Lesson : 2POLYNOMINALS

INTRODUCTION TO POLYNOMIALS AND PLOYNOMIALS IN TWO VARIABLES

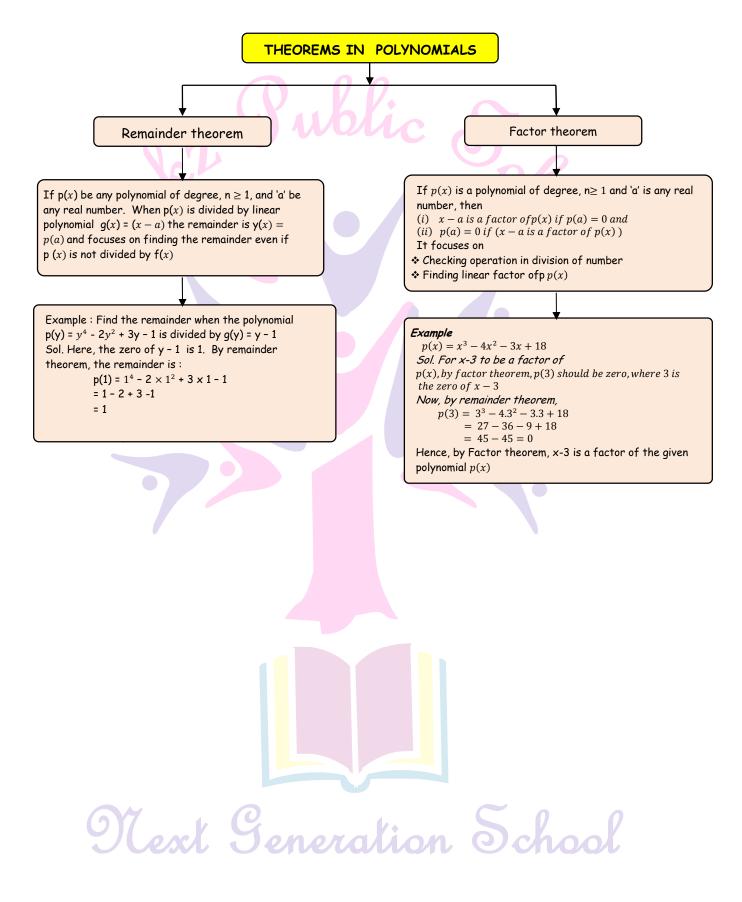


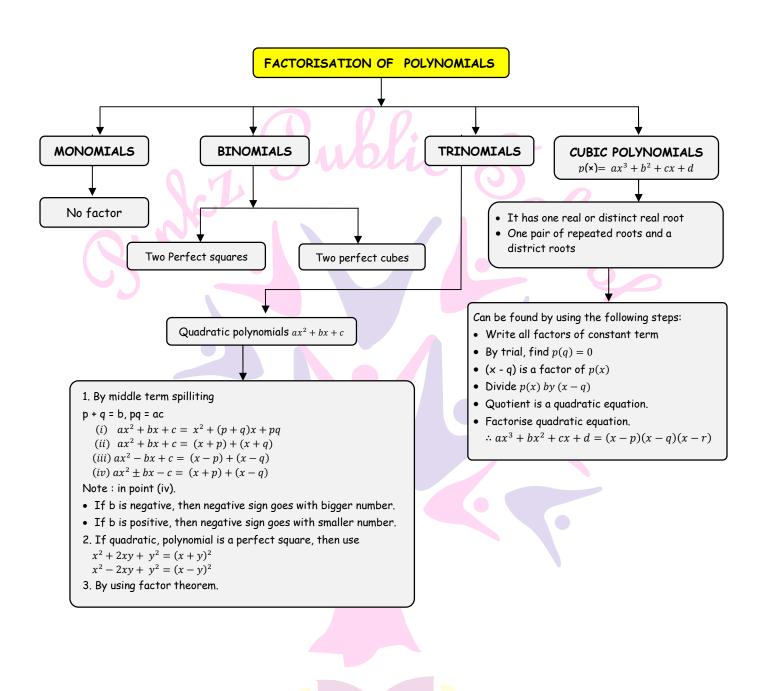
ZEROES OF A POLYNOMIAL





THEOREMS IN POLYNOMIALS

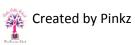


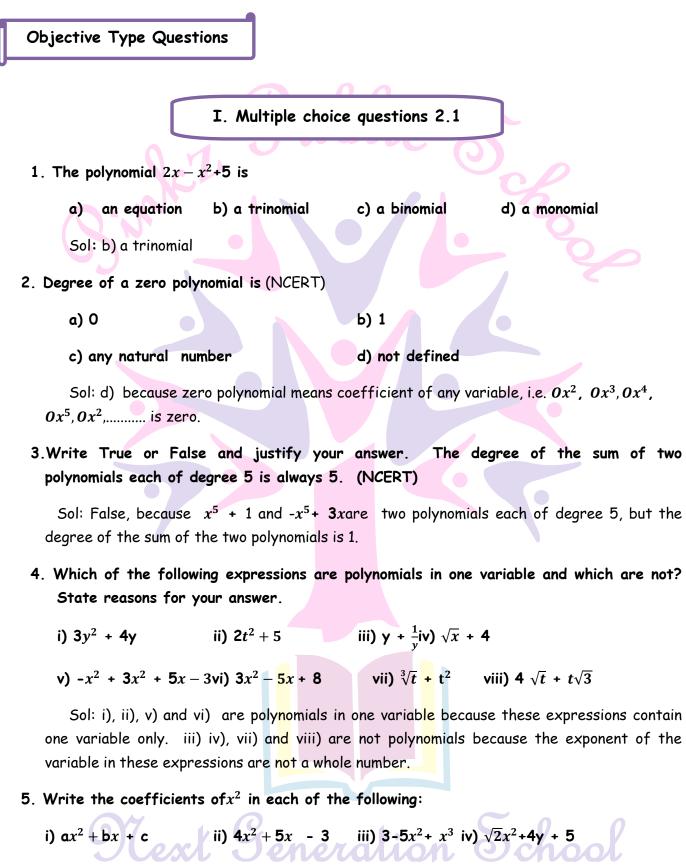


Next Generation School

ALGEBRAIC IDENTITIES

Identity I	:	$(x + y)^2 = x^2 + 2xy + y^2$
Identity II	:	$(x-y)^2 = x^2 - 2xy + y^2$
Identity III	:	$x^{2} - y^{2} = (x + y) (x - y)$
Identity IV	:	$(x + a) (x + b) = x^{2} + (a + b) x + ab$
Identity V	:	$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$
Identity VI	:	$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$
Identity VII	:	$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$
		$= x^3 - 3x^2y + 3xy^2 - y^3$
Identity VIII	:	$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$





The coefficients of x^2 in each of the given polynomials are

Sol: i) a ii) 4 iii) -5 iv) $\sqrt{2}$

Created by Pinkz

- 6. Write the coefficients of x^3 in each of the following:
- iii) $\frac{2}{5}x^3 x$ i) $5x^3 - 6x^2 + 7x - 9$ ii) $27x^3 - Y^3$ v) $x^3 + x + 6$ vi) $\sqrt{5}x^3 + 1$ iv) $2x^3 + 5$ viii) $3x^4 - 4x^3 - 3x - 5$ vii) $Y^3 - 16x^3$ Sol: The coefficients of x^3 in the given expressions are : iii) $\frac{2}{r}$ i) 5 ii) 27 iv) 2 vii) √5vi) -16 vii) -4 v) 1 7. Write the degree of each of the following polynomials: ii) 3- $2y^2$ - 5 y^3 + $2y^8$ i) $4x^5 - 3x^4 + 9$ iv) 4y + 5 iii) 3 Sol: The highest power of the variable in a polynomial is called the degree of the polynomial. Hence, degree of the given expression are i) 5 iii) 0 (:: $3 = 3x^{0}$) ii) 8 iv) 1 8. Write the coefficient of y in the expansion of $(5 - y)^2$ Sol: (5-y)= $5^2 - 2 \times 5 \times y + y^2$ $[Using (a - b)^2 = a^2 - 2ab - b^2]$ $= 25 - 10 y + y^2$ \therefore Required coefficient of y = -10 Next Generation School

II. Multiple choice questions 2.2

1. Given a polynomial $p(t) = t^4 - t^3 + t^2 + 6$, then p(-1) is (c) 3 (a) 6 (b) 9 (d)-1 $P(t) = t^4 - t^3 + t^2 + 6$ Sol: \Rightarrow p (-1) = (-1)⁴- (-1)³ + (-1)² + 6 = 1 - (-1) + 1 + 6 = 1 + 1 + 7 = 9 ∴ Correct option is (b) 2. Zero of the zero polynomial is a) 0 b) 1 c) any real number d) not defined Sol: c) Consider q(x) = 0 (x - a) where 'a' is any real number. Zero of q(x) is equal to $q(x)=0 \Rightarrow x - a = 0 \Rightarrow x - a$ So, zero of the zero polynomial is any real number. 3. If p(x) = x + 3, then p(x) + p(-x) is equal to a) 3 **b)** 2*x* c) 0 d) 6 Sol: p(x) + p(-x) = x + 3 + (-x) + 3 = 6 \therefore Correct option is (d) 4. Find the value of polynomial y^2 - 5y + 6 at i) y = 0 ii) y = -1Sol: The value of polynomial $p(y) = y^2 - 5y + 6$ i) at y = 0 is given by p(0) = 0 - 5(0) + 6 = 6tion School ii) at y = -1 is given by $p(-1) = (-1)^2 - 5(-1) + 6 = 1 + 5 + 6 = 12$

5. Find the value of each of the following polynomials at the indicated value of variable:

i)
$$p(y) = 5y^2 - 3y + 7$$
 at $y = 1$, -1
ii) $q(x) = 3x^3 - 4x + \sqrt{8}$ at $x = 2$
Sol: i) $p(y) = 5y^2 - 3y + 7$
 \therefore At $y = 1$, $p(1) = 5(1)^2 - 3(1) + 7 = 5 - 3 + 7 = 9$
and at $y = -1$, $p(-1) = 5(-1)^2 - 3(-1) + 7 = 5 + 3 + 7 = 15$
ii) $q(x) = 3x^3 - 4x + \sqrt{8}$
 \therefore at $x = 2$, $q = (2) = 3(2)^3 - 4 \times 2 + \sqrt{8} = 24 - 8 + \sqrt{8} = 16 + \sqrt{8}$

6. Verify whether the following are zeroes of the polynomial, indicated against them.

i)
$$p(x) = x^3 - 3x^2 + 4x - 12, x = 3$$

ii) $p(y) = y^4 - 3y^2 + 2y + 1, y = 1$
Sol: i) $p(x) = x^3 - 3x^2 + 4x - 12,$
 $\therefore p(3) = 3^3 - 3(3)^2 + 4(3) - 12 = 27 - 27 + 12 - 12 = 0$
So, $x = 3$ is a zero of the polynomial $p(x) = x^3 - 3x^2 + 4x - 12$.
ii) $p(y) = y^4 - 3y^2 + 2y + 1$
 $\therefore p(1) = 1^4 - 3(1)^2 + 2(1) + 1 = 1 - 3 + 2 + 1 = 1 \neq 0$

So, y = 1 is not a zero of the polynomialp(y) = $y^4 - 3y^2 + 2y + 1$

III. Multiple choice questions 2.3 and 2.4

- 2. Factors of $3x^2 x 4$ are
 - a) (x-1)and(3x-4)b) (x + 1) and (3x - 4)c) (x + 1)and(3x + 4)Sol: $3x^2 - x - 4 = 3x^2 + 4x + 3x - 4$ = x (3x - 4) + 1 (3x - 4) = (x + 1)(3x - 4) \therefore correct option is (b)

IV. Multiple choice questions 2.5

- 1. Expansion of $(x y)^3$ is
 - a) $x^3 + y^3 + 3 x^2y + 3xy^2$ b) $x^3 + y^3 - 3 x^2y - 3xy^2$ c) $x^3 - y^3 - 3 x^2y + 3xy^2$ d) $x^3 - y^3 - 3 x^2y - 3xy^2$

Sol: c

2. Which identity, do we use to factorise $x^2 - \frac{y^2}{100}$?

a) $(a + b)^2 = a^2 + b^2 + 2 ab$ b) $(a - b)^2 = a^2 + b^2 - 2 ab$ c) $(a - b)^3 = a^3 + 3a^2 b + 3 ab^2 - b^3$ d) $a^2 - b^2 = (a - b) (a + b)$ Sol: d

3. To find the value of $(28)^3 + (-15)^3 - (-13)^3$, we use the formula

a)
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

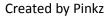
b) we calculate all the cubes and add.

c) we use $x^3 + y^3 + z^3 = 3xyz$ with x = 28 y = -15 z = 13

d) we use
$$x^3 + y^3 + z^3 = 3xyz$$
 with $x = 28$ $y = -15$ $z = -13$

4. Zeros of the polynomial $p(x) = (x-2)^2 - (x+2)^2$ are

a) 2, -2 b) 2x c) 0, -2 d) 0 Sol: p (x) = $(x-2)^2 - (x+2)^2 = x^2 + 4 - 4x - (x^2 + 4 + 4x)$



$$= x^{2} + 4 - 4x - x^{2} - 4 - 4x = -8x$$

Now,
$$p(x) = 0 \implies -8 x = 0 \implies x = 0$$

: Correct option is (d)

I Short Answer Type Questions

- 1. If -1 is a zero of the polynomial $p(x) = ax^3 x^2 + x + 4$, then find the value of 'a'.
 - Sol: If -1 is a zero of the polynomial p(x), then
 - P(-1) = 0
 - $\Rightarrow a (-1)^3 (-1)^2 + (-1) + 4 = 0$
 - \Rightarrow a 1 1 + 4 = 0
 - \Rightarrow a + 2 = 0 \Rightarrow a = 2
- 2. What is the value of polynomial $x^2 + 8x + k$. If -1 is a zero of the polynomial?
 - Sol: $p(x) = x^2 + 8x + k$
 - If -1 is a zero of the polynomial = p(x), then
 - $p(-1) = 0 \Longrightarrow (-1)^2 + 8 (-1) + k = 0$
 - $1 8 + k = 0 \Longrightarrow k = 7.$

II Short Answer Type Questions

3. If $x = -\frac{1}{3}$ is a zero of a polynomial. $p(x) = 27x^3 - ax^2 - x + 3$, then find the value of 'a'.

Sol: Given, $p(x) = 27x^3 - ax^2 - x + 3$ If $x = -\frac{1}{3}$ is a zero of p(x), then,

$$\mathbf{p}(-\frac{1}{3}) = \mathbf{0} \Longrightarrow 27\left(-\frac{1}{3}\right)^3 - \alpha\left(-\frac{1}{3}\right)^2 - \left(-\frac{1}{3}\right) + 3 = \mathbf{0}$$

$$\Rightarrow -27 \times \frac{1}{27} - \frac{a}{3} + \frac{1}{3} + 3 = 0$$

$$\Rightarrow \frac{a}{3} = -1 + \frac{10}{3} = \frac{7}{3}$$

$$\Rightarrow a = 7$$

If $f(x) = 5x^2 - 4x + 5$, find $f(1) + f(-1) + f(0)$
Sol: If $f(x) = 5x^2 - 4x + 5$

 $f(1) = 5(1)^2 - (4)(1) + 5 = 5 - 4 + 5 = 6$

$$f(-1) = 5(-1)^2 - (4)(-1) + 5 = 5 + 4 + 5 = 14$$

$$f(0) = 5 (0)^2 - 4.0 + 5 = 0 - 0 + 5 = 5$$

III. Short answer Type questions

1. Find the remainder when $4x^2 - 3x^2 + 4x - 2$ is divided by

i) x -1 ii) x -2

Sol: i) Let
$$p(x) = 4x^2 - 3x^2 + 4x - 2$$
 and $g(x) = x - 1$

Zero of g(x) is 1

4.

By the remainder theorem, the remainder is, p(1)

$$= 4 \times (1)^3 - 3 \times 1^2 + 4 \times 1 - 2$$

Hence, remainder is 3.

ii) Let
$$p(x) = 4x^2 - 3x^2 + 4x - 2and g(x) = x - 2$$

Here, zero of g(x) = 2 $[g(x) = 0 \implies x = 2]$

Using remainder theorem, when p(x) is divided by g(x), we get the remainder p(2) $p(2) = 4 (2)^3 - 3 (2)^2 + 4(2) - 2 = 32 - 12 + 8 - 2 = 40 - 14 = 26.$

Hence, remainder is 26

2. By remainder theorem, find the remainder when p(y) is divided by g(y)

i)
$$p(y) = 4y^3 - 12y^2 + 5y - 4$$
 and $g(y) = 2y - 1$
ii) $p(y) = y^3 - 4y^2 - 2y + 6$ and $g(y) = 1 - \frac{3}{4}y$.
Sol: i) Here, zero of $g(y)$ is $\frac{1}{2}$... $[2y - 1 = 0 \Rightarrow y = \frac{1}{2}]$

Using remainder theorem, when p(y) is divided by g(y), we get the remainder $p(\frac{1}{2})$

$$\therefore \mathbf{p}\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^3 + 5\left(\frac{1}{2}\right) - 4$$
$$= \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4$$
$$= \frac{4 - 24 + 20 - 32}{8} = -\frac{32}{8} = -4$$

Hence, required remainder is (-4).

ii) $p(y) = y^3 - 4y^2 - 2y + 6$ and $g(y) = 1 - \frac{3}{4}y$.

Here, zero of g(y) is $\frac{4}{3} \left[1 - \frac{3}{4}y = 0\right] \Rightarrow y = \frac{4}{3}$]

Using remainder theorem, when p(y) is divided by g(y), the remainder, we get is $p\left(\frac{4}{3}\right)$

$$\therefore p\left(\frac{4}{3}\right) = \left(\frac{4}{3}\right)^3 - 4\left(\frac{4}{3}\right)^2 - 2\left(\frac{4}{3}\right) + 6$$
$$= \frac{64}{27} - \frac{64}{9} - \frac{8}{3} + 6$$
$$= \frac{64 - 192 - 72 - 162}{27} = \frac{226 - 264}{27} = -\frac{34}{27}$$

Hence, required remainder is $\left(-\frac{38}{27}\right)$

3. Check whether p(x) or not

i) $p(x) = x^3 + 27x^2 - 8x + 18$, g(x) = (x - 1)

ii)
$$p(x) = 2\sqrt{2}x^3 - 5\sqrt{2}x^2 + 7\sqrt{2}$$
, $g(x) = (x+1)$

Sol:
$$g(x) = (x - 1) \therefore \text{ zero of } g(x) \text{ is } 1$$

Now,
$$p(x) = x^3 + 27x^2 - 8x + 18$$
,
 $p(1) = 1^3 - 27(1)^2 - 8(1) + 18$,
 $= 1 + 27 - 8 + 18$

Since $p(1) \neq 0$, so p(x) is not a multiple of g(x)

ii)
$$g(x) = x + 1 \therefore$$
 zero of $g(x)$ is -1

Now,
$$p(x) = 2\sqrt{2}x^3 - 5\sqrt{2}x^2 + 7\sqrt{2}$$

$$p(-1) = 2\sqrt{2}(-1)^3 - 5\sqrt{2}(-1)^2 + 7\sqrt{2}$$

$$= -2\sqrt{2} - 5\sqrt{2} + 7\sqrt{2} = 0$$

Since p(1) = 0 then p(x) is a multiple of g(x)

4. Examine whether x-1 is a factor of the following polynomials:

i)
$$2x^3 - 5x^2 + x + 2$$
 ii) $4x^3 + 5x^2 - 3x + 6$

Sol: If x - a is a factor of p(x), then by factor theorem, p(a) = 0.

i) Let
$$p(x) = 2x^3 - 5x^2 + x + 2$$

$$p(1) = 2(1)^3 - 5(1)^2 + 1 + 2$$

Hence,
$$x - 1$$
 is a factor of $p(x) = 2x^3 - 5x^2 + x + 2$

ii) Let
$$p(x) = 4x^3 + 5x^2 - 3x + 6$$

$$p(1) = 4(1)^3 + 5(1)^2 - 3(1) + 6$$

 \Rightarrow p(1) = 12 \neq 0 Hence, x - 1 is not a of p(x) = 4x³+5x²- 3x+6

5. Find the value of k, if x + k is the factor of the polynomials:

Sol: i)
$$x^3 + kx^2 - 2x + k + 5$$
 ii) $x^4 - k^2x^2 + 3x - 6k$

Using factor theorem, if x + k is a factor of p(x) then p(-k) = 0. Here for all expressions x = -k.

i) Let
$$p(x) = x^3 + kx^2 - 2x + k + 5$$

 $\therefore p(-k) = (-k)^3 + k(-k)^2 - 2(-k) + k + 5 = 0$
 $\Rightarrow -k^3 + k^3 + 3k + 5 = 0$
 $\Rightarrow k = -\frac{5}{3}$
ii) Let $p(x) = x^4 - k^2 x^2 + 3x - 6k$

$$p(-k) = (-k)^{4} - k^{2} \cdot (-k)^{2} + 3(-k) - 6k = 0$$

$$\Rightarrow k^{4} - k^{4} - 3k - 6k = 0$$

$$\Rightarrow -9 k = 0 \Rightarrow k = 0$$

IV. Short answer Type questions

6. Let R₁ and R₂ are the remainders when polynomial f(x)= 4x³ + 3 x² + 12 ax -5 and g(x) = 2x³ + a x² - 6 x - 2 are divided by (x-1) and (x-2) respectively. If 3R₁ + R₂ - 28 = 0, Find the value of a. [CBSE 2015, HOTS]

Sol: Given, $f(x) = 4x^3 + 3x^2 + 12ax - 5$

$$g(x) = 2x^3 + a x^2 - 6 x - 2$$

Now, R_1 = remainder when f(x) is divided by x - 1

 $\Rightarrow R_1 = f(1)$

$$\Rightarrow R_1 = 4(1)^3 + 3(1)^2 + 12a(+1) - 5$$

And R_2 = remainder when g(x) is divided by x - 2

$$\Rightarrow R_2 = g(2)$$

= 2(2)³ + a(2)² + 6(2) - 2
= 16 + 4a - 12 - 2 = 4a + 2

Substituting the value of R_1 and R_2 are in $3R_1 + R_2 = 28 = 0$, we get

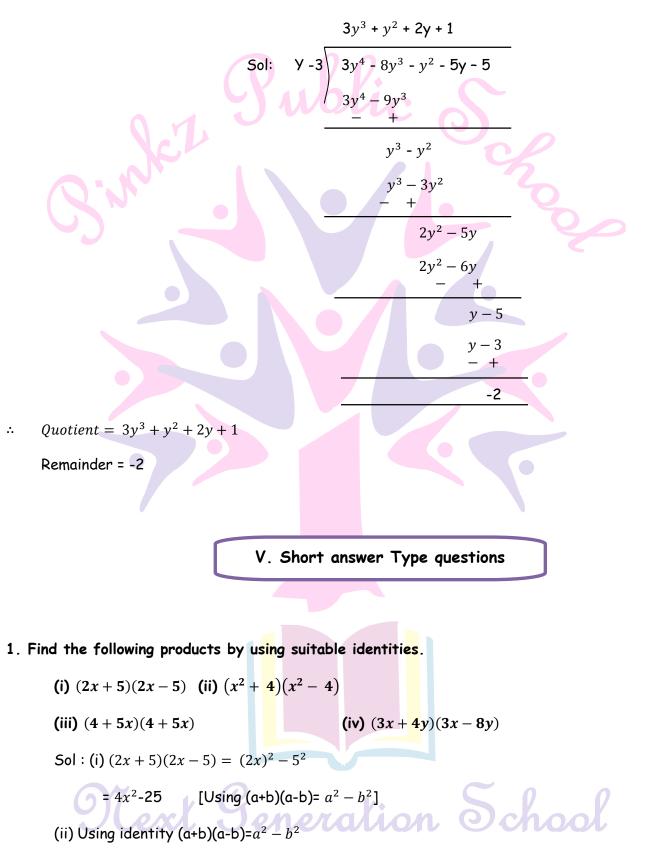
$$3(12a + 2) + 4a + 2 - 28 = 0$$

$$36a + 6 + 4a - 26 = 0$$

$$40a = 20$$

$$a = \frac{20}{40} = \frac{1}{2}$$
Show

7. Divide $3y^4 - 8y^3 - y^2 - 5y - 5$ by y - 3 and find the quotient and the remainder. [CBSE2014]



We have $(x^2 + 4)(x^2 - 4) = (x^2)^2 - (4)^2 = x^4 - 16$

(iii) Using identity $(a + b)^2 = a^2 + 2ab + b^2$

We have $(4 + 5x)(4 + 5x) = (4 + 5x)^2$

 $= 4^{2} + 2(4)(5x) + (5x)^{2}$ $= 16 + 40x + 25x^{2} = 25x^{2} + 40x + 16$ (iv) Using identity $(x + a)(x + b) = x^{2} + (a + b)x + ab$ We have, (3x + 4y)(3x - 8y) $= (3x)^{2} + [(4y) + (-8y)](3x) + (4y)(-8y)$ $= 9x^{2} + (-4y)(3x) - 32y^{2} = 9x^{2} - 12xy - 32y^{2}$

- 2. Evaluate the following products by using suitable identities.
 - (i) 104×105 (ii) 102×98 (iii) $116 \times 116 106 \times 106$

Sol : (i)
$$104 \times 105 = (100 + 4) \times (100 + 5)$$

 $= 100^{2} + (4 + 5) \times 100 + 4 \times 5$

 $[Using (x + a)(x + b) = [(x^2) + (a + b)x + ab]$

(ii) $102 \times 98 = (100+2)(100-2)$ = $(100)^2 - (2)^2$ [Using $(x + y)(x - y) = x^2 - y^2$] = 10000 - 4=9996(iii) $116 \times 116 - 106 \times 106 = (116)^2 - (106)^2$ = (116+106)(116-106)

=
$$[Using a^2 - b^2 = (a + b)(a - b)]$$

= 222 X 10 = 2220

Next Generation School

3. Factorise the following using suitable identities:

(i)
$$x^{2} - y^{2} + 2x + 1$$

(ii) $9a^{2} - 4b^{2} - 6a + 1$
(iii) $a^{4} - 16b^{4}$
Sol: (i) $x^{2} - y^{2} + 2x + 1 = (x^{2} + 2x + 1) - y^{2}$
 $= (x + 1)^{2} - y^{2}$ [Using $a^{2} + 2ab + b^{2} = (a + b)^{2}$]
 $= (x + 1 + y) (x + 1 - y)$ $[(a^{2} - b^{2}) = (a + b)(a - b)]$
 $= (x + y + 1) (x - y + 1)$
(ii) $9a^{2} - 4b^{2} - 6a + 1 = (9a^{2} - 6a + 1) - 4b^{2}$
 $= [(3a)^{2} - 2(3a)(1) + (1)^{2}] - (2b)^{2}$
 $[Using x^{2} - 2xy + y^{2} = (x - y)^{2}]$
 $= (3a - 1)^{2} - (2b)^{2}$
 $= (3a - 1 + 2b) (3a - 1 - 2b)$
 $[Using x^{2} - y^{2} = (x + y)(x - y)]$
 $= (3a + 2b - 1) (3a - 2b - 1)$
(iii) $a^{4} - 16b^{4} = (a^{2})^{2} - (4b^{2})^{2}$
 $= (a^{2} + 4b^{2})(a^{2} - (2b)^{2}]$
 $= (a^{2} + 4b^{2})(a^{2} - (2b)^{2}]$
 $= (a^{2} + 4b^{2})(a^{2} - (2b)^{2}]$
 $= (a^{2} + 4b^{2})(a + 2b)(a - 2b)$

4. Factorise the following

(i)
$$3\sqrt[3]{3}a^{3} + 8b^{3} - 27c^{3} + 18\sqrt[3]{3}abc$$

(ii) $a^{3} - 8b^{3} + 1 + 6ab$
(iii) $(a + b)^{3} - (a - b)^{3}$
Sol : (i) $3\sqrt[3]{3}a^{3} + 8b^{3} - 27c^{3} + 18\sqrt[3]{3}abc$
= $(\sqrt{3}a)^{3} + (2b)^{3} + (-3c)^{3} - 3(\sqrt{3}a)(2b)(-3c)$
= $(\sqrt{3}a + 2b - 3c)x [(\sqrt{3}a)^{2} + (2b)^{2} + (-3c)^{2} - (\sqrt{3}a)(2b) - (2b)(-3c) - (-3c)(\sqrt{3}a)]$
[By Using, $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)]$
= $(\sqrt{3}a + 2b - 3c)(3a^{2} + 4b^{2} + 9c^{2} - 2\sqrt{3}ab + 6bc + 3\sqrt{3}ca)$
(ii) $a^{3} - 8b^{3} + 1 + 6ab$
= $a^{3} + (-2b)^{3} + (1)^{3} - 3(a)(-2b)(1)$
= $(a - 2b + 1) [(a)^{2} + (-2b)^{2} + (1)^{2} a(-2b) - (-2b)(1) - (a)(1)]$
= $(a - 2b + 1) [(a)^{2} + (-2b)^{2} + (1)^{2} a(-2b) - (-2b)(1) - (a)(1)]$
= $(a - 2b + 1) (a^{2} + 4b^{2} + 1 + 2ab + 2b - a)$
(iii) Using identity $x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$
We have, $x = a + b$ and $y = a - b$
So, $(a + b)^{3} - (a - b)^{3} = [(a + b) - (a - b)]$
[$(a + b)^{2} + (a + b)(a - b) + (a - b)^{2}$]
= $(a + b - a + b)(a^{2} + b^{2} + 2ab + a^{2} - b^{2} + a^{2} + b^{2} - 2ab)$
= $2b (3a^{2} + b^{2})$

VI. Short answer Type questions

5. Prove that $(x + y)^3 + (y + z)^3 + (z + x)^3 - 3(x + y)(y + z)(z + x) = 2(x^3 + y^3 + z^3 - 3xyz)$ Sol: We known $a^2 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ (i) Let a = x + y, b = y + z and c = z + xSo, a + b + c = (x + y) + (y + z) + (z + x)= 2x + 2y + 2z = 2(x + y + z)and $a^2 + b^2 + c^2 - ab - bc - ca$ $= (x + y)^{2} + (y + z)^{2} + (z + x)^{2} - (x + y)(y + z) - (y + z)(z + x) - (z + x)(x + y)$ $= x^{2} + y^{2} + 2xy + y^{2} + z^{2} + 2yz + z^{2} + x^{2} + 2zx - xy - xz - y^{2} - yz - yz - xy - z^{2} - zx - z^{2}$ $zx - zy - x^2 - xy$ $= x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2zx - 3xy - 3yz - 3zx$ $= x^{2} + y^{2} + z^{2} - xy - yz - zx$ Substituting the value in (i) we get $(x + y)^{3} + (y + z)^{3} + (z + x)^{3} - 3(x + y)(y + z)(z - x)$ $= 2(x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$ = $2(x^3 + y^3 + z^3 - 3xyz)$ Hence proved. 6. If 2x+3y = 12 and xy = 6, find the value of $8x^3 + 27y^3$. [CBSE 2016] Sol: We know that $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$ $x^{3} + y^{3} = (x + y)^{3} - 3xy(x + y)$ \Rightarrow $8x^3 + 27y^3 = (2x)^3 + (3y)^3$ Now. $= (2x + 3y)^3 - 3(2x)(3y)(2x + 3y)$ $= 12^3 - 18 \times 6 \times 12$ [Given 2x + 3y = 12 and xy = 6] ration School = 1728 -1296 = 432 Hence, $8x^3 + 27y^3 = 432$

7. If $z^2 + \frac{1}{z^2} = 34$, find the value of $z^3 + \frac{1}{z^3}$ using only the positive value of $z + \frac{1}{z}$ [CBSE2016]

Sol : Using identity

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

We have $\left(z + \frac{1}{z}\right)^{2} = z^{2} + 2z \cdot \frac{1}{z} + \frac{1}{z^{2}}$
 $\Rightarrow = \left(z^{2} + \frac{1}{z^{2}}\right) + 2 = 34 + 2 = 36$
 $\Rightarrow = z + \frac{1}{z} = \pm\sqrt{36} = \pm 6$

According to the given condition, we should use only positive value of $z + \frac{1}{z}$

 $z + \frac{1}{z} = 6$

Now, again using the identity

$$x^{3} + y^{3} = (x + y)^{3} - 3xy(x + y)$$

We have
$$z^3 + \frac{1}{z^3} = (z + \frac{1}{z})^3 - 3z \cdot \frac{1}{z}(z + \frac{1}{z})$$

$$= 6^3 - 3 \times 6 = 216 - 18 = 198$$

I. Long answer Type questions

1. Find the value of a and b so that x + 1 and x - 1 are factors of $x^4 + ax^3 + 2x^2 - 3x + b$.

Sol : Let $f(x) = x^4 + ax^3 + 2x^2 - 3x + b$ be the given polynomial and g(x) = x + 1, h(x) = x - 1g(x) is a factor of f(x), then by factor theorem.

$$f(-1) = 0$$

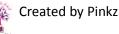
$$\Rightarrow \quad (-1)^{4} + a(-1)^{3} + 2(-1)^{2} - 3(-1) + b = 0$$

$$\Rightarrow \quad 1 - a + 2 + 3 + b = 0$$

$$\Rightarrow \quad -a + b = -6....(i)$$

If h(x) be a factor of f(x), then again by factor theorem.

f(1) = 0



⇒ $(1)^4 + a(1)^3 + 2(1)^2 - 3(1) + b = 0$ ⇒ 1 + a + 2 + 3 + b = 0

 \Rightarrow

a + b = 0....(ii)

Adding (i) and (ii), we get

2b = -6 or b=-3

From (ii), we have a - 3 = 0, $\Rightarrow a = 3$

Hence, required value of a and b are 3 and -3 respectively.

2. State factor theorem. Using this theorem, factorise $x^3 - 3x^2 - x + 3$ [CBSE 2011]

Sol : Factor theorem : if p(x) is a polynomial of degree $n \ge 1$ and a is any real number, then

(i) x = a is a factor of p(x) if p(a)=0 and

(ii) p(a) = 0 if (x - a) is a factor of p(x)

Let

(i)

Factors of 3 are ± 1 and ± 3 .

By trial method. $p(1) = 1^3 - 3(1)^2 - 1 + 3$

 $p(x) = x^3 - 3x^2 - x +$

Therefore, by factor theorem, (x - 1) is a factor of p(x)

Similarly, $p(-1) = (-1)^3 - 3(-1)^2 - (-1) + 3$

= - 1 - 3 + 1 + 3 = 0

So, (x+1) is also a factor of p(x) and $p(3) = (3)^3 - \frac{3}{3}(3)^2 - 3 + 3 = 27 - 27 - 3 + 3 = 0$

So, (x-3) is also a factor of p(x)

Since p(x) is a polynomial of degree, 3, so it cannot have more than three linear factors.

Let
$$p(x) = k (x - 1)(x + 1)(x - 3) \dots$$
 (ii)
 $\Rightarrow x^3 - 3x^2 - x + 3 = k (x - 1)(x + 1)(x - 3)$

Putting x = 0 both sides, we get

3 = k(-1)(1)(-3) = 3k

 \Rightarrow k = 1

Putting k = 1 in equation (ii), we get

f(x) = (x - 1)(x + 1)(x - 3)

3. Divide polynomial $p(x) = 3x^4 + 4x^3 + 4x^2 - 8x + 1$ by q(x) = 3x + 1, Also, find what should be added to p(x) so that it is completely divisible by q(x)

$$x^{3} + x^{2} + x - 3$$

$$3x + 1 \overline{\smash{\big)}3x^{4} + 4x^{3} + 4x^{2} - 8x + 1}$$

$$3x^{4} + x^{3}$$

$$- -$$

$$3x^{2} + 4x^{2}$$

$$- -$$

$$3x^{2} - 8x$$

$$3x^{3} + x^{2}$$

$$- -$$

$$3x^{2} - 8x$$

$$3x^{3} + x$$

$$- - -$$

$$-9x + 1$$

$$-9x + 1$$

$$-9x - 3$$

$$+ + +$$

$$4$$

$$-9x + 1$$

$$-9x - 3$$

$$+ + +$$

$$4$$

$$-9x + 1$$

$$-9x - 3$$

$$+ + +$$

$$4$$

$$-9x + 1$$

$$-9x + 1$$

$$-9x - 3$$

$$+ + +$$

$$4$$

$$-9x + 1$$

$$-9x + 1$$

$$-9x + 1$$

$$-9x - 3$$

$$+ + +$$

$$4$$

$$-9x + 1$$

$$-9$$

[CBSE 2016]

II. Long answer Type questions

1. Factorise the following

(i)
$$x^2 - \frac{y^2}{9}$$
 (ii) $2x^2 - 7x - 15$
Sol: (i) $x^2 - \frac{y^2}{9} = x^2 - \left(\frac{y}{3}\right)^2 = \left(x - \frac{y}{3}\right)\left(x + \frac{y}{3}\right)$
 $[x^2 - y^2 = (x + y)(x - y)]$
(ii) $2x^2 - 7x - 15 = 2x^2 - 10x + 3x - 15$
 $= 2x(x - 5) + 3(x - 5)$
 $= (x - 5)(2x + 3)$

2. If ab + bc + ca = 0, find the value of

$$\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$$
[CBSE 2016, HOTS]
Sol: Given: ab + bc + ca = 0

$$\Rightarrow -ab = bc + ca; -bc = ca + ab and - ca = ab + bc$$
Therefore, $\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$

$$= \frac{1}{a^2 + ab + ca} + \frac{1}{b^2 + ab + bc} + \frac{1}{c^2 + bc + ca}$$

$$= \frac{1}{a(a + b + c)} + \frac{1}{b(b + a + c)} + \frac{1}{c(c + b + a)}$$

$$= \frac{1}{(a + b + c)} \left[\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right]$$

$$= \frac{1}{abc(a + b + c)} = 0 \quad \text{as } ab + bc + ca = 0$$

3. It is given that 3a + 2b = 5c, then find the value of $27a^3 + 8b^3 - 125c^3$ if abc = 0 [CBSE 2016]

Sol: Given:
$$3a + 2b = 5c$$

Taking cube both sides, we have
 $(3a + 2b)^3 = (5c)^3$
 $\Rightarrow (3a)^3 + (2b)^3 + 3(3a)(2b)(3a + 2b) = 125c^3$
 $[Using: (x + y)^3 = x^3 + y^3 + 3xy(x + y)]$
 $\Rightarrow 27a^3 + 8b^3 + 18ab(3a + 2b) = 125c^3$
 $\Rightarrow 27a^3 + 8b^3 + 18ab(5c) = 125c^3$
 $[\because 3a + 2b = 5c]$
 $\Rightarrow 27a^3 + 8b^3 + 90abc = 125c^3$
 $\Rightarrow 27a^3 + 8b^3 + 90 \times 0 = 125c^3$
 $\Rightarrow 27a^3 + 8b^3 - 125c^3 = 0$ [$\because abc = 0$]
4. If $a + b + c = 0$, then prove that $\frac{(b + c)^2}{3bc} + \frac{(c + a)^2}{3ac} + \frac{(a + b)^2}{3ab}$
 $\frac{b^2 + c^2 + 2bc}{3bc} + \frac{(c^2 + a)^2}{3ac} + \frac{(a^2 + b)^2}{3ab}$
 $[Using: (x + y)^2 = x^2 + y^2 + 2xy]$
 $= \frac{1}{3abc} [ab^2 + ac^2 + 2abc + bc^2 + ba^2 + 2abc + a^2c + b^2c + 2abc]$
 $= \frac{1}{3abc} [ab (b + a) + ac (c + a) + bc(c + b) + 6abc]$
 $= \frac{1}{3abc} [ab (b + a) + ac (c + a) + bc(c + b) + 6abc]$
 $= \frac{1}{3abc} [-abc - abc - abc + 6abc]$
 $= \frac{3abc}{3abc} = 1 = R.H.S.$ Hence, proved.

