Name : \qquad
Grade : VIII
Subject : Mathematics

Chapter: 12. Exponents and Powers

Objective Type Questions

1 Marks.

I. Multiple choice questions

1. The multiplicative inverse of $\left(\frac{-5}{9}\right)^{-99}$ is
[NCERT Exemplar]
a. $\left(\frac{-5}{9}\right)^{-99}$
b. $\left(\frac{5}{9}\right)^{-99}$
c. $\left(\frac{9}{-5}\right)^{-99}$
d. $\left(\frac{9}{5}\right)^{99}$
2. What is the value of ' m ' if $(-2)^{2} \times(-5)^{2}=50 m$?
a. 10
b. 2
c. 100
d. -100
3. What is the scientific notation of 0.0023 ?
a. $2.3 \times 10-3$
b. $23 \times 10-3$
c. 2.3×103
d. 23×103
4. The usual from for $2.03 \times 10-5$:
[NCERT Exemplar]
a. 0.203
b. 0.00203
c. 203000
d. 0.0000203
5. $\left(\frac{1}{10}\right)^{0}$ is equal to:
a. 0
b. $\frac{1}{10}$
c. 1
d. 10
6. $\left(\frac{-7}{5}\right)^{-1}$ is equal to:
[NCERT Exemplar]
a. $\frac{5}{7}$
b. $\frac{-5}{7}$
C. $\frac{7}{5}$
d. $\frac{-7}{5}$
7. The value of $\left(7^{-1}-8^{-1}\right)^{-1}-\left(3^{-1}-48^{-1}\right)^{-1}$ is:
a. 44
b. 56
c. 68
d. 12
8. $\left(2^{-1}+3^{-1}+4^{-1}\right)^{-1}$ is:
a. $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$
b. $2+3+4$
c. $1+1+1$
d. 1
9. $\left(\frac{3}{4}\right)^{5} \div\left(\frac{5}{3}\right)^{5}$ is equal to:
a. $\left(\frac{3}{5} \div \frac{5}{3}\right)^{5}$
b. $\left(\frac{3}{4} \div \frac{5}{3}\right)^{1}$
c. $\left(\frac{3}{4} \div \frac{5}{3}\right)^{0}$
d. $\left(\frac{3}{4} \div \frac{5}{3}\right)^{10}$
10. $\left(-7^{3} \div 7^{-8}\right) \div 7^{5}=$
a. 7^{6}
b. 7^{-6}
c. -1
d. 1
11. The value of p, for which $7^{7} \div 7^{-p}=7^{10}$, is :
a. 1
b. 2
c. 3
d. 4
12. When $x=2, x\left(x^{x}\right)-x$ is equal to
a. 4
b. 6
c. 8
d. 10
13. Let x be any non-zero integer and m, n be negative integer. The $x^{m} \times x^{n}$ is equal to
[NCERT Exemplar]
a. x^{m}
b. x^{m+n}
c. x^{n}
d. x^{m-n}
14. The standard form for 0.000064 is:
a. 64×10^{4}
b. 64×10^{-4}
c. 6.4×10^{5}
d. 6.4×10^{-5}
15. $(-9)^{3} \div(-9)^{8}$ is equal to
[NCERT Exemplar]
a. $(9)^{5}$
b. (9) $-^{5}$
c. $(-9)^{5}$
d. $(-9)^{-5}$
16. For a non-zero rational number $z,\left(z^{-2}\right)^{3}$ is equal to:
[NCERT Exemplar]
a. z^{6}
b. z^{-6}
c. z^{1}
d. z^{4}
17. Which of the following is not the reciprocal of $\left(\frac{2}{3}\right)^{4}$?
a. $\left(\frac{3}{2}\right)^{4}$
b. $\left(\frac{3}{2}\right)^{-4}$
c. $\left(\frac{2}{3}\right)^{4}$
d. $\frac{3}{2^{4}}$
18. In $2^{2}, n$ is known as
[NCERT Exemplar]
a. base
b. constant
c. exponent
d. variable
19. Cube of $-\frac{1}{2}$ is:
a. $-\frac{1}{8}$
b. $\frac{1}{16}$
c. $-\frac{1}{8}$
d. $-\frac{1}{16}$
20. For a non-zero integer $x, x^{7} \div x^{12}$ is equal to:
a. x^{5}
b. x^{19}
C. x^{-5}
d. x^{-19}

$1 . c$	2.b	3.a	4.d	$5 . c$	$6 . b$	$7 . a$	$8 . d$	$9 . a$	$10 . c$
$11 . c$	$12 . \mathrm{b}$	$13 . \mathrm{b}$	$14 . \mathrm{d}$	$15 . \mathrm{d}$	$16 . \mathrm{b}$	$17 . \mathrm{b}$	$18 . \mathrm{c}$	$19 . \mathrm{c}$	$20 . \mathrm{c}$

II. Multiple choice questions

1. Multiplicative inverse of 2^{7} is
[NCERT Exemplar]
a. 2^{-7}
b. 7^{2}
c. -2^{7}
d. 2^{7}
2. Then value of $\frac{1}{4^{-2}}$ is
[NCERT Exemplar]
a. 16
b. 8
c. $\frac{1}{16}$
d. $\frac{1}{8}$
3. Then reciprocal of $\left(\frac{2}{5}\right)^{-1}$ is
[NCERT Exemplar]
a. 16
b. 8
C. $\frac{1}{16}$
d. $\frac{1}{8}$
4. If y be any non-zero integer, then y^{0} is equal to
[NCERT Exemplar]
a. 1
b. 0
c. -1
d. Not defined
5. Which of the following is equal to $\left(-\frac{3}{4}\right)^{-3}$?
a. $\left(\frac{3}{4}\right)^{-3}$
b. $\left(-\frac{4}{3}\right)^{-3}$
c. $\left(\frac{4}{3}\right)^{3}$
d. $\left(-\frac{4}{3}\right)^{3}$
6. The value of $\left(7^{-1}-8^{-1}\right)^{-1}-\left(3^{-1}-4^{-1}\right)^{-1}$ is
[NCERT Exemplar]
a. 44
b. 56
c. 68
d. 12
7. The standard form for 0.000064 is
[NCERT Exemplar]
a. 64×10^{4}
b. 6.4×10^{5}
c. 6.4×10^{-5}
d. None of these
8. The usual form for 2.03×10^{-5}
a. 0.203
b. 0.00203
c. 203000
d. 0.0000203
9. $\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}$ is equal to
a. 16
b. -16
C. $-\frac{1}{16}$
d. $\left(\frac{3}{7}\right)^{-6}$
10. If $x=\left(\frac{3}{7}\right)^{-3}$, then x^{-2} equals
a. $\left(\frac{3}{7}\right)^{-3}$
b. $\left(\frac{3}{7}\right)^{9}$
c. $\left(\frac{3}{7}\right)^{6}$
d. $\left(\frac{3}{7}\right)^{-6}$

1. a	2. a	3. a	4. a	5.d	6. a	7. c	8. d	9.d	10. c

I. Fill in the blanks

1. The standard form of 12340000 is \qquad .
[NCERT Exemplar]
2. The usual form of 3.41×10^{6} is \qquad .
3. If $36=6 \times 6=6^{2}$, then $\frac{1}{36}$ expressed as a power with the base 6 is \qquad .
[NCERT Exemplar]
4. The value of $\left(\frac{1}{2^{3}}\right)^{3}$ is equal to \qquad [NCERT Exemplar]
5. By multiplying (10) ${ }^{5}$ by $(10)^{-10}$, we get \qquad .
[NCERT Exemplar]

$1.1 .234 \times 10^{7}$	2.3410000	3.6^{-2}	$4 . \frac{1}{2^{6}}$	5.6^{-2}

I. True or False

1. The multiplicative inverse of $\left(\frac{3}{2}\right)^{2}$ is not equal to $\left(\frac{2}{3}\right)^{-2}$
[NCERT Exemplar]
2. $(-5)^{-2} \times(-9)^{-3}=(-5)^{-6}$. [NCERT Exemplar]
3. The multiplicative inverse of $(-4)^{-2}$ is $(4)^{-2}$. [NCERT Exemplar]
4. $\frac{x^{m}}{y^{m}}=\left(\frac{y}{x}\right)^{-m}$ [NCERT Exemplar]
5. $\left.(-4)^{-4} \times(-7)\right)^{4}=(-7)^{-2}$

1. True	2. False	3. False	4. True	5. False

I. Very short answer type questions.

1. Write 0.000005678 in the standard form.
[NCERT Exemplar]
Sol. $\quad 0.000005678=\frac{5678}{1000000000}=\frac{5.678}{10^{9}} \times 10^{3}$

$$
=5.678 \times 10^{-6}
$$

2. What is the usual form for 2.3×10^{-10} ?
[NCERT Exemplar]
Sol. $\quad 2.3 \times 10^{-10}=23 \times 10^{-1} \times 10^{-10}$

$$
\begin{aligned}
& =23 \times 10^{-11} \\
& =\frac{23}{100000000000} \\
& =0.0000000023
\end{aligned}
$$

3. Express 16^{-2} as a power with the base 2.
[NCERT Exemplar]
Sol.

$$
\begin{aligned}
& 16^{-2}= \frac{1}{(16)^{2}}=\frac{1}{\left(2^{4}\right)^{2}}=\frac{1}{2^{8}} \\
& \quad\left[\therefore\left(a^{m}\right)^{n}=a^{m n}\right] \\
&=2^{-8}
\end{aligned}
$$

4. Write $39,00,00,000$ in the standard form.
[NCERT Exemplar]
Sol. $39,00,00,000=3.9 \times 10^{8}$
5. Divide 293 by $10,00,000$ and express the result in standard form.
[NCERT Exemplar]
Sol. $\frac{293}{1000000}=\frac{2.93 \times 10^{2}}{10^{6}}$
6. Express each of the following in standard form:
[NCERT Exemplar]
a. The mass of a proton in gram is
$\frac{1673}{1000000000000000000000000000}$
b. A Helium atom has a diameter of 0.000000022 cm .

Sol. a.

$$
\begin{aligned}
& \frac{1673}{1000000000000000000000000000} \\
& =\frac{1.673 \times 10^{3}}{10^{27}} \\
& =1.673 \times 10^{-24} \mathrm{gm}
\end{aligned}
$$

b. $\quad 0.000000022=2.2 \times 10^{-8} \mathrm{~cm}$
7. Simplify and write in exponential form:
a. $(-2)^{-3} \times(-2)^{-4}$
b. $p^{3} \times p^{-10}$
c. $3^{2} \times 3^{-5} \times 3^{6}$

Sol.
a. $(-2)^{-3} \times(-2)^{-4}=(-2)^{(-3)+(-4)}$

$$
\begin{aligned}
& {\left[a^{m} \times a^{n}=a^{m+n}\right] } \\
= & (-2)^{-7} \text { or } \frac{1}{(-2)^{7}}
\end{aligned}
$$

b. $p^{3} \times p^{-10}=(p)^{3+(-10)}=(p)^{-70}$ or $\frac{1}{(p)^{7}}$
c. $3^{2} \times 3^{-5} \times 3^{6}=3^{2+(-5)+6}$

$$
3^{8-5}=3^{3}
$$

8. Find the product of the cube of (-2) and the square of $(+4)$.
[NCERT Exemplar]
Sol.
$(2)^{3} \times(+4)^{2}=(-8) \times$

$$
\begin{equation*}
=-128 \tag{16}
\end{equation*}
$$

9. Simplify: $\left(2^{5} \div 2^{8}\right) \times 2^{-7}$.

Sol. $\left(2^{5} \div 2^{8}\right) \times 2^{-7}=\left(\frac{2^{5}}{2^{8}}\right) \times 2^{-7}$

$$
=\left(2^{-3}\right) \times 2^{-7}=20^{-10}
$$

10. Express $3^{-5} \times 3^{-4}$ as a power of 3 with positive exponent.
[NCERT Exemplar]
Sol.

$$
3^{-5} \times 3^{-4}=3^{-9}=\frac{1}{3^{9}}
$$

II. Very short answer type questions.

1. Find the value of x for the expression $3^{5 x-1} \div 27=3^{-5}$

Sol.

$$
\begin{aligned}
& 3^{5 x-1} \div 27=3^{-5} \\
\Rightarrow & 3^{5 x-1} \div 27=3^{-5} \\
\Rightarrow \quad & \frac{3^{5 x-1}}{3^{3}}=3^{-5} \\
\Rightarrow \quad & \frac{3^{5 x-4}}{3^{3}}=3^{-5}
\end{aligned} \quad \Rightarrow \quad 3^{5 x-1-3}=3^{-5}
$$

Comparing exponent of 3

$$
\begin{aligned}
& 5 x-4=-5 \\
& 5 x-4=-5
\end{aligned} \quad \Rightarrow \quad 5 x=-1 \quad \Rightarrow \quad x=\frac{-1}{5}
$$

2. What is the value of k if 385600000 is written in the form $k \times 10^{n}$ with $n=7$?

Sol.

$$
x=385600000 \quad \Rightarrow
$$

$$
x=38.56 \times 10^{7}
$$

Hence, the value of $k=38.56$.
3. What is the value of $\left(6^{-1}+8^{-1}+12^{-1}\right)^{0}$?

Sol. As we know that 0 exponent of any base equals 1 .
Hence, $\left(6^{-1}+8^{-1}+12^{-1}\right)^{0}=1$
4. Express 300970000 in standard form.

Sol. Standard form of 300970000 is $=3.0097 \times 10^{8}$
5. What is the reciprocal of $\left(\frac{8}{5}\right)^{-4}$?

Sol. For finding reciprocal we just reverse the fraction

$$
\therefore \quad \text { Its reciprocal }=\left(\frac{5}{8}\right)^{-4}=\left(\frac{8}{5}\right)^{4}
$$

6. What is the multiplicative inverse of $\left(-\frac{5}{9}\right)^{-99}$?

Sol. Let the multiplicative inverse be x.

$$
\begin{aligned}
\text { then }\left(-\frac{5}{9}\right)^{-99} & \times x=1 \\
x & =\left(-\frac{5}{9}\right)^{99}
\end{aligned} \quad[\therefore 1 \text { is identity }]
$$

7. What is the usual form for 2.3×10^{-10} ?

Sol. Its usual form will be 0.00000000023 .
8. What is the expression for 4^{-3} as a power with the base 2?

Sol.
$(4)^{-3}=\left(2^{2}\right)^{-3}$
$=(2)^{-6}$, which is the required expression.
9. Express 16^{-2} as a power with the base 2.
[NCERT Exemplar]
Sol. $\quad 16=\frac{1}{16^{2}}=\frac{1}{\left(2^{4}\right)^{2}}=\frac{1}{2^{8}}$
I. Short answer type questions.

1. Simply: $\left(\frac{1}{4}\right)^{-2}+\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}$

$$
\text { Sol. }\left(\frac{1}{4}\right)^{-2}+\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}=\frac{1}{\left(\frac{1}{4}\right)^{2}}+\frac{1}{\left(\frac{1}{2}\right)^{2}}+\frac{1}{\left(\frac{1}{3}\right)^{2}}
$$

$$
\begin{aligned}
& =\frac{1}{\frac{1}{16}}+\frac{1}{\frac{1}{4}}+\frac{1}{\frac{1}{9}} \\
& =16+4+9 \\
& =29
\end{aligned}
$$

2. Simplify: $\frac{(-2)^{3} \times(-2)^{7}}{3 \times 4^{6}}$

Sol. $\frac{(-2)^{3} \times(-2)^{7}}{3 \times 4^{6}}=\frac{(-2)^{3+7}}{3 \times\left(2^{2}\right)^{6}}$

$$
\begin{aligned}
& \quad\left\{a^{m} \times a^{n}=a^{3+n}\right\} \\
& =\frac{(-2)^{10}}{3 \times 2^{12}}\left\{\left(a^{m}\right)^{n} \times a^{m \times n}\right\} \\
& =\frac{(-2)^{10}}{3 \times 2^{12}}=\frac{2^{10-12}}{3} \\
& \left\{a^{m} \times a^{n}=a^{m-n,}(-2)^{10}=2^{10}\right\} \\
& \frac{2^{-2}}{2}=\frac{1}{3 \times 2^{2}}=\frac{1}{12}
\end{aligned}
$$

3. Find the multiplicative inverse of $(-7)^{-2} \div(90)^{-1}$

Sol. $(-7)^{-2} \div(90)^{-1}=\frac{1}{(-7)^{2}} \div \frac{1}{90}$

$$
\begin{aligned}
& =\frac{1}{49} \div \frac{1}{90} \\
& =\frac{90}{49}
\end{aligned}
$$

Multiplicative inverse of $(-7)^{-2} \div(90)^{-1}$
4. Evaluate: $\left(5^{-1} \times 2^{-1}\right) \times 6^{-1}$

Sol. $\left(5^{-1} \times 2^{-1}\right) \times 6^{-1}=(5 \times 2)^{-1} \times 6^{-1}$

$$
\begin{aligned}
& =(10)^{-1} \times 6^{-1} \\
& =(10 \times 6)^{-1} \\
& =(60)^{-1}=\frac{1}{60}
\end{aligned}
$$

5. Find the value of x, so that

Sol.

$$
\begin{aligned}
& \left(\frac{5}{3}\right)^{-2} \times\left(\frac{5}{3}\right)^{-14}=\left(\frac{5}{3}\right)^{8 x} \\
& \left(\frac{5}{3}\right)^{-2} \times\left(\frac{5}{3}\right)^{-14}=\left(\frac{5}{3}\right)^{8 x} \\
& \left(\frac{5}{3}\right)^{-2+(-14)}=\left(\frac{5}{3}\right)^{8 x} \quad \therefore a^{m} \times a^{n}=a^{m+n} \\
& \left(\frac{5}{3}\right)^{-2+(-14)}=\left(\frac{5}{3}\right)^{8 x} \\
& \left(\frac{5}{3}\right)^{-16}=\left(\frac{5}{3}\right)^{8 x} \\
& -16=8 x \\
& x=-2
\end{aligned}
$$

6. Express $\frac{1.5 \times 10^{6}}{2.5 \times 10^{-4}}$ in the standard form.

Sol. $\quad \frac{1.5 \times 10^{6}}{2.5 \times 10^{-4}}=0.6 \times 10^{10}$

$$
\begin{aligned}
& =6 \times 10^{-1} \times 10^{10} \\
& =6 \times 10^{9}
\end{aligned}
$$

7. Find the value of $n \frac{2^{n} \times 2^{6}}{2^{-3}}=2^{18}$

Sol.

$$
\begin{aligned}
& \frac{2^{n} \times 2^{6}}{2^{-3}}=2^{18} \\
& 2^{n} \times 2^{6}=2^{18} \times 2^{-3} \\
& 2^{n+6}=2^{18-3} \\
& 2^{n+6}=2^{15} \\
& n+6=15 \\
& n=9
\end{aligned}
$$

8. Find x, so that $(-5)^{x+1} \times(-5)^{5}=(-5)^{7}$
[NCERT Exemplar]
Sol.

$$
\begin{aligned}
& (-5)^{x+1} \times(-5)^{5}=(-5)^{7} \\
& (-5)^{x+1+5}=(-5)^{7} \\
& (-5)^{x+6}=(-5)^{7}
\end{aligned} \quad\left[a^{m} \times a^{n}=a^{m+n}\right]
$$

On both sides, powers have the same base, so their exponents must be equal.
Therefore,

$$
\begin{aligned}
& x+6=7 \\
& x=7-6=1 \\
& x=1
\end{aligned}
$$

9. If $5^{2 x+1} \div 25=125$, find the value of x.

Sol. Since,

$$
\frac{5^{2 x+1}}{25}=125
$$

Then

$$
\frac{5^{2 x+1}}{5^{2}}=5^{3}
$$

or

$$
\begin{aligned}
& 5^{2 x+1} \times 5^{-2}=5^{3} \\
& 5^{2 x+1} \times 5^{-2}=5^{3}
\end{aligned}
$$

or

$$
\left[\therefore \frac{1}{x^{n}}=x^{-n}\right]
$$

or

$$
5^{2 x-1}=5^{3}
$$

$$
\left[\therefore x^{m} \times x^{n}=x^{m+n}\right]
$$

Comparing powers

	$2 x-1=3$
or	$2 x=3+1$
or	$2 x=4$
or	$x=\frac{4}{2}=2$
Hence,	$x=2$

10. By what number should $\left(\frac{1}{2}\right)^{-1}$ be multiplied to that the product is $\left(\frac{-5}{4}\right)^{-1}$?

Sol. Let, the number $=x$
According to problem,

$$
\begin{array}{ll}
& x \times\left(\frac{1}{2}\right)^{-1}=\left(\frac{-5}{4}\right)^{-1} \\
\text { or } & x \times \frac{2}{1}=\frac{4}{-5} \\
\text { or } & 2 x=\frac{-4}{5} \\
\text { or } & x=\frac{-4}{5} \times \frac{1}{2}=\frac{-2}{5}
\end{array}
$$

Hence, required number $=-\frac{2}{5}$
II. Very short answer type questions.

1. Express $\frac{16}{81}$ and $\frac{-8}{27}$ as powers of a rational number.
[NCERT Exemplar]
Sol. $\frac{16}{81}=\frac{2^{4}}{3^{4}}=\left(-\frac{2}{3}\right)^{3}$
and $\frac{-8}{27}=\frac{(-2)^{3}}{3^{3}}=\left(\frac{2}{3}\right)^{3}$
2. Express as a power of a rational number with negative exponent $\left[\left(\frac{-3}{2}\right)^{-2}\right]^{-3}$
[NCERT Exemplar]
Sol. $\left[\left(\frac{-3}{2}\right)^{-2}\right]^{-3}$

$$
=\left(\frac{-3}{2}\right)^{-2 \times-3}=\left(\frac{-3}{2}\right)^{6}
$$

But we have to express the power with negative sign.
Hence, it will become $\left(\frac{-2}{3}\right)^{-6}$.
3. Find the value of x so that $\left(\frac{5}{3}\right)^{-2} \times\left(\frac{5}{3}\right)^{-14}=\left(\frac{5}{3}\right)^{8 x}$.

Sol. $\left(\frac{5}{3}\right)^{-2} \times\left(\frac{5}{3}\right)^{-14}=\left(\frac{5}{3}\right)^{8 x}$

$$
\begin{aligned}
& \left(\frac{5}{3}\right)^{-2-14} \times\left(\frac{5}{3}\right)^{8 x} \quad\left[a^{m} \times a^{n}=a^{m+n}\right] \\
& \left(\frac{5}{3}\right)^{-16}=\left(\frac{5}{3}\right)^{8 x}
\end{aligned}
$$

$$
8 x=-16 \quad \text { (Comparing the exponents) }
$$

$$
x=\frac{-16}{8}=-2 .
$$

4. Find the multiplicative inverse of $(-7)^{-2} \div(90)^{-1}$

Sol. $(-7)^{-2} \div(90)^{-1}$

$$
\begin{array}{ll}
\frac{1}{(7)^{2}} \div \frac{1}{90} & {\left[a^{-m}=\frac{1}{a^{m}}\right]} \\
=\frac{1}{49} \times \frac{90}{1}=\frac{90}{49} &
\end{array}
$$

Hence, the multiplicative inverse will be the reciprocal of it i.e. $\frac{49}{90}$.
5. Express $\frac{1.5 \times 10^{6}}{2.5 \times 10^{-4}}$ in the standard form.
[NCERT Exemplar]
Sol. $\quad \frac{1.5 \times 10^{6}}{2.5 \times 10^{-4}}=\frac{1.5}{2.5} \times 10^{6} \times 10^{4}$
$=0.6 \times 10^{10}=6.0 \times 10^{9}$
6. Express each of the following in standard form.
[NCERT Exemplar]
i. The mass of a proton in gram is
$\frac{1673}{1000000000000000000000000000}$
ii. Mass of a molecule of hydrogen gas is about

$$
\frac{1673}{1000000000000000000000000000}
$$

Sol. i.
i. $\frac{1673}{100000000000000000000000000}$

$$
=\frac{1.673 \times 1000}{10^{27}}=1.673 \times 10^{-24} \mathrm{~g}
$$

ii. 0.00000000000000000000334

$$
=3.34 \times 10^{-21} \text { tons. }
$$

7. If $a=-1, b=2$, then find the value of the following.
[NCERT Exemplar]
i. $\quad a^{b}-b^{a}$
ii. $\quad a^{b} \div b^{a}$

Sol.

$$
\begin{aligned}
\text { i. } & \quad a^{b}-b^{a} \\
\text { ii. } & (-1)^{2}-(2)^{-1}=1-\frac{1}{2}=\frac{1}{2} \\
\text { i. } \quad a^{b} \div b^{a} & =(-1)^{2} \div(2)^{-1} \\
& =1 \div \frac{1}{2}=1 \times \frac{2}{1}=2
\end{aligned}
$$

8. By what number should we multiply $(-29)^{0}$ so that the product becomes $(+29)^{0}$?
[NCERT Exemplar]
Sol. Since any base having exponent 0 is equal to 1
$\therefore(-29)^{0}$ and $(+29)^{0}=1$
$\Rightarrow 1$ and product of a number equal 1
$\therefore 1 \times 1=1$
Hence 1 is the required number.
9. Express $\frac{400}{3969}$ in exponential form.

Sol. $\quad 400=2 \times 2 \times 2 \times 2 \times 5 \times 5=4^{2} \times 5^{2}$

$$
3696=3 \times 3 \times 3 \times 3 \times 7 \times 7=9^{2} \times 7^{2}
$$

$$
\begin{aligned}
\therefore \frac{400}{3969} & =\frac{4^{2} \times 5^{2}}{9^{2} \times 7^{2}}=\frac{(4 \times 5)^{2}}{(9 \times 7)^{2}} \\
& =\left(\frac{4 \times 5)}{9 \times 7}\right)^{2}=\left(\frac{20}{63}\right)^{2}
\end{aligned}
$$

I. Long answer type questions.

1. Simplify:

a. $\left(\left(\frac{2}{3}\right)^{3}\right)^{3} \times\left(\frac{1}{2}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$
b. $\frac{49 \times z^{-3}}{7^{3} \times 10 \times z^{-5}}(z \neq 0)$

Sol.

$$
\text { a. } \begin{aligned}
\left(\left(\frac{2}{3}\right)^{3}\right. &)^{3} \times\left(\frac{1}{2}\right)^{-4} \times 3^{-1} \times \frac{1}{6} \\
& =\left(\left(-\frac{3}{3}\right)^{2}\right)^{3} \times(3) \times \frac{1}{3} \times \frac{1}{6} \\
& =\left(\frac{9}{4}\right)^{3} \times 81 \times \frac{1}{3} \times \frac{1}{6} \\
& =\frac{729}{64} \times 81 \times \frac{1}{3} \times \frac{1}{6} \\
& =\frac{243 \times 27}{128}=\frac{(3)^{5} \times(3)^{3}}{2^{7}}=\frac{3^{8}}{2^{7}}
\end{aligned}
$$

b. $\frac{49 \times z^{-3}}{7^{-3} \times 10 \times z^{-5}}(z \neq 0)$

$$
\begin{aligned}
& =\frac{7^{2} \times 7^{3} \times z^{-3} \times z^{5}}{10} \\
& =\frac{7^{2+3} \times z^{5-3}}{10}=\frac{7^{5} \times z^{2}}{10}
\end{aligned}
$$

2. Find x, so that $\left(\frac{2}{9}\right)^{3} \times\left(\frac{2}{9}\right)^{-6}=\left(\frac{2}{9}\right)^{2 x-1}$

Sol. $\left(\frac{2}{9}\right)^{3} \times\left(\frac{2}{9}\right)^{-6}=\left(\frac{2}{9}\right)^{2 x-1}$

$$
\begin{aligned}
& \left(\frac{2}{9}\right)^{3+(-6)}=\left(\frac{2}{9}\right)^{2 x-1}\left[a^{m} \times a^{n}=a^{m=n}\right] \\
& \left(\frac{2}{9}\right)^{-3}=\left(\frac{2}{9}\right)^{2 x-1} \\
& -3=2 x-1 \\
& -3+1=2 x \\
& 2 x=-1
\end{aligned}
$$

$$
x=-1
$$

3. If $\frac{5^{m} \times 5^{3} 5^{-2}}{5^{-5}}=5^{12}$, find m.

Sol. $\frac{5^{m} \times 5^{3} 5^{-2}}{5^{-5}}=5^{12}$

$$
\begin{aligned}
& 5^{m} \times 5^{3}-5^{-2} \times 5^{5}=5^{12} \\
& 5^{m} \times 5^{3-2+5}=5^{12}
\end{aligned}
$$

$$
\begin{aligned}
& 5^{m} \times 5^{6}=5^{12} \\
& m+6=12-6 \\
& m=6
\end{aligned}
$$

4. Simplify: $\left(\frac{1}{5}\right)^{45} \times\left(\frac{1}{5}\right)^{-60}-\left(\frac{1}{5}\right)^{+28} \times\left(\frac{1}{5}\right)^{-43}$

Sol. $\left(\frac{1}{5}\right)^{45} \times\left(\frac{1}{5}\right)^{-60}-\left(\frac{1}{5}\right)^{+28} \times\left(\frac{1}{5}\right)^{-43}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{1}{5}\right)^{45-60}-\left(\frac{1}{5}\right)^{28-43} \\
& \Rightarrow\left(\frac{1}{5}\right)^{45-60}-\left(\frac{1}{5}\right)^{28-43} \\
& \Rightarrow\left(\frac{1}{5}\right)^{-15}-\left(\frac{1}{5}\right)^{-15} \\
& \Rightarrow(5)^{15}-(5)^{-15} \\
& \Rightarrow 0
\end{aligned}
$$

5. By what number should $(-8)^{-3}$ be multiplied so that the product may be equal to $(-6)^{-3}$?

Sol. Let the number be x

$$
\begin{aligned}
&(-8)^{-3} \times x=(-6)^{-3} \\
&\left(\frac{1}{-8}\right)^{3} \times x=\left(\frac{1}{6}\right)^{3} \\
& \frac{1}{512} \times x=\frac{1}{216} \\
& x=\frac{512}{216} \\
& x=\frac{64}{27}
\end{aligned}
$$

6. Simplify: $\frac{\left(3^{-2}\right)^{2} \times\left(5^{2}\right)^{2} \times\left(t^{-3}\right)^{2}}{\left(3^{-2}\right)^{5} \times\left(5^{3}\right)^{-2} \times\left(t^{-4}\right)^{3}}$

Sol. $\frac{\left(3^{-2}\right)^{2} \times\left(5^{2}\right)^{2} \times\left(t^{-3}\right)^{2}}{\left(3^{-2}\right)^{5} \times\left(5^{3}\right)^{-2} \times\left(t^{-4}\right)^{3}}$

$$
\begin{aligned}
& =\frac{(3)^{-4} \times(5)^{-6} \times(t)^{-6}}{(3)^{-10} \times(5)^{-6} \times(t)^{-12}} \\
& =(3)^{-4} \times(3)^{10} \times(5)^{-6} \times(5)^{6} \times(t)^{-6} \times(t)^{12} \\
& =(3)^{6} \times(5)^{-6+6} \times t^{-6+12} \\
& =(3)^{6} \times(5)^{0} \times(t)^{6} \\
& =729 t^{6}
\end{aligned}
$$

7. Simplify: $\quad \frac{2^{-5} \times 3^{-5} \times 125}{5^{-4} \times 6^{-5}}$

Sol. Since, $125=5 \times 5 \times 5=5^{3}$

$$
\begin{aligned}
& 6^{-5}=(2 \times 3)^{-5}=2^{-5} \times 3^{-5} \\
& \therefore \quad \frac{2^{-5} \times 3^{-5} \times 125}{5^{-4} \times 6^{-5}}=\frac{2^{-5} \times 3^{-5} \times 5^{3}}{5^{-4} \times 2^{-5} \times 3^{-5}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2^{-5}}{2^{-5}} \times \frac{3^{-5}}{3^{-5}} 1 \times 1 \times 5^{7} \\
& =5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \\
& =78125
\end{aligned}
$$

8. Find x
a. $\left(\frac{2}{5}\right)^{2 x+6} \times\left(\frac{2}{5}\right)^{3}=\frac{2^{x+2}}{5}$
b. $\quad 2^{x}+2^{x}+2^{x}=192$

Sol. a. $\quad\left(\frac{2}{5}\right)^{2 x+6} \times\left(\frac{2}{5}\right)^{3}=\left(\frac{2}{5}\right)^{x+2}$

$$
\begin{aligned}
& \left(\frac{2}{5}\right)^{2 x+6+3}=\left(\frac{2}{5}\right)^{x+2} \\
& \left(\frac{2}{5}\right)^{2 x+9}=\left(\frac{2}{5}\right)^{x+2} \\
& 2 x+9=x+2 \\
& 2 x-x=2-9 \\
& x=-7
\end{aligned}
$$

b. $\quad 2^{x}+2^{x}+2^{x}=192$

$$
2^{x}(1+1+1)=192
$$

$$
2^{x}=\frac{192}{3}
$$

$$
2^{x}=64
$$

$$
2^{x}=(2)^{6}
$$

$$
x=6
$$

9. Simplify:

a. $\left(\frac{4}{13}\right)^{4} \times\left(\frac{13}{2}\right)^{2} \times\left(\frac{7}{4}\right)^{3}$
b. $\left(\frac{4}{13}\right)^{4} \times\left(\frac{13}{2}\right)^{2} \times\left(\frac{7}{4}\right)^{3}$

Sol.

$$
\text { a. } \begin{aligned}
\left(\frac{4}{13}\right)^{4} & \times\left(\frac{13}{2}\right)^{2} \times\left(\frac{7}{4}\right)^{3} \\
& =\frac{4 \times 4 \times 4 \times 4}{13 \times 13 \times 13 \times 13} \times \frac{13 \times 13}{7 \times 7} \times \frac{7 \times 7 \times 7}{4 \times 4 \times 4} \\
& =\frac{4 \times 7}{13 \times 13} \times \frac{28}{169}
\end{aligned}
$$

b. $\left(\frac{4}{3}\right)^{-2} \times\left(\frac{3}{4}\right)^{2}=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}=0$
10. By what number should $\left(-\frac{3}{2}\right)^{2}$ be divided so that the quotient is $\left(\frac{9}{4}\right)^{-2}$?

Sol. Let the required number $=x$
According to problem,

$$
\left(-\frac{3}{2}\right)^{2} \div x=\left(\frac{9}{4}\right)^{-2}
$$

or

$$
\left(\frac{2}{-3}\right)^{3} \div x=\left(\frac{4}{9}\right)^{2}
$$

or

$$
\frac{8}{-27} \times x^{-1}=\frac{16}{81}
$$

$$
\left[\because \frac{1}{x^{a}}=x^{-a}\right]
$$

or

$$
x^{-1}=\frac{16}{81} \times \frac{-27}{8}
$$

or

$$
x^{-1}=\frac{-2}{3}
$$

or

$$
\frac{1}{x}=\frac{-2}{3}
$$

or

$$
\frac{1}{x}=\frac{-2}{3}
$$

or

$$
x=\frac{-3}{2}
$$

Hence, required number $=\frac{-3}{2}$

II. Long answer type questions.

1. Simplify:

i. $\left[\left(\frac{2}{3}\right)^{-2}\right]^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$
ii. $\frac{49 \times z^{-3}}{7^{-3} \times 10 \times z^{-5}}(z \neq 0)$

Sol. i. $\left[\left(\frac{2}{3}\right)^{-2}\right]^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$

$$
\begin{aligned}
& =\left(\frac{-2}{3}\right)^{-6} \times\left(3^{-1}\right)^{-4} \times 3^{-1} \times \frac{1}{2 \times 3} \\
& =\left(\frac{-2}{3}\right)^{-6} \times(3)^{6} \times 3^{4} \times 3^{-1} \times 3^{-1} \times 2^{-1} \\
& =(2)^{-6-1} \times(3)^{6+4-1-1} \\
& =\frac{(3)^{8}}{(2)^{7}}=\frac{3^{8}}{2^{7}}
\end{aligned}
$$

$$
=(2)^{-6-1} \times(3)^{6+4-1-1} \quad\left[\therefore(-2)^{m}=(2)^{m} \text { if } m \text { is even }\right]
$$

ii. $\quad \frac{49 \times z^{-3}}{7^{-3} \times 10 \times z^{-5}}(z \neq 0)$

$$
=\frac{7^{2} \times 7^{3} \times z^{-3}}{10} \times z^{5}=\frac{7^{5} z^{2}}{10}
$$

2. By what number should $(-8)^{-3}$ be multiplied so that the product may be equal to $(-6)^{-3}$?

[NCERT Exemplar]

Sol. Let the required number be x

$$
\begin{aligned}
& (-8)^{-3} \times x=(-6)^{-3} \\
& \left(-\frac{1}{8}\right)^{3} \times x=\left(-\frac{1}{6}\right)^{3} \\
& x=\left(-\frac{1}{6}\right)^{3} \div\left(\frac{-1}{8}\right)^{3}=\left(-\frac{1}{6}\right)^{3} \times(-8)^{3} \\
& =\left(-\frac{1}{6} \times-8\right)^{3} \quad\left(a^{m} \times b^{m}=(a b)^{m}\right)
\end{aligned}
$$

$$
x=\left(\frac{8}{6}\right)^{3}=\left(\frac{4}{3}\right)^{3}=\frac{64}{27}
$$

3. By what number should $\left(\frac{4}{3}\right)^{3}$ be multiplied, so that the product may be equal to $\left(\frac{-3}{8}\right)^{-3}$?

Sol. Let required number be x.
Now, according to question

$$
\left(\frac{1}{2}\right)^{3} \times x=\left(\frac{-3}{8}\right)^{-3}
$$

Dividing both sides by $\left(\frac{1}{2}\right)^{3}$, we get

$$
\begin{array}{ll}
\Rightarrow & \left(\frac{1}{2}\right)^{3} \times x \div\left(\frac{1}{2}\right)^{3}=\left(\frac{-3}{8}\right)^{-3} \div\left(\frac{1}{2}\right)^{3} \Rightarrow \\
\Rightarrow & x=\left(\frac{8}{-3}\right)^{3} \div\left(\frac{1}{2}\right)^{3} \\
\Rightarrow & x=\left(\frac{3}{8}\right)^{-3} \div\left(\frac{1}{2}\right)^{3} \\
\Rightarrow & x=\left(\frac{8}{-3}\right)^{3} \div\left(\frac{1}{2}\right)^{3} \\
\Rightarrow & \left.\left.x=-\frac{8 \times 8 \times 8}{3 \times 3 \times 3} \div \frac{1}{2 \times 2 \times 2}\right)^{-m}=\left(\frac{q}{p}\right)^{m}\right] \\
\Rightarrow & \left.x=(-a)^{n}=-a^{n}, \text { where } n \text { is odd }\right] \\
\Rightarrow & x=-\left(\frac{16}{3}\right)^{3}
\end{array}
$$

4. Mass of Mars is $6.42 \times 10^{29} \mathrm{~kg}$ and mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$. What is their total mass?

Sol. Given
Mass of Mars $=6.42 \times 10^{29} \mathrm{~kg}$
Mass of the Sun $=1.99 \times 10^{30} \mathrm{~kg}$

Converting the standard form into number with the same exponent, we get

Mass of Mars	$=6.42 \times 10^{29} \mathrm{~kg}$
Mass of the Sun	$=1.99 \times 10^{30} \mathrm{~kg}=1.99 \times 10^{29} \times 10 \mathrm{~kg}$
$\therefore \quad$ Total mass	$=6.42 \times 10^{29} \mathrm{~kg}+1.99 \times 10^{29} \times 10 \mathrm{~kg}$
	$=(6.42+1.99 \times 10) \times 10^{29} \mathrm{~kg}$
	$=26.32 \times 10^{29} \mathrm{~kg}$

5. Divide 256 by $10,00,000$ and express the result in standard form.

Sol. We have, $\frac{256}{10,00,000}$

$$
\begin{aligned}
& =256 \times 10^{-6} \\
& =2.56 \times 102 \times 10^{-6}=2.56 \times 10^{-4}
\end{aligned}
$$

I. Higher Order Thinking Skills.

1. By what number should $\left(\frac{-3}{2}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-4}$?

Sol. Let the required number bex.

$$
\begin{aligned}
& \text { Then, }\left(\frac{-3}{2}\right)^{-3} \div x=\left(\frac{4}{27}\right)^{-2} \\
& \left(\frac{2}{3}\right)^{3} \div x=\left(\frac{27}{4}\right)^{2} \\
& \frac{8}{-27} \times \frac{1}{x}=\left(\frac{27}{4}\right)^{2} \\
& \frac{1}{x}=\frac{-27}{8} \times \frac{(27)^{2}}{4^{2}} \\
& =\frac{-1 \times(27) \times(27)^{2}}{2 \times(4) \times(4)^{2}} \\
& \frac{1}{x}=\frac{-(27)^{3}}{2(4)^{3}} \\
& x=-2 \times\left(\frac{4}{27}\right)^{3}
\end{aligned}
$$

II. Higher Order Thinking Skills.

1. The size of a red blood cell is 0.000007 m and the size of a plant cell is 0.00001275 m . Compare these two.

Sol. We have,
Size of red blood cell $=0.000007 \mathrm{~m}=7 \times 10^{-6} \mathrm{~m}$
Size of plant cell $=0.00001275=1.275 \times 10^{-5} \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad \frac{\text { Size of red blood cell }}{\text { Size of plant cell }}=\frac{7 \times 10^{-6}}{1.275 \times 10^{-5}}=\frac{7 \times 10^{-6+5}}{1.275}=\frac{7 \times 10^{-1}}{1.275} \\
& =\frac{0.7}{1.275}=\frac{0.7}{1.3}=\frac{1}{2}
\end{aligned}
$$

So, a red blood cell is approximately half of a plant cell in size.
2. By what number should $\left(\frac{-3}{2}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-2}$?

Sol. Let the required number be x. Then

$$
\begin{aligned}
& \left(\frac{-3}{2}\right)^{-3} \div x=\left(\frac{4}{27}\right)^{-2} \\
\Rightarrow & \left(\frac{-3}{2}\right)^{-3} \times \frac{1}{x}=\left(\frac{4}{27}\right)^{-2} \\
\Rightarrow \quad & x=\left(\frac{2}{-3}\right)^{3} \times\left(\frac{4}{27}\right)^{2}= \\
\Rightarrow \quad & x=\left(\frac{2}{-3}\right)^{3} \times\left(\frac{4}{27}\right)^{2}=\left(\frac{2}{-3}\right)^{3} \times\left(\frac{2^{2}}{3^{3}}\right)^{2} \\
\Rightarrow \quad & x=\frac{2^{3}}{(-3)^{3}} \times \frac{2^{4}}{3^{6}}=\frac{2^{3+4}}{(-3)^{3} \times(-3)^{6}} \\
& \frac{2^{7}}{(-3)^{9}}=\frac{-2^{7}}{3^{9}}=\frac{(-2)^{7}}{3^{9}}
\end{aligned}
$$

3. What is the value of $\left(x^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}}\left(x^{\frac{c+a}{a-b}}\right)^{\frac{1}{b-c}}\left(x^{\frac{a+b}{b-c}}\right)^{\frac{1}{c-a}}$?

Sol. $\quad\left(x^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}}\left(x^{\frac{c+a}{a-b}}\right)^{\frac{1}{b-c}}\left(x^{\frac{a+b}{b-c}}\right)^{\frac{1}{c-a}}$

$$
\begin{aligned}
& =\frac{b}{x}+\frac{c}{a}+\frac{a}{b}=\frac{b}{x} \\
& =\frac{b}{x}=\frac{0}{x} \\
& =x^{0}=1
\end{aligned}
$$

I. Value Based Questions.

1. (a) Find the value of $\left[\left\{\left(\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}$
(b) Planet A is at a distance of $9.35 \times 10^{6} \mathrm{~km}$ from Earth and Planet B is $6.27 \times$ $10^{7} \mathrm{~km}$ from Farth. Which Planet is nearer to earth.

Sol.

$$
\text { (a) } \begin{aligned}
{\left[\left\{\left(\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1} } & =\left[\left(\frac{1}{4}\right)^{-2}\right]^{-1} \\
& =\left[\left(\frac{4}{1}\right)^{2}\right]^{-1} \quad\left\{\because \frac{1}{x^{a}}=x^{-a}\right\} \\
& =[16]^{-1} \\
& =\frac{1}{16}
\end{aligned}
$$

(b) Distance between planet A and earth

$$
\begin{aligned}
& =9.35 \times 10^{6} \mathrm{~km} \\
& =0.935 \times 10^{7} \mathrm{~km}
\end{aligned}
$$

Distance between planet B and earth

$$
=6.27 \times 107 \mathrm{~km}
$$

By changing both distances in the same exponent We can say planet A is nearer to earth.
2. (a) Find the value of x for which

$$
\left(\frac{4}{9}\right)^{4} \times\left(\frac{4}{9}\right)^{-7}=\left(\frac{4}{9}\right)^{2 x-1}
$$

(b) Find the value of $\left(\frac{3}{5}\right)^{0}+\left(\frac{125}{129}\right)^{0}+\left(\frac{10}{7}\right)^{0}$

Sol. (a) Since,
$\left(\frac{4}{9}\right)^{4} \times\left(\frac{4}{9}\right)^{-7}=\left(\frac{4}{9}\right)^{2 x-1}$
or
$\left(\frac{4}{9}\right)^{4+(-7)}=\left(\frac{4}{9}\right)^{2 x-1}$
or $\quad\left(\frac{4}{9}\right)^{-3}=\left(\frac{4}{9}\right)^{2 x-1}$
By comparing with power then,

$$
\begin{aligned}
& \quad-3=2 x-1 \\
& \text { or } \quad 2 x=-3+1 \\
& \text { or } \quad 2 x=-2 \\
& \text { or } \quad x=-\frac{2}{2}=-1 \\
& \text { Hence, } \quad x=-1
\end{aligned}
$$

(b) Since, $\left(\frac{3}{5}\right)^{0}+\left(\frac{125}{129}\right)^{0}+\left(\frac{10}{7}\right)^{0}$

$$
\begin{aligned}
& =1+1+1=3, \\
& {\left[\because x^{0}=1\right]}
\end{aligned}
$$

3. The cells of a bacteria doubles in every 20 min . A scientist begins with a single cell.
(a) Now many cells will be there after
i. $10 h$
?
ii. $25 h$?
(b) What type of value is depicted by the cells of bacteria?

Sol. (a) (i) The cell, in bacteria double in every 20 min .
\because Number of cells in a bacteria after $20 \mathrm{~min} .=2$
\therefore Number of cells in a bacteria after 40 min .

$$
=2 \times 2=2^{2}
$$

\therefore Number of cells in a bacteria after 1 hr

$$
=2^{2} \times 2=2^{3}
$$

Number of cells in bacteria after 1 hr 40 min .

$$
=2^{4} \times 2=2^{5}
$$

Number of cells in bacteria after 2 hrs

$$
\begin{aligned}
& =2^{5} \times 2=2^{6} \\
& =\left(2^{3}\right)^{2}
\end{aligned}
$$

\therefore Number of cells in bacteria after 0 hrs

$$
=\left(2^{3}\right)^{25}=2^{75}
$$

(b) The value depicted by the cells of bacteria here is that is double itself after 20 min . in t hrs by $2^{3 \times t}$.

