

Name :			
Grade : VIII			
Subject : Mathem	atics		
<u>Ch</u>	apter : 12. Exp	onents and Powe	ers
Objective Type Que	estions	nc s	1 Marks.
			CP
	I. Multiple c	hoice questions	32
1. The multiplicative inverse	e of $\left(\frac{-5}{9}\right)^{-99}$ is		[NCERT Exemplar]
$a.\left(\frac{-5}{9}\right)^{-99}$	b. $\left(\frac{5}{9}\right)^{-99}$	c. $\left(\frac{9}{-5}\right)^{-99}$	d. $\left(\frac{9}{5}\right)^{99}$
2. What is the value of 'm'			
a. 10	b. 2	c. 100	d100
3. What is the scientific no	otation of 0.0023?		
a. 2.3 × 10-3	b. 23 x 10-3	c. 2.3 × 103	d. 23 x 103
4. The usual from for 2.03	×10-5:		[NCERT Exemplar]
a. 0.203	b. 0.00203	c. 203000	d. 0.0000203
5. $\left(\frac{1}{10}\right)^0$ is equal to:			
a. 0	b. $\frac{1}{10}$	c . 1	d. 10
6. $\left(\frac{-7}{5}\right)^{-1}$ is equal to:			[NCERT Exemplar]
a. $\frac{5}{7}$	b. $\frac{-5}{7}$	c. $\frac{7}{5}$	d. $\frac{-7}{5}$
7. The value of (7 ⁻¹ - 8 ⁻¹)	$^{-1} - (3^{-1} - 48^{-1})^{-1}$ is		
a. 44	b. 56	c. 68	d. 12
8 . $(2^{-1} + 3^{-1} + 4^{-1})^{-1}$ is:			
a. $\frac{1}{2} + \frac{1}{3} + \frac{1}{4}$	b. 2 + 3 + <mark>4</mark>	c. 1 + 1 + 1	d. 1
9. $\left(\frac{3}{4}\right)^5 \div \left(\frac{5}{3}\right)^5$ is equal to:	b. $(\frac{3}{4} \div \frac{5}{2})^1$	$(3 \ 5)^0$	(3 5)10
	D. $\left(\frac{1}{4} \div \frac{1}{3}\right)$	C. $\left(\frac{1}{4} \div \frac{1}{3}\right)$	a. $\left(\frac{1}{4} \div \frac{1}{3}\right)$
10. $(-7^3 \div 7^{-8}) \div 7^5 =$			
a . 7 ⁶	b. 7 ⁻⁶	c . –1	d. 1

									Mart Brownian Schul
11. The value of p , for which $7^7 \div 7^{-p} = 7^{10}$, is :									
a	1	b. 2 c. 3			c. 3		d. 4		
12. Whe	x = 2, x(x)	$(x^x) - x$ is	equal to						
a	4		b. 6		c. 8		d. 10		
13. Let x	be any no	on-zero in	teger and	m,n b <mark>e n</mark> e	gative int	eger. The	$x^m \times x^n$ i	s equal to	
							ſ	NCERT E	xemplar]
a.	<i>x</i> ^{<i>m</i>}		D . x^{m+n}		с. <i>х</i> ^{<i>n</i>}		d. <i>x</i> ^{<i>m</i>-<i>n</i>}		
14. The s	standard f	orm for O	.000064 is	5:			<u> </u>		kemplar]
a	64 × 10 ⁴		b. 64 × 10	-4	c. 6.4 × 1	105	d . 6.4 ×	10 ⁻⁵	
15. (-9) ³	$^{3} \div (-9)^{8}$	is equal t	0				נו	NCERT E	kemplar]
a	(9) ⁵		b . (9) – ⁵		c . (-9) ⁵		d. (−9) ⁻	-5	
16. For a	non-zero	rational n	umber z, ($(z^{-2})^3$ is equivalent	qual to:		[NCERT E	kemplar]
a	<i>z</i> ⁶		D. z^{-6}		c . <i>z</i> ¹		d . <i>z</i> ⁴		
17. Whic	h of the f	ollowing is	not the r	eciprocal	of $\left(\frac{2}{3}\right)^4$?				
a.	$\left(\frac{3}{2}\right)^4$		b. $\left(\frac{3}{2}\right)^{-4}$		c. $\left(\frac{2}{3}\right)^4$		d. $\frac{3}{2^4}^4$		
18. In 2 ²	,n is know	in as					[NCERT E	(emplar
a. base b. constant			c. expone	ent	d. varia	ble			
19. Cube	19. Cube of $-\frac{1}{2}$ is:								
a	a. $-\frac{1}{8}$ b. $\frac{1}{16}$				c. $-\frac{1}{8}$		d. $-\frac{1}{16}$		
	0			is equal to	U		16		
20. For a non-zero integer $x, x^7 \div x^{12}$ is equal to: a. x^5 b. x^{19} c. x^{-5} d. x^{-19}									
1. c	2. b	3. a	4. d	5. c	6. b	7 . a	8. d	9. a	10. c
11. c	12. b	13. b	14. d	15. d	16. b	17. b	18. c	19. c	20. c
II. Multiple choice questions									
1. Multiplicative inverse of 2 ⁷ is [NCERT Exemplar]									
1. Multiplicative inverse of 27 is[NCERT Exemplar]a. 2 ⁻⁷ b. 72c27d. 27									
2. Then value of $\frac{1}{4^{-2}}$ is [NCERT Exemplar]									
	16		b. 8		C . $\frac{1}{16}$		d. 1/8		
					16		ъ		

			Bart Parenter School			
3. Then reciprocal of	$\left(\frac{2}{5}\right)^{-1}$ is		[NCERT Exemplar]			
a. 16	b. 8	c . $\frac{1}{16}$	d. $\frac{1}{8}$			
4. If y be any non-zer	o integer, then y^0 is equal	al to	[NCERT Exemplar]			
a. 1	b. 0	c1	d. Not defined			
5. Which of the follow	ving is equal to $\left(-\frac{3}{4}\right)^{-3}$?					
a. $\left(\frac{3}{4}\right)^{-3}$	b. $\left(-\frac{4}{3}\right)^{-3}$	$C.\left(\frac{4}{3}\right)^3$	d. $\left(-\frac{4}{3}\right)^3$			
6. The value of $(7^{-1} -$	$(8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1}$	is	[NCERT Exemplar]			
a. 44	b. 56	c. 68	d. 12			
7. The standard form	for 0.000064 is		[NCERT Exemplar]			
a. 64×10^4		b. 6.4 \times 10 ⁵				
c. 6.4×10^{-5}		d. None of these				
8. The usual form for	2.03×10^{-5}					
a. 0.203	b. 0.00203	c. 203000	d. 0.0000203			
9. $\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}$ is equal to						
a. 16	b16	c. $-\frac{1}{16}$	d. $\left(\frac{3}{7}\right)^{-6}$			
10. If $x = \left(\frac{3}{7}\right)^{-3}$, then	x^{-2} equals					
a. $\left(\frac{3}{7}\right)^{-3}$	$b.\left(\frac{3}{7}\right)^9$	c. $\left(\frac{3}{7}\right)^{6}$	d. $\left(\frac{3}{7}\right)^{-6}$			
1. a 2. a	3. a 4. a 5. d	6.a 7.c	8. d 9. d 10. c			
	I. Fill	in the blanks				
1. The standard form			[NCERT Exemplar]			
2. The usual form of 3			[NCERT Exemplar]			
3. If 36 = 6 x 6 = 6 ² ,	then $\frac{1}{36}$ expressed as a point of the second	ower with the base 6 i	S			
			[NICEDT Exemplar]			

67			6. C	[NCERT Exemplar]
4. The value of $\left(\frac{1}{2^3}\right)^3$ is equal to				[NCERT Exemplar]
5. By multiplying	$(10)^5$ by $(10)^{-10}$, we	get	·	[NCERT Exemplar]
1 . 1.234 × 10 ⁷	2.3410000	3. 6 ⁻²	4. $\frac{1}{2^6}$	5 . 6 ⁻²

b. A Helium atom has a diameter of 0.00000022 cm.

1673 Sol. a. $=\frac{1.673\times10^3}{10^{27}}$ $= 1.673 \times 10^{-24} gm$ $0.00000022 = 2.2 \times 10^{-8}$ cm b. 7. Simplify and write in exponential form: a. $(-2)^{-3} \times (-2)^{-4}$ b. $p^3 \times p^{-10}$ c. $3^2 \times 3^{-5} \times 3^6$ **Sol**. a. $(-2)^{-3} \times (-2)^{-4} = (-2)^{(-3)+(-4)}$ $[a^m \times a^n = a^{m+n}]$ $= (-2)^{-7} or \frac{1}{(-2)^7}$ b. $p^3 \times p^{-10} = (p)^{3+(-10)} = (p)^{-70} \text{ or } \frac{1}{(p)^7}$ c. $3^2 \times 3^{-5} \times 3^6 = 3^{2+(-5)+6}$ $3^{8-5} = 3^3$ 8. Find the product of the cube of (-2) and the square of (+4). [NCERT Exemplar] $(2)^3 \times (+4)^2 = (-8) \times (16)$ Sol. = -1289. Simplify: $(2^5 \div 2^8) \times 2^{-7}$. **Sol**. $(2^5 \div 2^8) \times 2^{-7} = \left(\frac{2^5}{2^8}\right) \times 2^{-7}$ $= (2^{-3}) \times 2^{-7} = 20^{-10}$ 10. Express $3^{-5} \times 3^{-4}$ as a power of 3 with positive exponent. [NCERT Exemplar] $3^{-5} \times 3^{-4} = 3^{-9} = \frac{1}{3^9}$ Sol. II. Very short answer type questions. 1. Find the value of x for the expression 3^{5x-1} ÷ 27 = 3^{-5} ion School $3^{5x-1} \div 27 = 3^{-5}$ $3^{5x-1} \div 27 = 3^{-5}$ Sol. $\implies \quad \frac{3^{5x-1}}{3^3} = 3^{-5}$ $\implies 3^{5x-1-3} = 3^{-5}$ $\implies \quad \frac{3^{5x-4}}{3^3} = 3^{-5}$

Comparing exponent of 3

5x - 4 = -5 $5x - 4 = -5 \implies 5x = -1 \implies x = \frac{-1}{r}$

- 2. What is the value of k if 385600000 is written in the form $k \times 10^n$ with n = 7?
- Sol.

 $x = 38.56 \times 10^7$

Hence, the value of k = 38.56.

x = 385600000

- 3. What is the value of $(6^{-1} + 8^{-1} + 12^{-1})^0$?
- Sol. As we know that 0 exponent of any base equals 1.

Hence, $(6^{-1} + 8^{-1} + 12^{-1})^0 = 1$

- 4. Express 300970000 in standard form.
- **Sol**. Standard form of 300970000 is = 3.0097 × 10⁸
- 5. What is the reciprocal of $\left(\frac{8}{5}\right)^{-4}$?
- Sol. For finding reciprocal we just reverse the fraction
 - $\therefore \qquad \text{Its reciprocal} = \left(\frac{5}{8}\right)^{-4} = \left(\frac{8}{5}\right)^4$
- 6. What is the multiplicative inverse of $\left(-\frac{5}{9}\right)^{-99}$?
- Sol. Let the multiplicative inverse be x.

then $\left(-\frac{5}{9}\right)^{-99} \times x = 1$ [.: 1 is identity] $x = \left(-\frac{5}{9}\right)^{99}$

7. What is the usual form for 2.3×10^{-10} ?

Sol. Its usual form will be 0.0000000023.

8. What is the expression for 4^{-3} as a power with the base 2?

- Sol.
- $(4)^{-3} = (2^2)^{-3}$

= $(2)^{-6}$, which is the required expression.

9. Express 16^{-2} as a power with the base 2.

Sol. $16 = \frac{1}{16^2} = \frac{1}{(2^4)^2} = \frac{1}{2^8}$

I. Short answer type questions.

1. Simply:
$$\left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2}$$

Sol. $\left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^2} + \frac{1}{\left(\frac{1}{2}\right)^2} + \frac{1}{\left(\frac{1}{3}\right)^2}$

$$= \frac{1}{14} + \frac{1}{4} + \frac{1}{3}$$

= 16 + 4 + 9
= 29
2. Simplify: $\frac{(-2)^3 \times (-2)^7}{3 \times 4^9} = \frac{(-2)^{97}}{3 \times 2^{27}}$
Sol. $\frac{(-2)^3 \times (-2)^7}{3 \times 4^9} = \frac{(-2)^{97}}{3 \times 2^{27}}$
 $a^m \times a^n = a^{n-n} (-2)^{10} = 2^{10}$
 $= \frac{(-2)^{30}}{3 \times 2^{27}} = \frac{2a^{n-12}}{3 \times 2^{27}} = \frac{(-2)^{10}}{3 \times 2^{27}} = \frac{1}{12}$
3. Find the multiplicative inverse of $(-7)^{-2} + (90)^{-1}$
Sol. $(-7)^{-2} + (90)^{-1} = \frac{1}{(-7)^2} + \frac{1}{30}$
 $= \frac{1}{49} + \frac{1}{30}$
 $= \frac{1}{49} + \frac{1}{30}$
 $= \frac{1}{39}$
Multiplicative inverse of $(-7)^{-2} + (90)^{-1}$
4. Evaluate: $(5^{-1} \times 2^{-1}) \times 6^{-1} = (5 \times 2)^{-1} \times 6^{-1}$
 $= (10)^{-1} \times 6^{-1}$
 $= (10)^{-1} \times 6^{-1}$
 $= (60)^{-1} = \frac{1}{60}$
5. Find the value of x, so that
 $(\frac{5}{3})^{-2} \times (\frac{2}{3})^{-14} = (\frac{5}{3})^{8x}$
Sol. $(\frac{5}{2})^{-2} \times (\frac{2}{3})^{-14} = (\frac{5}{3})^{8x}$
 $(\frac{3}{3})^{-2k-(-14)} = (\frac{5}{3})^{8x}$
 $(\frac{3}{3})^{-2k-(-14)} = (\frac{5}{3})^{8x}$
 $(\frac{3}{2})^{-15} = (\frac{5}{3})^{8x}$
 $(\frac{3}{2})^{-15} = (\frac{5}{3})^{8x}$
 $x = -2$
6. Express $\frac{125 \times 10^6}{25 \times 10^4}$ in the standard form. [NCERT Exemplor]
Sol. $\frac{15 \times 10^6}{52 \times 10^4}$ in the standard form.

	$= 6 \times 10^{-1} \times 10^{10}$	Red Barrison Sol
	$= 6 \times 10^{-9} \times 10^{-9}$	
7. Find the value of	of $n \frac{2^{n} \times 2^{n}}{2^{-3}} = 2^{18}$	
Sol.	$\frac{2^n \times 2^6}{2^{-3}} = 2^{18}$	
	$2^n \times 2^6 = 2^{18} \times 2^{-3}$	
	$2^{n+6} = 2^{18-3}$	
	$2^{n+6} = 2^{15}$	
	n + 6 = 15	
	n = 9	
8. Find x, so that	$(-5)^{x+1} \times (-5)^5 = (-5)^7$	[NCERT Exemplar]
Sol.	$(-5)^{x+1} \times (-5)^5 = (-5)^7$	
	$(-5)^{x+1+5} = (-5)^7$ $[a^m \times a^n = a^{m+n}]$	
	$(-5)^{x+6} = (-5)^7$	
On both side	les, powers have the same base, so their exponents mu	st be equal
Therefore,		
mererore,	x + 6 = 7 x = 7 - 6 = 1	
	$\begin{aligned} x &= 7 - 6 = 1 \\ x &= 1 \end{aligned}$	
0 Tf r ² <i>x</i> + 1 · 2F	5 = 125, find the value of x.	
9. 17 5 ÷ 25		
Sol. Since,	$\frac{5^{2x+1}}{25} = 125$	
Then	$\frac{5^{2x+1}}{5^2} = 5^3$	
or	$5^{2x+1} \times 5^{-2} = 5^3$	
or		$\frac{1}{x^n} = x^{-n} \Big]$
01		-
or	$5^{2x-1} = 5^3 \qquad [$	$x^m \times x^n = x^{m+n}$]
Comparing p	powers	
	2x - 1 = 3	
or	2x = 3 + 1	
or	2x = 4	
or	$x = \frac{4}{2} = 2$	
Hence,	x = 2	0 0
10. By what number	$\rho \alpha A \rightarrow \rho \rho \rho \sigma \rho A \rho \rho A \rho A \rho A \rho A \rho A \rho A \rho$	$(\frac{-5}{4})^{-1}$?
	the number $= x$	/

According to problem,

or

Hence, required number = $-\frac{2}{5}$

II. Very short answer type questions.

 $x \times \left(\frac{1}{2}\right)^{-1} = \left(\frac{-5}{4}\right)^{-1}$

 $x = \frac{-4}{5} \times \frac{1}{2} = \frac{-2}{5}$

 $x \times \frac{2}{1} = \frac{4}{-5}$

 $2x = \frac{-4}{5}$

- 1. Express $\frac{16}{81}$ and $\frac{-8}{27}$ as powers of a rational number. Sol. $\frac{16}{81} = \frac{2^4}{3^4} = \left(-\frac{2}{3}\right)^3$ and $\frac{-8}{27} = \frac{(-2)^3}{3^3} = \left(\frac{2}{3}\right)^3$
- 2. Express as a power of a rational number with negative exponent $\left[\left(\frac{-3}{2}\right)^{-2}\right]^{-3}$

[NCERT Exemplar]

[NCERT Exemplar]

Sol.
$$\left[\left(\frac{-3}{2}\right)^{-2}\right]^{-3}$$

$$= \left(\frac{-3}{2}\right)^{-2 \times -3} = \left(\frac{-3}{2}\right)^{6}$$

But we have to express the power with negative sign.

Hence, it will become $\left(\frac{-2}{3}\right)^{-6}$.

3. Find the value of x so that
$$\left(\frac{5}{3}\right)^{-2} \times \left(\frac{5}{3}\right)^{-14} = \left(\frac{5}{3}\right)^{8x}$$
.

[NCERT Exemplar]

Sol. $\left(\frac{5}{3}\right)^{-2} \times \left(\frac{5}{3}\right)^{-14} = \left(\frac{5}{3}\right)^{8x}$ $\left(\frac{5}{3}\right)^{-2-14} \times \left(\frac{5}{3}\right)^{8x}$ $\left(\frac{5}{3}\right)^{-16} = \left(\frac{5}{3}\right)^{8x}$ 8x = -16 $x = \frac{-16}{8} = -2.$ (Comparing the exponents)

4. Find the multiplicative inverse of $(-7)^{-2} \div (90)^{-1}$ Sol. $(-7)^{-2} \div (90)^{-1}$ $\frac{1}{(7)^2} \div \frac{1}{90}$ $= \frac{1}{49} \times \frac{90}{1} = \frac{90}{49}$ [NCERT Exemplar]

Hence, the multiplicative inverse will be the reciprocal of it *i.e.* $\frac{49}{90}$.

5. Express $\frac{1.5 \times 10^6}{2.5 \times 10^{-4}}$ in the standard form. [NCERT Exemplar] Sol. $\frac{1.5 \times 10^6}{2.5 \times 10^{-4}} = \frac{1.5}{2.5} \times 10^6 \times 10^4$ $= 0.6 \times 10^{10} = 6.0 \times 10^{9}$ 6. Express each of the following in standard form. [NCERT Exemplar] i. The mass of a proton in gram is 1673 ii. Mass of a molecule of hydrogen gas is about 1673 1673 Sol. i. $=\frac{1.673 \times 1000}{10^{27}} = 1.673 \times 10^{-24} g$ 0.000000000000000000334 ii. $= 3.34 \times 10^{-21}$ tons. 7. If a = -1, b = 2, then find the value of the following. [NCERT Exemplar] i. $a^b - b^a$ $a^b \div b^a$ ii. i. $a^b - b^a = (-1)^2 - (2)^{-1} = 1 - \frac{1}{2} = \frac{1}{2}$ Sol. ii. $a^b \div b^a = (-1)^2 \div (2)^{-1}$ $=1 \div \frac{1}{2} = 1 \times \frac{2}{1} = 2$ 8. By what number should we multiply $(-29)^0$ so that the product becomes $(+29)^0$? [NCERT Exemplar] Since any base having exponent 0 is equal to 1 Sol. $(-29)^0$ and $(+29)^0 = 1$ \Rightarrow 1 and product of a number equal 1 $\therefore 1 \times 1 = 1$ Hence 1 is the required number. 9. Express $\frac{400}{3969}$ in exponential form. $400 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 4^2 \times 5^2$ Sol. $3696 = 3 \times 3 \times 3 \times 3 \times 7 \times 7 = 9^2 \times 7^2$

$$\therefore \frac{400}{3969} = \frac{4^2 \times 5^2}{9^2 \times 7^2} = \frac{(4 \times 5)^2}{(9 \times 7)^2}$$
$$= \left(\frac{4 \times 5}{9 \times 7}\right)^2 = \left(\frac{20}{63}\right)^2$$

I. Long answer type questions.	
1. Simplify:	ic S
a . $\left(\left(\frac{2}{3}\right)^3\right)^3 \times \left(\frac{1}{2}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$	
b. $\frac{49 \times z^{-3}}{7^3 \times 10 \times z^{-5}} (z \neq 0)$	[NCERT Exemplar]
Sol. a. $\left(\left(\frac{2}{3}\right)^3\right)^3 \times \left(\frac{1}{2}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$	
$= \left(\left(-\frac{3}{3} \right)^2 \right)^3 \times (3) \times \frac{1}{3} \times \frac{1}{6}$	
$= \left(\frac{9}{4}\right)^3 \times 81 \times \frac{1}{3} \times \frac{1}{6}$	
$= \frac{729}{64} \times 81 \times \frac{1}{3} \times \frac{1}{6}$	
$=\frac{243\times27}{128}=\frac{(3)^5\times(3)^3}{2^7}=\frac{3^8}{2^7}$	
b. $\frac{49 \times z^{-3}}{7^{-3} \times 10 \times z^{-5}} (z \neq 0)$	
$= \frac{7^2 \times 7^3 \times z^{-3} \times z^5}{10}$	
$= \frac{10}{10}$ $= \frac{7^{2+3} \times z^{5-3}}{10} = \frac{7^5 \times z^2}{10}$	
2. Find x, so that $\left(\frac{2}{9}\right)^3 \times \left(\frac{2}{9}\right)^{-6} = \left(\frac{2}{9}\right)^{2x-1}$	
Sol. $\left(\frac{2}{9}\right)^3 \times \left(\frac{2}{9}\right)^{-6} = \left(\frac{2}{9}\right)^{2x-1}$	
Sol. $\left(\frac{2}{9}\right)^{3+(-6)} = \left(\frac{2}{9}\right)^{2x-1} [a^m \times a^n = a^n]$	
$\left(\frac{2}{9}\right)^{-3} = \left(\frac{2}{9}\right)^{2x-1}$ $-3 = 2x - 1$	
-3 + 1 = 2x	
2x = -1	
$x = -1$ 3. If $\frac{5^m \times 5^3 5^{-2}}{5^{-5}} = 5^{12}$, find m.	ion School
Sol. $\frac{5^m \times 5^3 5^{-2}}{5^{-5}} = 5^{12}$	
$5^m \times 5^3 - 5^{-2} \times 5^5 = 5^{12}$	
$5^m \times 5^{3-2+5} = 5^{12}$	Created by Disks

$$5^{m} \times 5^{6} = 5^{12}$$

$$m + 6 = 12 - 6$$

$$m = 6$$

4. Simplify: $\left(\frac{1}{5}\right)^{45} \times \left(\frac{1}{5}\right)^{-60} - \left(\frac{1}{5}\right)^{+28} \times \left(\frac{1}{5}\right)^{-43}$
Sol. $\left(\frac{1}{5}\right)^{45} \times \left(\frac{1}{5}\right)^{-60} - \left(\frac{1}{5}\right)^{+28} \times \left(\frac{1}{5}\right)^{-43}$

$$\Rightarrow \left(\frac{1}{5}\right)^{45-60} - \left(\frac{1}{5}\right)^{28-43}$$

$$\Rightarrow \left(\frac{1}{5}\right)^{45-60} - \left(\frac{1}{5}\right)^{28-43}$$

$$\Rightarrow \left(\frac{1}{5}\right)^{-15} - \left(\frac{1}{5}\right)^{-15}$$

$$\Rightarrow (5)^{15} - (5)^{-15}$$

$$\Rightarrow 0$$

5. By what number should $(-8)^{-3}$ be multiplied so that the product may be equal

to
$$(-6)^{-3}$$
?

Sol. Let the number be x

$$(-8)^{-3} \times x = (-6)^{-3}$$
$$\left(\frac{1}{-8}\right)^3 \times x = \left(\frac{1}{6}\right)^3$$
$$\frac{1}{512} \times x = \frac{1}{216}$$
$$x = \frac{512}{216}$$
$$x = \frac{64}{27}$$

6. Simplify: $\frac{(3^{-2})^2 \times (5^2)^2 \times (t^{-3})^2}{(3^{-2})^5 \times (5^3)^{-2} \times (t^{-4})^3}$

Sol. $\frac{(3^{-2})^2 \times (5^2)^2 \times (t^{-3})^2}{(3^{-2})^5 \times (5^3)^{-2} \times (t^{-4})^3}$ $=\frac{(3)^{-4}\times(5)^{-6}\times(t)^{-6}}{(3)^{-10}\times(5)^{-6}\times(t)^{-12}}$ = $(3)^{-4} \times (3)^{10} \times (5)^{-6} \times (5)^{6} \times (1)^{-6} \times (1)^{12}$ = $(3)^6 \times (5)^{-6+6} \times t^{-6+12}$ $= (3)^{6} \times (5)^{0} \times (1)^{6}$ = 729 t⁶

7. Simplify:
$$\frac{2^{-5} x 3^{-5} x 1}{5^{-4} x 6^{-5}}$$

The second seco Sol. $6^{-5} = (2 \times 3)^{-5} = 2^{-5} \times 3^{-5}$ $\frac{2^{-5} \, x \, 3^{-5} \, x \, 125}{5^{-4} \, x \, 6^{-5}} = \frac{2^{-5} \, x \, 3^{-5} \, x \, 5^3}{5^{-4} \, x \, 2^{-5} \, x \, 3^{-5}}$ *:*.

$$= \frac{2^{-5}}{2^{-5}} \times \frac{3^{-5}}{3^{-5}} 1 \times 1 \times 5^{7}$$

= 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5
= 78125

8. Find
$$x$$

a.
$$\left(\frac{2}{5}\right)^{2x+6} \times \left(\frac{2}{5}\right)^3 = \frac{2^{x+2}}{5}$$

b. $2^x + 2^x + 2^x = 192$
Sol. a. $\left(\frac{2}{5}\right)^{2x+6} \times \left(\frac{2}{5}\right)^3 = \left(\frac{2}{5}\right)^{x+2}$
 $\left(\frac{2}{5}\right)^{2x+6} = \left(\frac{2}{5}\right)^{x+2}$
 $\left(\frac{2}{5}\right)^{2x+6} = \left(\frac{2}{5}\right)^{x+2}$
 $2x + 9 = x + 2$
 $2x - x = 2 - 9$
 $x = -7$
b. $2^x + 2^x + 2^x = 192$
 $2^x (1+1+1) = 192$
 $2^x (1+1+1) = 192$
 $2^x (1+1+1) = 192$
 $2^x = \left(\frac{4}{3}\right)^4 \times \left(\frac{13}{2}\right)^2 \times \left(\frac{7}{4}\right)^3$
b. $\left(\frac{4}{13}\right)^4 \times \left(\frac{13}{2}\right)^2 \times \left(\frac{7}{4}\right)^3$
b. $\left(\frac{4}{13}\right)^4 \times \left(\frac{13}{2}\right)^2 \times \left(\frac{7}{4}\right)^3$
Sol. a. $\left(\frac{4}{3}\right)^4 \times \left(\frac{13}{2}\right)^2 \times \left(\frac{7}{4}\right)^3$
 $= \frac{4 \times 4 \times 4 \times 4}{13 \times 13 \times 13} \times \frac{13 \times 13}{7 \times 7} \times \frac{7 \times 7 \times 7}{4 \times 4 \times 4}$
 $= \frac{4 \times 4 \times 4 \times 8}{13 \times 13 \times 13} \times \frac{13 \times 13}{7 \times 7} \times \frac{7 \times 7 \times 7}{4 \times 4 \times 4}$
b. $\left(\frac{4}{3}\right)^{-2} \times \left(\frac{2}{3}\right)^2 = \left(\frac{3}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = 0$
10. By what number should $\left(-\frac{3}{2}\right)^2$ be divided so that the quotient is $\left(\frac{9}{4}\right)^{-2}$?
Sol. Let the required number = x

According to problem,

$$\left(-\frac{3}{2}\right)^2 \div x = \left(\frac{9}{4}\right)^{-2}$$
13

or
$$\left(\frac{2}{-3}\right)^3 + x = \left(\frac{4}{9}\right)^2$$

or $\frac{8}{-27} \times x^{-1} = \frac{16}{61}$ $\left[\because \frac{1}{x^a} = x^{-a}\right]$
or $x^{-1} = \frac{46}{81} \times \frac{-27}{8}$
or $x^{-1} = \frac{-2}{3}$
or $\frac{1}{x} = \frac{-2}{3}$
or $\frac{1}{x} = \frac{-2}{3}$
or $x = \frac{-3}{2}$
Hence, required number $= \frac{-3}{2}$
II. Long answer type questions.
1. Simplify:
i. $\left[\left(\frac{2}{3}\right)^{-2}\right]^3 \times \left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$
ii. $\frac{49 \times 2^{-3}}{17^{-3} \times 10 \times 2^{-5}}$ $(z \neq 0)$
Sol. i. $\left[\left(\frac{2}{3}\right)^{-2}\right]^3 \times \left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$
 $= \left(\frac{-2}{3}\right)^{-6} \times (3^{-1})^{-4} \times 3^{-1} \times \frac{1}{2 \times 3}$
 $= \left(\frac{-2}{3}\right)^{-6} \times (3^{-6} \times 3^{-1} \times 3^{-1} \times 2^{-1}$
 $= (2)^{-6-1} \times (3)^{6+4-1-1}$ $[\because (-2)^m = (2)^m \text{ if m is even}]$
 $= \frac{(3)^9}{(2)^7} = \frac{3^9}{2^7}$

ii.
$$\frac{49 \times z^{-3}}{7^{-3} \times 10 \times z^{-5}} (z \neq 0)$$
$$= \frac{7^2 \times 7^3 \times z^{-3}}{10} \times z^5 = \frac{7^5 z^2}{10}$$

2. By what number should $(-8)^{-3}$ be multiplied so that the product may be equal to $(-6)^{-3}$? [NCERT Exemplar]

Sol. Let the required number be x

$$(-8)^{-3} \times x = (-6)^{-3}$$

$$\left(-\frac{1}{8}\right)^{3} \times x = \left(-\frac{1}{6}\right)^{3}$$

$$x = \left(-\frac{1}{6}\right)^{3} \div \left(\frac{-1}{8}\right)^{3} = \left(-\frac{1}{6}\right)^{3} \times (-8)^{3}$$

$$= \left(-\frac{1}{6} \times -8\right)^{3} \qquad (a^{m} \times b^{m} = (ab)^{m})$$
14 Created by Pinkz

$$x = \left(\frac{8}{6}\right)^3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27}$$

3. By what number should $\left(\frac{4}{3}\right)^3$ be multiplied, so that the product may be equal to $\left(\frac{-3}{8}\right)^{-3}$?

blic

0

Sol. Let required number be x.

Now, according to question

$$\left(\frac{1}{2}\right)^3 \times x = \left(\frac{-3}{8}\right)^{-3}$$

Dividing both sides by $\left(\frac{1}{2}\right)^3$, we get

$$\Rightarrow \quad \left(\frac{1}{2}\right)^3 \times x \div \left(\frac{1}{2}\right)^3 = \left(\frac{-3}{8}\right)^{-3} \div \left(\frac{1}{2}\right)^3 \Rightarrow \quad x = \left(\frac{3}{8}\right)^{-3} \div \left(\frac{1}{2}\right)^3$$

$$\Rightarrow \quad x = \left(\frac{8}{-3}\right)^3 \div \left(\frac{1}{2}\right)^3 \qquad \left[\therefore \left(\frac{p}{q}\right)^{-m} = \left(\frac{q}{p}\right)^m \right]$$

$$\Rightarrow \quad x = \left(\frac{8}{-3}\right)^3 \div \left(\frac{1}{2}\right)^3 \qquad \left[\therefore (-a)^n = -a^n, where \ n \ is \ odd \right]$$

$$\Rightarrow \quad x = -\frac{8 \times 8 \times 8}{3 \times 3 \times 3} \div \frac{1}{2 \times 2 \times 2} \Rightarrow \quad x = \frac{8 \times 8 \times 8}{3 \times 3 \times 3} \times \frac{2 \times 2 \times 2}{1}$$

$$\Rightarrow \quad x = -\left(\frac{16}{3}\right)^3$$

- 4. Mass of Mars is 6.42 × 10²⁹kg and mass of the Sun is 1.99 × 10³⁰ kg. What is their total mass?
- Sol. Given

:.

Mass of Mars	=	6.42 × 10 ²⁹ kg
Mass of the Sun	=	1.99 × 10 ³⁰ kg

Converting the standard form into number with the same exponent, we get

Mass of Mars	=	$6.42 \times 10^{29} \text{ kg}$
Mass of the Sun	=	1.99×10^{30} kg = $1.99 \times 10^{29} \times 10$ kg
Total mass	=	6.42 × 10 ²⁹ kg + 1.99 × 10 ²⁹ × 10 kg
	i i	(6.42 + 1.99 × 10 <mark>)</mark> × 10 ²⁹ kg
	=	26.32 × 10 ²⁹ kg

5. Divide 256 by 10,00,000 and express the result in standard form.

Sol.	We have,	256 10,00,000		
		= 256 x 10 ⁻⁶		
	67	= 2.56 × 102 ×	x 10 ⁻⁶ = 2.56 × 10 ⁻⁴	School

I. Higher Order Thinking Skills.

1. By what number should $\left(\frac{-3}{2}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-4}$? Sol. Let the required number bex.

Then,
$$\left(\frac{-3}{2}\right)^{-3} \div x = \left(\frac{4}{27}\right)^{-2}$$

 $\left(\frac{2}{3}\right)^3 \div x = \left(\frac{27}{4}\right)^2$
 $\frac{8}{-27} \times \frac{1}{x} = \left(\frac{27}{4}\right)^2$
 $\frac{1}{x} = \frac{-27}{8} \times \frac{(27)^2}{4^2}$
 $= \frac{-1 \times (27) \times (27)^2}{2 \times (4) \times (4)^2}$
 $\frac{1}{x} = \frac{-(27)^3}{2(4)^3}$
 $x = -2 \times \left(\frac{4}{27}\right)^3$

II. Higher Order Thinking Skills.

1. The size of a red blood cell is 0.000007 m and the size of a plant cell

is 0.00001275 m. Compare these two.

Sol. We have,

Size of red blood cell = 0.000007 m = 7×10^{-6} m

Size of plant cell = 0.00001275 = 1.275 × 10⁻⁵ m

$$\therefore \qquad \frac{Size \ of \ red \ blood \ cell}{Size \ of \ plant \ cell} = \frac{7 \ x \ 10^{-6}}{1.275 \times 10^{-5}} = \frac{7 \ x \ 10^{-6+5}}{1.275} = \frac{7 \ x \ 10^{-1}}{1.275}$$
$$= \frac{0.7}{1.275} = \frac{0.7}{1.3} = \frac{1}{2}$$

So, a red blood cell is approximately half of a plant cell in size.

2. By what number should $\left(\frac{-3}{2}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-2}$?

Sol. Let the required number be x. Then

$$\begin{pmatrix} \frac{-3}{2} \end{pmatrix}^{-3} \div x = \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow \quad \left(\frac{-3}{2}\right)^{-3} \times \frac{1}{x} = \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow \quad x = \left(\frac{-3}{2}\right)^{-3} \div \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow \quad x = \left(\frac{2}{-3}\right)^{3} \times \left(\frac{4}{27}\right)^{2} = \left(\frac{2}{-3}\right)^{3} \times \left(\frac{2^{2}}{3^{3}}\right)^{2}$$

$$\Rightarrow \quad x = \left(\frac{2}{-3}\right)^{3} \times \left(\frac{4}{27}\right)^{2} = \left(\frac{2}{-3}\right)^{3} \times \left(\frac{2^{2}}{3^{3}}\right)^{2}$$

$$\Rightarrow \quad x = \frac{2^{3}}{(-3)^{3}} \times \left(\frac{4}{2^{7}}\right)^{2} = \left(\frac{2}{-3}\right)^{3} \times \left(\frac{2^{2}}{3^{3}}\right)^{2}$$

$$\Rightarrow \quad x = \frac{2^{3}}{(-3)^{3}} \times \frac{2^{4}}{3^{6}} = \frac{2^{3+4}}{(-3)^{3} \times (-3)^{6}}$$

$$= \frac{2^{7}}{(-3)^{9}} = \frac{-2^{7}}{3^{9}} = \frac{(-2)^{7}}{3^{9}}$$

3. What is the value of $\left(x_{c-a}^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}} \left(x_{a-b}^{\frac{c+a}{b-c}}\right)^{\frac{1}{b-c}} \left(x_{a-b}^{\frac{a+b}{b-c}}\right)^{\frac{1}{c-a}}$?

Sol.

 $\left(x^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}} \left(x^{\frac{c+a}{a-b}}\right)^{\frac{1}{b-c}} \left(x^{\frac{a+b}{b-c}}\right)^{\frac{1}{c-a}}$ $= \frac{b}{x} + \frac{c}{a} + \frac{a}{b} = \frac{b}{x}$ $= \frac{b}{x} = \frac{0}{x}$ $= x^{0} = 1$

I. Value Based Questions.

1. (a) Find the value of $\left[\left\{\left(\frac{1}{2}\right)^2\right\}^{-2}\right]^{-1}$

(b) Planet A is at a distance of 9.35×10^6 km from Earth and Planet B is 6.27×10^7 km from Farth. Which Planet is nearer to earth.

Sol. (a)
$$\left[\left\{\left(\frac{1}{2}\right)^2\right\}^{-2}\right]^{-1} = \left[\left(\frac{1}{4}\right)^{-2}\right]^{-1}$$

 $= \left[\left(\frac{4}{1}\right)^2\right]^{-1} \qquad \left\{\because \frac{1}{x^a} = x^{-a}\right\}$
 $= [16]^{-1}$
 $= \frac{1}{16}$

(b) Distance between planet A and earth

 $= 9.35 \times 10^{6} \text{ km}$

 $= 0.935 \times 10^7 \text{ km}$

Distance between planet B and earth

= 6.27 x 107 km

1

By changing both distances in the same exponent

We can say planet A is nearer to earth.

2. (a) Find the value of x for which

$$\left(\frac{4}{9}\right)^4 \times \left(\frac{4}{9}\right)^{-7} = \left(\frac{4}{9}\right)^{2x-1}$$

(b) Find the value of
$$(\frac{3}{5})^0 + (\frac{125}{129})^0 + (\frac{10}{7})^0$$

(a) Since,

Sol.

or

$$\left(\frac{4}{9}\right)^4 \times \left(\frac{4}{9}\right)^{-7} = \left(\frac{4}{9}\right)^{2x-1}$$
$$\left(\frac{4}{9}\right)^{4+(-7)} = \left(\frac{4}{9}\right)^{2x-1}$$

17

or
$$\left(\frac{4}{9}\right)^{-3} = \left(\frac{4}{9}\right)^{2x-1}$$

By comparing with power then,

-3 = 2x - 1or 2x = -3 + 1

or 2x = -2or $x = -\frac{2}{2} = -1$ Hence, x = -1

(b) Since,
$$\left(\frac{3}{5}\right)^0 + \left(\frac{125}{129}\right)^0 + \left(\frac{10}{7}\right)^0$$

= 1 + 1 + 1 = 3,
[$\because x^0 = 1$]

- 3. The cells of a bacteria doubles in every 20 min. A scientist begins with a single cell.
 - (a) Now many cells will be there after
 - i. 10 *h* ? ii. 25 *h* ?
 - (b) What type of value is depicted by the cells of bacteria ?
- Sol. (a) (i) The cell, in bacteria double in every 20 min.
 - Number of cells in a bacteria after 20 min. = 2
 - ∴ Number of cells in a bacteria afte<mark>r 40 min</mark>.
 - $= 2 \times 2 = 2^{2}$
 - .. Number of cells in a bacteria after 1 hr
 - $= 2^2 \times 2 = 2^3$

Number of cells in bacteria after 1 hr 40 min.

Number of cells in bacteria af<mark>te</mark>r 2 hrs

$$= 2^5 \times 2 = 2^6$$

= $(2^3)^2$

= (2³)²⁵ = 2⁷⁵

 \therefore Number of cells in bacteria after 0 hrs

(b) The value depicted by the cells of bacteria here is that is double itself after 20 min. in t hrs by $2^{3 \times t}$.

