Grade VII

Lesson: 11 PERIMETER $\mathcal{A N} \mathcal{D} \mathcal{A R E A}$

Objective Type Questions
I. Multiple choice questions

1. Perimeter of a rectangle of length land 6 is:
a) $l+6$
b) $2 x(1+6)$
c) $3 x(1+6)$
d) $(\mathcal{L}+b)$
2. Area of triangle is:
a) Gase x fieight
6) $\frac{1}{2}$ x base x height
c) $\frac{1}{3}$ x base x height
d) $\frac{1}{4}$ xGase xheight
3. The circumference of a circle of radius r is:
a) πr
b) $2 \pi r$
c) πr^{2}
d) πd^{2}
4. The are a of a circle of radius r is:
a) πr^{2}
b) $2 \pi r^{2}$
c) $2 \pi r$
d) $4 \pi r^{2}$
5. Perimeter of a square is
a) side x side
b) $3 x$ side
c) $4 x$ side
d) $2 x$ side
$6.1 \mathrm{~m}^{2}=$
a) $10 \mathrm{~cm}^{2}$
b) $100 \mathrm{~cm}^{2}$
c) $1000 \mathrm{~cm}^{2}$
d) $10000 \mathrm{~cm}^{2}$
6. The circumference of a circle is 44 cm . What is its radius?
a) 42 cm
b) 21 cm
c) 7 cm
d) 14 cm
7. What is the area of the circle of radius 7 cm ?
a) $49 \mathrm{~cm}^{2}$
b) $22 \mathrm{~cm}^{2}$
c) $154 \mathrm{~cm}^{2}$
d) $308 \mathrm{~cm}^{2}$
8. Diameter of a circular garden is 9.8 cm . Which of the following is its area?
a) $75.46 \mathrm{~cm}^{2}$
b) $76.46 \mathrm{~cm}^{2}$
c) $74.4 \mathrm{~cm}^{2}$
d) $76.4 \mathrm{~cm}^{2}$
9. If each side of a square is 1 m , which of the following is its area?
a) $10 \mathrm{~cm}^{2}$
b) $100 \mathrm{~cm}^{2}$
c) $1000 \mathrm{~cm}^{2}$
d) $10000 \mathrm{~cm}^{2}$
10. What is the area of rectangle of dimensions $12 \mathrm{~cm} \times 10 \mathrm{~cm}$?
a) $44 \mathrm{~cm}^{2}$
b) $120 \mathrm{~cm}^{2}$
c) $1440 \mathrm{~cm}^{2}$
d) $1200 \mathrm{~cm}^{2}$
11. Area of a right triangle is $54 \mathrm{~cm}^{2}$. If one of its legs is 12 cm long, its perimeter is :
a) 18 cm
6) 27 cm
c) 36 cm
d) 54 cm

13. A rectangular piece of dimensions $3 \mathrm{~cm} \chi 2 \mathrm{~cm}$ was cut from a rectangular sfeet of paper of dimensions $6 \mathrm{~cm} \times 5 \mathrm{~cm}$
$\mathcal{A r e}$ a of remaining sheet of paper is:

a) $30 \mathrm{~cm}^{2}$
b) $36 \mathrm{~cm}^{2}$
c) $24 \mathrm{~cm}^{2}$
d) $22 \mathrm{~cm}^{2}$
14. 36 unit squares are joined to form a rectangle with the least perimeter. Perimeter of the rectangle is :
a) 12 units
b) 26 units
c) 24 units
d) 36 units
15. A wire is bent to form a square of side 22 cm . If the wire is rebent to form a circle, if radius is :
a) 22 cm
b) 14 cm
c) 11 cm
d) 7 cm
16. Area of the circle obtained in above Question is
a) $196 \mathrm{~cm}^{2}$
b) $212 \mathrm{~cm}^{2}$
c) $616 \mathrm{~cm}^{2}$
d) $644 \mathrm{~cm}^{2}$
17. Area of rectangle and the area of circle are equal. It the dimensions of the rectangle are $14 \mathrm{~cm} \times 11 \mathrm{~cm}$ then radius of the circle is
a) 21 cm
b) 10.5 cm
c) 14 cm
d) 7 cm
18. Are a of shaded portion is
a) $25 \mathrm{~cm}^{2}$
6) $15 \mathrm{~cm}^{2}$
c) $14 \mathrm{~cm}^{2}$
d) $10 \mathrm{~cm}^{2}$

19. Area of parallelogram $\mathcal{A B C D}$ is not equal to
a) $\mathcal{D E} X \mathcal{D C}$
6) $\mathcal{B E} \times \mathcal{A D}$
c) $\mathcal{B F} X \mathcal{D C}$
d) $\mathcal{B E} X \mathcal{B C}$
$20 \mathcal{A r e}$ a of triangle $\mathcal{M} \mathfrak{N} O$ parallelogram $\mathcal{M N} \mathcal{N} \mathcal{P}$ is

a) $\frac{1}{2} \mathscr{M} \mathcal{N} \times \mathcal{N} O$
b) $\frac{1}{2} \mathcal{N O} \times \mathcal{M O}$
c) $\frac{1}{2} \mathcal{M} \mathcal{N} \times O Q$
d) $\frac{1}{2} \mathcal{N} O \times O Q$
21. Ratio of area of $\triangle \mathcal{M} \mathcal{N} O$ to the area of parallelogram $\mathcal{M N} \mathcal{N} P$ in the above figure (q.20) is
a) 2:1
b) $1: 1$
c) $1: 2$
d) $2: 1$
22. Ratio of areas of $\triangle \mathcal{M N N}$ and $\triangle \mathscr{M O P}$ in above figure (q.20) is
a) $2: 1$
6) $1: 1$
c) $2: 3$
d) $1: 2$
23. $\mathcal{E F G \mathcal { H }}$ is a parallelogram, altitudes $\mathcal{F K}$ and $\mathcal{F} I$ are $\mathcal{8} \mathrm{m}$ and 4 cm respectively. If $\mathcal{E F}=10 \mathrm{~cm}$, then are a of $\mathcal{E F} \mathcal{G H}$ is

a) $20 \mathrm{~cm}^{2}$
b) $32 \mathrm{~cm}^{2}$
c) $40 \mathrm{~cm}^{2}$
d) $80 \mathrm{~cm}^{2}$
24. In reference to a circle the value of π is equal to
a). $\frac{\text { Area }}{\text { Circumference }}$
b) $\frac{\text { ARea }}{\text { Diameter }}$
c) $\frac{\text { Circumferenmce }}{\text { diameter }}$
d) $\frac{\text { Circumference }}{\text { radius }}$
25. Circumference of circle is always
a) more thantiree times of its diameter
6) Three times of its diameter
c) Less than three times of its diameter
d) Three times of its radius
26. Area of triangle $\mathcal{P Q R}$ is $100 \mathrm{~cm}^{2}$. If altitude $Q \mathcal{T}$ is 10 cm , then its base $\mathcal{P R}$ is
a) 20 cm
b) 15 cm
c) 10 cm
d) 5 cm

27. If $\mathcal{P R}=12 \mathrm{~cm}, Q \mathcal{R}=6 \mathrm{~cm}$ and $\mathscr{P L}=8 \mathrm{~cm}$, then $Q \mathcal{M}$ is.

a) 6 cm
b) 9 cm
c) 4 cm
d) 2 cm
28. $\Delta \mathcal{M N O}$ is a right - angled triangle. Its legs are 6 cm and 8 cm long, Length of perpendicular $\mathcal{N}(P$ on the side $\mathcal{M O}$ is

a) 4.8 cm
b) 3.6 cm
c) 2.4 cm
d) 1.2 cm
29. Area of a right-angled triangle is $30 \mathrm{~cm}^{2}$. If its smallest side is 5 cm , then its hypotenuse is
a) 14 cm
b) 13 cm
c) 12 cm
d) 11 cm
30. Circumference of a circle of diameter 5 cm is
a) 3.14 cm
b) 31.4 cm
c) 15.7 cm
d) 1.57 cm
31. Circumference of a circular disc is 88 cm . Its radius is
a) 8 cm
b) 11 cm
c) 14 cm
d) 44 cm
32. Length of tape required to cover the edges of a semicircular disc of radius 10 cm is
a) 62.8 cm
b) 51.4 cm
c) 31.4 cm
d) 15.7 cm
33. Area of circular garden with diameter 8 m is:
a) $12.56 \mathrm{~m}^{2}$
6) $25.12 \mathrm{~m}^{2}$
c) $50.24 \mathrm{~m}^{2}$
d) $200.96 \mathrm{~m}^{2}$
34. Area of circle with diameter 'm'radius ' n 'and circumference ' p 'is
a) $2 \pi n$
b) πm^{2}
c) πp^{2}
d) πn^{2}
35. A table top is semicircular in shape with diameter 2.8 m . Area of this table top is
a) $3.08 \mathrm{~m}^{2}$
b) $6.16 \mathrm{~m}^{2}$
c) $12.32 \mathrm{~m}^{2}$
d) $24.64 \mathrm{~m}^{2}$
36. If $1 \mathrm{~m}^{2}=x \mathrm{~mm}^{2}$, then the vatue of x is
a) 1000
b) 10000
c) 100000
d) 1000000
37. If p squares of each side 1 mm makes a square of side 1 cm , then p is equal to
a) 10
b) 100
c) 1000
d) 10000
38. $12 \mathrm{~m}^{2}$ is the area of
a) a square with side 12 m
6) 12 squares with side $1 m$ each
c) 3 squares with 4 meach
d) 4 squares with side 3 meach
7) If each side of a rhombus is doubled, how which will its are a increase?
a) 1.5 times
8) 2 times
c) 3 times
d) 4 times
40. If the sides of a parallelogram are increased to twice its originallengths, frow much will the perimeter of the new parallelogram?
a) 1.5 times
6) 2 times
c) 3 times
d) 4 times
41. If radius of a circle is increased to twice its original length, fow much will the area of the circle increase?
a) 1.4 times
b) 2 times
c) 3 times
d) 4 times
42. What will be the are a of the largest square that can be cur out of a circle of radius 10 cm ?
a) $100 \mathrm{~cm}^{2}$
b) $200 \mathrm{~cm}^{2}$
c) $300 \mathrm{~cm}^{2}$
d) $400 \mathrm{~cm}^{2}$
43. It the radius of a circle is tripled, the area becomes
a) 9 times
b) 3 times
c) 6 times
d) 30 times
44. The area of a semicircle of radius 4π is:
a) $8 \pi r 2$
b) $4 \pi r^{2}$
c) $12 \pi r^{2}$
d) $2 \pi r^{2}$
45. What is the radius of the largest circle that can be cut out of the rectangle measuring 10 cm in length and 8 cm in breadth?
a) 4 cm
b) 5 cm
c) 8 cm
d) 10 cm
46. The perimeter of the figure $\mathcal{A B C D E F G \mathcal { H I g }}$ is
a) 60 cm
b) 30 cm
c) 40 cm
d) 50 cm
47. The circumference of a circle whose area is $81 \pi r^{2}$ is
a) 8π
b) 18π
c) 3π
d) 81π
48. The area of a square is $100 \mathrm{~cm}^{2}$. The circumference (incm) of the largest circle cut out of it is :
a) 5π
b) 10π
c) 15π
d) 20π

1) 6	2) 6	3) 6	4) a	5) c	6) d	7) c	8) c	9) a	10)d
11) 6	12) c	13) c	14) c	15) 6	16) c	17) d	18) d	19) a	20)d
21) c	22) 6	23) c	24) c	25) a	26) a	27)c	28) c	29) 6	30) c
31) c	32) 6	33) c	34) d	35) a	36) d	37) a	38) 6	39) d	40) 6
41) d	42) a	43) a	44) a	45) a	46) a	47) 6	48) 6		

I. Multiple crioice questions 7.1

1. The breadth of a rectangle whose length is 12 cm and perimeter is 36 cm is
a. 6 cm
2. 3 cm
c. 9 cm
d. 12 cm
3. Find the area of a square park, whose perimeter is 96 cm
a. $576 \mathrm{~cm}^{2}$
$6.626 \mathrm{~cm}^{2}$
c. $726 \mathrm{~cm}^{2}$
d. $748 \mathrm{~cm}^{2}$
4. Find the length of a parallelogram, whose area is $246 \mathrm{~cm}^{2}$ and base is $20 \mathrm{~cm}^{2}$
a. 1.23 cm
5. 13.2 cm
c. 12.3 cm
d. 1.32 cm
4.The radio of two concentric circles are 7 m and 9 m . the area enclosed betweenthem is
a. $90 \mathrm{~m}^{2}$
$6.90 .47 \mathrm{~m}^{2}$
c. $100 \mathrm{~m}^{2}$
d. $100.48 \mathrm{~m}^{2}$
6. A copy is tied with a rope of 7 m . the grass grazed field by the cow is
a. $144 \mathrm{~m}^{2}$
7. $140 \mathrm{~m}^{2}$
c. $154 \mathrm{~m}^{2}$
d. $164 \mathrm{~m}^{2}$

I. Fill in the blanks

1. 1 Hectare = \qquad cm^{2}
2. \qquad squares of each side 1 m makes a square of side 5 km
3. All the congruent triangles fave \qquad area
4. Perimeter of a regular polygon $=$ Length of one side x \qquad
5. If a wire in the shape of a square is rebent into a rectangle, then \qquad of Goth shapes remain same but \qquad may vary.
6. Area of the square $\mathcal{M N} \mathcal{N}$ is $144 \mathrm{~cm}^{2}$, Area of each triangle is

7. Area of parallelogram $\mathcal{B C E F}$ is \qquad cm^{2} where $\mathcal{A C D F}$ is a rectangle.

8. To Find area, any side of a parallelogram can be chosen as \qquad of the parallelogram.
9. Perpendicular dropped on the base of a parallelogram from the opposite vertex is known as the corresponding \qquad of the base.
10. The distance around a circle is its. \qquad
11. Ratio of the circumference of a circle to its diameter is denoted by symbol
12. If area of a triangular piece of cardboard is $90 \mathrm{~cm}^{2}$ then the length of altitude corresponding to 20 cm long base is \qquad cm
13. Value of π is \qquad approximately
14. Circumference 'C' of a circle can be found by multiplying diameter 'd'with \qquad $-$
15. Circumference ' C ' of a circle is equal to $2 \pi x$ \qquad
$16.1 \mathrm{~cm}^{2}=$ \qquad cm^{2}
16. Are a of a triangle $=\frac{1}{2} \quad$ base x _----
$18.1 \mathrm{~km}^{2}$. \qquad m^{2}
17. Are a of a square of side 6 m is equal to the are a of \qquad

Squares of each side 1 cm .
$20.10 \mathrm{~cm}^{2}=$ \qquad m^{2}

1) $10,00,00,000$	2) $2,50,00,000$	3) Equal	4) $\mathfrak{N u m b e r}$ of sides
5) Perimeter, Area	6) cm^{2}	7) $35 \mathrm{~cm}^{2}$	8) Base
9) altitude	10) Circumference	11) π	12) 9 cm
13) 3.1415	14) π	15) Radius	16) 100
17) heigft	18) $10,00,000$	19) $3,60,000$	20) 0.001

II. Fill in the blanks

1. If the perimeter of an equilateral triangle is 9 cm . Then, its area is \qquad cm^{2}

Perimeter of an equilateral triangle $=9 \mathrm{~cm}$
Side of an equilateral triangle $=\frac{9}{3}=3 \mathrm{~cm}$
\therefore Area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
So, area $=\frac{\sqrt{3}}{4}(3)^{2}=\frac{\sqrt{3}}{4} x 9=\frac{9 x 1.73}{4}=\frac{15.57}{4}$
$=3.89 \mathrm{~cm}^{2}$

So the area of triangle is $3.89 \mathrm{~cm}^{2}$
2. The diameter of a circle is 4 cm . Then its area is \qquad cm^{2}

Given $\operatorname{Diameter}=4 \mathrm{~cm}$
\mathcal{N} ow radius $=\frac{4}{2}=2 \mathrm{~cm}$
\therefore Area of a circle $=\pi r^{2}=\frac{22}{7} \times(2)^{2}$
$=\frac{22}{7} \times 2 \times 2=\frac{88}{7}=12.57 \mathrm{~cm}^{2}$
3. The area of a rectangle is $200 \mathrm{~cm}^{2}$. If its breadth is 20 cm . then its length is \qquad cm

Given area of a rectangle $=200 \mathrm{~cm}^{2}$ and breadth $=20 \mathrm{~cm}$
\therefore Area of a rectangle $=$ Length \times Breadth
\Rightarrow Length $=\frac{200}{20}=10 \mathrm{~cm}$
4. If a wire in the shape of a square is rebent into a rectangle, then the Of both shapes remain same, but____ may very

If a wire in the shape of a square is rebent into a rectangle. Then the perimeter of 6oth shapes remain same. But area may way.

True or $\mathcal{F a l s e}$

1. The area of a square of side 5 cm is 30 cm .

False, side $=5 \mathrm{~cm}$
\therefore Area of a square $=(\text { Side })^{2}=(5)^{2}=25 \mathrm{~cm}^{2}$
2. The are a of a rectangle of sides 45 cm and 12 cm is $450 \mathrm{~cm}^{2}$

False. sides of rectangle are 45 cm and 12 cm
\therefore Area of a rectangle $=$ Length x Breadth

$$
=45 \times 12=540 \mathrm{~m}^{2}
$$

3. The perimeter of a triangle of sides $20 \mathrm{~cm} .12 \mathrm{~cm}, 16 \mathrm{~cm}$ is 48 cm .

True. Sides of a triangle is $20 \mathrm{~cm}, 12 \mathrm{~cm}$ and 16 cm
\therefore perimeter of a triangle $=$ Sum of the length of all three sides of the triangle

$$
=20+12+16=20+28=48 \mathrm{~cm}
$$

4. The circumference of a circle is 85 m , if the radius of circle is 8 m .

Fatse. Radius of a circle $=8 \mathrm{~m}$
\because Circumterence of a circle $=2 \pi r=2 x \pi x 8$

$$
=16 \pi=16 \times \frac{22}{7}
$$

$=\frac{352}{7}=50.28 \mathrm{~cm}$.
5. The area of a parallelogram is $550 \mathrm{~m}^{2}$ and its 6 ase is 55 m and height is 10 m .

True, area of a parallelogram=Base $\chi \mathcal{H e}$ ight
$\mathcal{B a s e}=55 \mathrm{~m}, \mathcal{H e}$ ight $=10 \mathrm{~m}$
6. Triangles faving the same Gase have equal area.

False, triangles faving the same base fave equal area cannot be possible in any case,
7. Ratio of circumference of a circle to its radius is always 2π : 1 .

True, Circumference of a Circle $=2 \pi r$

Radius of a circle =r

Ratio of the circumference $=2 \pi r: r=2 \pi: 1$
8. 5 hec. $=500 \mathrm{~m}^{2}$

Fatse 1 fec. $=10000 \mathrm{~m}^{2}$
So, 5 hec $=5 \times 10000=50000 \mathrm{~m}^{2}$
9. An increase in perimeter of a figure atways increases the area of the figure.
$\mathcal{F a l s e} . \mathcal{A n}$ increase in perimeter of a figure always not increases the area of the figure.
10. Two figures can have the same areas. But different perimeters.

True. Yes two figures can fave same area. But different perimeters.

I Match the column

Column \mathcal{A}	Column \mathcal{B}
a. Are a of a right angled triangle	i. Gase \times height
6. Area of a parallelogram	ii. $\pi r+2 r$
c. Area of an equilateraltriangle	iii. $\frac{\sqrt{3}}{4} a^{2}$
d. perimeter of a semi-circle	iv. $\frac{1}{2} \times$ Base \times Height

$(a)(i v)$	$(b)(i)$	(c) (iii)	(d) (ii)

I I Match the column

Column \mathcal{A}	Column \mathcal{B}	
a. Area of a triangle with base 4 cm and height 6 cm 6. Area of a parallelogram with Gase 8 cm and height 12 cm c. Are a of a circle with diameter 22 cm d. Area of an equilateral triangle with side $\sqrt{3 \mathrm{~cm}}$	i. $12 \mathrm{~cm}^{2}$ ii. $1.29 \mathrm{~cm}^{2}$ iii. $96 \mathrm{~cm}^{2}$ iv. $380.28 \mathrm{~m}^{2}$	
(a) (i) (b) (iii)	(c) (iv)	(d) (ii)

1. The circumference of two circles are in the ration $5: 6$ find the ration of their radius.

$$
\begin{aligned}
& \frac{2 \pi r}{2 \pi R}=\frac{5}{6} \\
& \quad \Rightarrow \quad \frac{r}{R}=\frac{5}{6}
\end{aligned}
$$

\therefore ratio is $5: 6$
2. The length and breadth of a rectangle are 10 and 8 . Find its perimeter.

$$
\begin{aligned}
& \mathcal{P}=2(\mathcal{L}+\mathcal{B}) \\
&= 2(10+\mathcal{B}) \\
&=2 \times 18 \\
&=36
\end{aligned}
$$

3. Find area of a square of side $\& \mathrm{~cm}$

$$
\text { Area }=8 \times 8=64 \mathrm{~cm}^{2}
$$

4. The radius of a circle is 1 cm . what is its circumference?

$$
\begin{aligned}
\text { Circumference } & =2 \pi r \\
& =2 \pi(1) \\
& =2 \pi \mathrm{~cm}
\end{aligned}
$$

> II Very sfort answer

1. What is the ratio of the circumferences and diameter of a circle?

The ratio is always more than 3.
2. What is the conversion between fectare and cm 2?

1 hectare $=10,00,00,000 \mathrm{~cm} 2$
3. What can you say about the area of congruent triangles?

Area of all congruent triangles must be equal.
4. What is the perimeter of a regular polygon?
perimeter of aregular polygon $=$ Length of one side x number of sides.
5. What is the radius of circle disk whose circumference is 88 cm

$$
C=2 r
$$

6. What will be the area of circle if radius is trippled?

If radius is trippled then the new are a of triangle will become 9 times.
7. What is the value of \qquad ?

The value of \qquad is either $\frac{22}{7}$ or 3.14 approximately.

> I sfort answer Question

1. Find the area of a square park, whose perimeter is 200 m

Sol. Perimeter of square $=4 x$ side

$$
\begin{array}{cc}
\Rightarrow & 4 \times \text { side }=200 \\
\Rightarrow & \text { side }=\frac{200}{4}=50 \mathrm{~m} \\
\Rightarrow & \text { Area of park }=(\text { S ide })^{2} \\
\Rightarrow & =(50)^{2}=50 \times 50 \\
& =2500 \mathrm{~m}^{2}
\end{array}
$$

2. In a parallelogram $\mathcal{A B C D}$, if $\mathcal{A B}=8 \subset m$ and the 3 length of the perpendicular from \mathcal{C} to $\mathcal{A B}$ is 5.2 cm . Find the area of parallelogram

Area of parallelogram = base xheight

In the questions,
$\mathfrak{A B}=6 a s e=8 \mathrm{~cm}$

And height $=5.2 \mathrm{~cm}$
Area $=8 \times 5.2$

$$
=41.6 \mathrm{~cm}^{2}
$$

3. Find the area of a triangle whose base $=25 \mathrm{~cm}$ and height $=14 \mathrm{~cm}$

$$
\text { Area of } \begin{aligned}
\mathcal{A} & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 25 \times 14 \\
& =25 \times 7=175 \mathrm{~cm}^{2}
\end{aligned}
$$

4. Find the area, in square centimetres, of a square whose side is
(a)
$2.4 d m$
(b) 20 mm
(a) we have,

Side of the square $=2.4 \mathrm{dm}=(2.4$ x 10 $) \mathrm{cm}=24 \mathrm{~cm}$
\therefore Area of the square $=(\text { Side })^{2}=(24)^{2} \mathrm{~cm}^{2}=576 \mathrm{~cm}^{2}$
(6). We have

Side of the square $=20 \mathrm{~mm}=2 \mathrm{~cm}$

$$
[\because 10 \mathrm{~mm}=1 \mathrm{~cm}]
$$

$$
\therefore \text { Area of the squre }=(\text { Side })^{2}=(2)^{2} \mathrm{~cm}^{2}=4 \mathrm{~cm}^{2}
$$

5. Find the area in hectare, of a field whose length is 240 m and breadth 110 m
6. Find the area of a rectangular plot one side of which is 48 m and its diagonals is 30 m Let the other side be x metres, since $\mathcal{A A B C}$ is a right triangle. Therefore

$$
A C^{2}=A D^{2}+C D^{2}
$$

$$
\Rightarrow \quad 50^{2}=48^{2}+x^{2}
$$

$$
\Rightarrow \quad x^{2}=(50)^{2}-(48)^{2}
$$

$$
\begin{aligned}
& \text { Length of the field }=240 \mathrm{~m} \\
& \text { Breadth of the field }=\quad 110 \mathrm{~m} \\
& \text { Area of the field }=(240 \times 110) \mathrm{m}^{2} \\
& =\quad 26400 \mathrm{~m} 2 \\
& =\quad \text { hectare }=264 \text { hectare } \\
& =\frac{26400}{10000} \text { hectare }=264 \text { hectare } \\
& {\left[\because 10000 m^{2}=1 \text { hectare }\right]}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & x^{2}=(50+48)(50-48) \\
\Rightarrow & x^{2}=(98) \times 2 \\
\Rightarrow & x^{2}=14^{2} \\
\Rightarrow & x=14
\end{array}
$$

Thus the other side of the rectangle is 14 m Area of the rectangle $=\binom{48}{\times 14} \mathrm{~m}^{2}=672 \mathrm{~m}^{2}$

1. $\mathcal{A B C}$ is a right angled triangle whose sides are $\mathcal{A B}=8 \mathrm{~cm}, \mathcal{B C}=12 \mathrm{~cm}$ and $\mathcal{A C}=13 \mathrm{~cm}$, find the area of the $\triangle \mathcal{A B C}$ and height $\mathcal{B D} \perp \boldsymbol{A C}$.

Area of the triangle $\mathcal{A B C}$
$=\frac{1}{2} \chi$ base χ height
$=\frac{1}{2} \chi \mathcal{A B} \subset \mathcal{B C}$
$=\frac{1}{2} \times 8 \times 12$
$=4 \times 12$

$=48 \mathrm{~m}^{2}$
$\mathcal{A g a i n}$, also are a of $\triangle \mathcal{A B C}$
$=\frac{1}{2} \chi \mathcal{A C} \npreceq \mathcal{B D}$

$$
\begin{aligned}
& \Rightarrow \quad 48=\frac{1}{2} \times 13 \times \mathcal{B D} \\
& \Rightarrow \quad 13 B D=96
\end{aligned}
$$

Thus $\quad \mathcal{B D}=\frac{96}{13}=7.38 \mathrm{~cm}$
2. If the circumference is 30 cm more than the diameter of the circle, find the radius of the circle.

According to the question,
Circumference - diameter $=30 \mathrm{~cm}$

$$
\begin{array}{lc}
\Rightarrow & 2 \pi r-2 r=30 \\
\Rightarrow & 2 r(\pi-1)=30 \\
\Rightarrow & 2 r\left(\frac{22}{7}-1\right)=30 \\
\Rightarrow & 2 r=\frac{30 \times 7}{15}=14
\end{array}
$$

$$
r=\frac{14}{2}=7 \mathrm{~cm}
$$

3. The circumference of two circles are in the ratio $3: 4$ find the ratio of their areas.

Let the radio of circles are r_{1} and r_{2}

According to question,

$$
\begin{aligned}
& \frac{2 \pi r_{1}}{2 \pi r_{2}}=\frac{3}{4} \\
& \frac{r_{1}}{r_{2}}=\frac{3}{4}
\end{aligned}
$$

Ratio of areas $=\frac{\pi r_{1}^{2}}{\pi r_{3}^{2}}=\left(\frac{r_{1}}{r_{t}}\right)^{2}$

$$
\begin{gathered}
=\left(\frac{3}{4}\right)^{2} \\
=\frac{9}{4}=9: 4
\end{gathered}
$$

4. If the diameter of a circular park is 84 m . A 3.5 m broad road runs round it. Find the cost of constructing the road at Rs. 200 per m^{2}.

Radius of circular park $=\frac{84}{2}=42 \mathrm{~m}$ (given)
Width of the road $=3.5 \mathrm{~m}$ [given]
Radius of outer circle $=42+35=45.5 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of the road }= & {[\mathcal{A r e} \text { a of outer circle }] } \\
& \quad-\quad\left[\mathcal{A r e} a \times X(42)^{2}\right. \\
= & \pi \times\{(45.5) 2-\mid(42) 2\} \quad\left[(45.5)^{2}-(42)^{2}\right. \\
= & \pi \times 87.5 \times 3.5 \\
& =\frac{22}{7} \times 87.5 \times 3.5=11 \times 87.5 \\
& =962.5 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of the road $=962.5 \times R$ s. 200

$$
=\mathcal{R s} \cdot 1,92,500
$$

5. A wall 4.84 mlong and .1 m figh is covered with rectangular tiles of size 22 cm by 10 cm . Find the totalcost of the tiles at the rate of $\mathcal{R s}$. 1.50 per tiles

Area of the wall $=4.84 \times 3.1 \mathrm{~m}^{2}$

$$
=15.004 \mathrm{~m}^{2}
$$

$$
=15.004 \times 10000 \mathrm{~cm}^{2}
$$

$$
\left[\because 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}\right]
$$

$$
=150040 \mathrm{~cm}^{2}
$$

$$
\begin{array}{ll}
\text { Area of one tile } & =22 \times 10 \mathrm{~cm}^{2}=220 \mathrm{~cm}^{2} \\
\text { Number of tiles } & =\frac{\text { Area of the wall }}{\text { Area of one tile }} \\
& =\frac{150040}{220}=682
\end{array}
$$

Cost of one tile $\quad=$ Rs. 1.50
Totalcost $=\mathcal{N}$ umber of tiles χ Cost of one tile

$$
=\operatorname{Rs} \cdot(682 \times 1.50)=\operatorname{Rs} .1023
$$

6. Find the base of a triangle of area $36 \mathrm{~cm}^{2}$ and height 3 cm

$$
\begin{aligned}
& \text { Height }=3 \mathrm{~cm} \\
& \text { Area of triangle } \\
& \qquad 36=\frac{1}{2} b \hbar \\
& \Rightarrow \quad 36=\frac{1}{2} X b \times 3
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \frac{72}{3}=b \\
& \Rightarrow \quad b 2=b \times 3 \\
& \Rightarrow \quad b=24 \mathrm{~cm}
\end{aligned}
$$

Base is 24 cm
7. $\mathcal{A B C D}$ is a parallelogram in which $\mathcal{A B}=8 c m,=6 c m$ and $\mathcal{A E}=4 c m$, Find the altitude corresponding to side $\mathfrak{A D}$

Sol. Area of parallelogram $\mathcal{A B C D}=\mathcal{A B} \times \mathcal{A E}$

$$
=8 \times 4 \mathrm{~cm}^{2}=32 \mathrm{~cm}^{2}
$$

Let altitude corresponding to $\mathfrak{A D}$ be f. then,

$$
\hbar \times \mathcal{A D}=32
$$

or \quad fx $6=32$
or $\quad\left\{=\frac{32}{6}=\frac{16}{3}\right.$
Thus altitude corresponding to $\mathcal{A D}$ is $\frac{16}{3} \mathrm{~cm}$
8. Circumference of a circle is 33 cm . Find its area

Sol. Let the radius of the circle ber.
Then, $2 \pi r=33$
i.e. $\quad r=\frac{33}{2 \pi}=\frac{33}{2} \times \frac{7}{22}=\frac{21}{4}$

Thus radius is $\frac{21}{4} \mathrm{~cm}$
So area of the circle $=\pi r^{2}=\frac{22}{7}, \frac{21}{7}, \frac{21}{7}=\frac{693}{8}$
Thus area of the circle is $\frac{693}{8} \mathrm{~cm}^{2}$
9. Rectangle $\mathcal{A B C D}$ is formed in a circle as shown. If $\mathcal{A E}=8 \mathrm{~cm}$ and $\mathcal{A D}=5 \mathrm{~cm}$ find the perimeter of the rectangle.

Sol. $\mathcal{D E}=\mathcal{E A}+\mathcal{A D}=(8+5) \mathcal{C M}=33 \mathcal{C M}$
$\mathcal{D E}$ is the radius of the circle
$\mathfrak{A l s o} \mathcal{D B}$ is the radius of the circle
$\mathfrak{N e x t} \mathfrak{A C}=\mathcal{D B}$ [since diagonals of a rectangle are equalinlength]

Therefore.

$$
\mathscr{A C}=13 \mathrm{~cm}
$$

From $\triangle \mathcal{A D C} \quad D C^{2}=A C^{2}-A D^{2}=13^{2}-5^{2}$

$$
=169-25=144=12^{2}
$$

So

$$
\mathcal{D C}=12
$$

Thus length of $\mathcal{D C}$ is 12 cm

Hence perimeter of the rectangle $\mathcal{A B C D}$

$$
=2(12+5) \mathrm{CM}=34 \mathrm{CM}
$$

O

 encralion
III sfort answer Question

1. A door-frame of dimension $3 \mathrm{~m} x 2 \mathrm{~m}$ is fixed on the wall of dimension $10 \mathrm{~m} x 10 \mathrm{~m}$. Find the total labour charges for painting the wall if the labour charges for painting $1 \mathrm{~m}^{2}$ of the wall is Rs.2.50

Painting of the wall fas to be done excluding the are a of the door.
Area of the door $=โ \chi 6=3 \times 2 \mathrm{~m}^{2}=6 \mathrm{~m}^{2}$

Area of wall including door $=$ side χ side $=10 \mathrm{~m} \times 10 \mathrm{~m}=100 \mathrm{~m}^{2}$
Area of wall excluding door $=(100-6) \mathrm{m}^{2}=94 \mathrm{~m}^{2}$

Total labour charges for painting the wall $=\mathcal{R s} .2 .50 \quad \chi 94=\mathcal{R s} .235$
2. The area of a rectangular sheet is 500 m . If the length of the sheet is 25 cm what is its width.? Also find the perimeter f the rectangular sheet.

Area of the rectangular sheet $=500 \mathrm{~cm} 2$

Length (l) $=25 \mathrm{~cm}$
Area of the rectangle $=\left\{\begin{array}{l}\chi \\ 6\end{array}\right.$ (where $6=$ width of the sheet)
Therefore, width $\sigma=\frac{\text { Area }}{l}=\frac{500}{25}=20 \mathrm{~cm}$.

Perimeter of sheet $=2 \chi(6)=2 \chi(25+20) m=90 \mathrm{~cm}$
3. Find the area of square park whose perimeter is 320 cm

Perimeter of square $=4 x$ side $=320$
$=$ side of square $=80 \mathrm{~m}$
\mathcal{N} ow $=$ are a of square $=$ side χ side
$=80 \times 80=6400 \mathrm{~m} 2$

Hence the area of square $=6400 \mathrm{~m} 2$
4. The perimeter of a rectangle is 30 cm , find its length. Also find the area of the rectangle.

Perimeter of rectangle $=2(\mathcal{C}+6$
$130=2(\{+30)$
$\frac{130}{2}=65=\ell+30$

```
\(\ell=65 \cdot 30=35 \mathrm{~cm}\)
\(\mathcal{N}\) ow area of the rectangle \(=\{x 6=35 \times 30=1050 \mathrm{~cm} 2\)
Hence the length of rectangle \(=35 \mathrm{~cm} 2\)
And the are a of rectangle \(=1050 \mathrm{~cm} 2\)
```

5. Find the height x 'if the area of the parallelogram is 24 cm 2 and the base is 4 cm in given

Fig. 11.5

Area of parallelogram =6x后

Therefore 24=4xx
$\frac{24}{4}=x$ or

$$
x=6 \mathrm{~cm}
$$

So the fieight of the parallelogram is 6 cm .
6. Find the area of each of the following parallelogram

Fig. 11.6
Fig. 11.7
a) Area of parallelogram base x height
$=5 x^{3}$
$=15 \mathrm{~cm} 2$
6) Area of parallelogram=5 x $4.8=24 \mathrm{~m}^{2}$
7. Find the are a of each of the following triangles
(a)

Fig. 11.8
(b)

a) Area of triangle $=\frac{1}{2}$ 夭 base \times height $=\frac{1}{2} \times 5 \times 3.2=8 \mathrm{~cm} 2$
6) Are a of triangle $=3 \times 2=6 \mathrm{~cm} 2$
8. $\mathcal{P Q} \mathcal{R S}$ is a parallogram (Figure) $Q \mathcal{M}$ is the height from Q to $S \mathcal{R}$ and $Q \mathcal{N}$ is the feigh t from Q to $P S$. If $\mathcal{S} \mathcal{R}=12$ cmand $Q m=7.6 \mathrm{~cm}$. Find
a) the area of the parallelogram $P Q R S$
b) $Q \mathcal{N}$ if $P S=8 \mathrm{~cm}$.
a) Area of parallelogram $\mathcal{P Q} \mathcal{R S}=\mathcal{S} \mathcal{R} X Q \mathcal{M}$
$=12 \times 7.6=91.2 \mathrm{~cm} 2$
6) $\mathcal{A g}$ ain are a parallelogram $\mathcal{P Q} \mathcal{R S}=\mathcal{P S} \times Q \mathcal{N}$
$91.2=8 \times Q \mathcal{N}$
$Q \mathcal{N}=\frac{91.2}{8}=11.4 \mathrm{~cm}$
9. $\triangle \mathcal{A B C}$ IS ISOSCELESS with $\mathcal{A B}=\mathcal{A C}=7.5 \mathrm{~cm}$ and $\mathcal{B C}=9 \mathrm{~m}(\mathcal{F i g} 11.11)$ The fieight $\mathcal{A D}$ from \mathcal{A} to $\mathcal{B C}$, is 6 cm . Find the area of $\triangle \mathcal{A B C}$. What will be the height from C to $\mathcal{A B}$ i.e. $\mathcal{C E}$?

Area of $\triangle \mathcal{A B C}=\frac{1}{2} \chi \mathcal{B a s e} \chi$ height

$$
\frac{1}{2} \times 9 \times 6=27 \mathrm{~cm} 2
$$

$\mathcal{A g a i n}$ are a of $\triangle \mathcal{A B C}=\frac{1}{2} \times \mathcal{A B} \times \mathcal{C E}$
$27=\frac{1}{2} \times 7.5 \times C E$
$C \mathcal{E}=\frac{27 \times 2}{7.5}=7.2 \mathrm{~cm}$

Fig. 11.11
10. The radius of a circular pipe is 10 cm . What length of a tape is required to wrap once around the pipe $(\boldsymbol{\pi}=\mathbf{3 . 1 4})$?

Radius of the pipe (r) $=10 \mathrm{~cm}$

Length of tape required is equal to the circumference of the pipe.
Circumference of the pipe $=2 \pi r$
$=2 \times 3.14 \times 10 \mathrm{~cm}=62.8 \mathrm{~cm}$

Therefore length of the tape needed to wrap once around the pipe is 62.8 cm .
11. A gardener wants to fence a circular garden of diameter 21 m . Find the length of the rope he needs to purchase, if he makes 2 rounds of fence. Also find the cost of the rope, if it costs $\mathcal{R s} .4$ per meter. (Take $\boldsymbol{\pi}=\frac{\mathbf{2 2}}{\mathbf{7}}$). $\mathbf{2 \pi r}$

Diameter of circular garden $=21 \mathrm{~m}$
Therefore the radius $=\frac{21}{2} \mathrm{~m}$
The length of rope be needed = circumference of circle $=2 \pi r$
$2 \times \frac{22}{7} \times \frac{21}{2}=66 m$
$\because \mathcal{H e}$ makes 2 rounds of fence
\therefore The length of rope $=2 \chi 66=132 \mathrm{~m}$

Cost of rope $=132 \chi 4=$ Rs. 528 .
12. Find the perimeter of the adjoining figure which is a semicircle including its diameter. Diameter $=10 \mathrm{~cm}$, radius $=\frac{\mathbf{1 0}}{\mathbf{2}}=5 \mathrm{~cm}$

Circumference of semicircle πr

$$
=\frac{22}{7} \times 5=\frac{110}{7} \mathrm{~cm}
$$

\therefore The perimeter of adjoining figure $=$ Diameter + Circumference of semicircle $=10+\frac{110}{7}=\frac{180}{7} \mathrm{~cm}=25.7 \mathrm{~cm}$

I Long answer Question

1. A copper wire, when bent in the forms of a square encloses an area of 121cm2. If the same wire is bent in the form of a circle. Find the area enclosed by it

Sol. Area enclosed the copper wire

In square shape $=(\text { side })^{2}$

$$
(\text { side })^{2}=121 \mathrm{~cm}^{2}
$$

$$
\Rightarrow \quad \text { Side }=\sqrt{121}=11 \mathrm{~cm}
$$

Hence length of wire $=11$ x 4

$$
=44 \mathrm{~cm}
$$

\mathcal{N} ow this length $=$ circumference of the circle

$$
\begin{array}{rlrl}
\Rightarrow & 2 \pi r & =44 \\
\Rightarrow & 2 \times \frac{22}{7} \times r=44 \\
\Rightarrow & & r=\frac{44}{2 \times 22} \times 7
\end{array}
$$

Thus

$$
r=7 c m
$$

$\mathcal{H e n c e}$ area enclosed by the wire when it is bent in circular shape

$$
\begin{aligned}
& \quad=\pi r^{2} \\
& =\frac{22}{7} \times(7)^{2} \\
& =\frac{22}{7} \times 7 \times 7 \\
& =154 \mathrm{~m}^{2}
\end{aligned}
$$

2. The floor of a building is covered with 2760 tiles. Each of the tiles is in the shape of a parallelogram of altitude 3 cm and base 4.5 cm . Find the cost of polishing the tiles at the rate of Rs. 20 per m^{2}

Sol. Area of one tile [parallelogram shape]

$$
\begin{aligned}
& =\text { base } \times \text { feight } \\
& =3 \times 45 \\
& =13.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of such 2760 tiles $=2760 \times 13.5$

$$
\begin{aligned}
& =37,260 \mathrm{cm2} \\
& =3.726 \mathrm{~m} 2
\end{aligned}
$$

Cost of polishing=3.726×20

$$
=\mathcal{R s} .74 .52
$$

3. Find the heights of the wall whose length is 4 mand which can be covered by 2400 tiles of size 25 cm by 20 cm

$$
\begin{aligned}
& \text { Area of a tile }=25 \times 20 \mathrm{~cm}^{2}=500 \mathrm{~cm}^{2} \\
& \text { Area of } 2400 \text { tiles }=2400 \times 500 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1200000 \mathrm{~cm}^{2} \\
& =\frac{1200000}{10000} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\left[\because 10000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}\right]
$$

$$
=120 \mathrm{~m}^{2}
$$

Let the height of the wall be fietres then

$$
\text { Area of the wall }=4 \mathrm{~h} \mathrm{~m}^{2}
$$

Since 2400 tiles completely cover the wall

$$
\text { Area of the wall = Are a of } 2400 \text { tiles }
$$

$\Rightarrow 4 h=120$
$\Rightarrow \quad \frac{4 h}{4}=\frac{120}{4}$
$\Rightarrow \quad h=30$
[Dividing 6oth sides by 4]
Hence the height of the wall is 30 metre.

II Long Answer Question

1. In $\Delta \mathcal{P Q R} \mathcal{P R}=8 \mathrm{~cm}, Q \mathcal{R}=4 \mathrm{~cm}$ and $\mathcal{P L}=5 \mathrm{~cm}$ (Figure)
i. the area of the $\triangle \mathcal{P Q R}$
ii. $\quad Q \mathcal{M}$
$Q \mathcal{R}=$ base $=4 \mathrm{~cm}, \mathcal{P L}=$ height $=5 \mathrm{~cm}$
Are a o the triangle $\mathcal{P Q} \mathcal{R}=\frac{1}{2} 6 f$
$=\frac{1}{2} \times 4 c m \times 5=c m=10 \mathrm{~cm}^{2}$
ii) $P R=6$ ase $=8 c m \quad Q \mathcal{M}=$ height $=$?

Area of triangle $=\frac{1}{2} \times 6 \times$ i.e. $10=\frac{1}{2} \times 8 \times h$
$\mathcal{H}=\frac{10}{4}=\frac{5}{2}=2.5 \quad$ So, $Q \mathcal{M}=2.5 \mathrm{~cm}$
2. Find the perimeter of the given shape. In this shape we need to find circumference of semicircles on each side of the square. Do you need to find the perimeter of the square also? No, the outer Goundary, of this figure is made up semicircles Diameter of each semicircle is 14 cm .

We know that,
Circumference of semicircle $=\pi d$
Circumference of semicircle $=\frac{1}{2} \pi d$
$=\frac{1}{2} \times \frac{22}{7} \times 14 \mathrm{~cm}=22 \mathrm{~cm}$.
Circumferences of the semicircle is 22 cm .

Fig. 11.14

Therefore, perimeter of the given figure $=4 \chi 22 \mathrm{~cm}=88 \mathrm{~cm}$ $\mathcal{F r o m}$ a circular card sheet of radius 14 cm two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 m are removed. (as shown in the adjoining figure.) Find the area of the remaining sheet $\cdot\left(\mathcal{T} a k e=\pi=\frac{22}{\mathbf{7}}\right)$

Totalarea of circle $=\pi r^{2}$
$=\frac{22}{7} \times 14 \times 14=616 \mathrm{~cm}^{2}$
Area of 2 smallcircles $=2 x \pi r^{2}$
$=2 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10}=77 \mathrm{~cm} 2$ and

Fig. 11.15

Area of a rectangle $\lceil x 6=3$ x $1=3$ cm2
\mathcal{N} ow are a of the remaining sheet.
$=$ Total area of circle=area of smallcircle - area of arectangle
$=616-77-3=536 \mathrm{~cm} 2$.
4. A circular flower bed is surrounded by a path $4 m$ wide. The diameter of the flower bed is 66 m . What is the area of this path? $(\boldsymbol{\pi}=\mathbf{3} .14)$

Diameter of flower bed $=66 \mathrm{~m}$
Radius of flowerbed $=33 \mathrm{~m}$
Radius of flower bed + path $)=(3+4)=37 \mathrm{~m}$
\mathcal{N} ow area of the path Area of circle including flower bed and path-Area of circle including flower. bed.
$=\pi \times 372 \cdot \pi \times 3=\pi(372-332)$
$=\frac{22}{7} \times 4 \times 270=880 \mathrm{~cm} 2$
5. How many times a wheel of radius 28 mcm must rotate to go 352 m ?
(Take $\pi=\frac{22}{7}$)
Radius $=28 \mathrm{~cm}$
Distance $=352 \mathrm{~m}=35200 \mathrm{~cm}$
Circumferences of wheel $=2 \pi r$
$=2 \times \frac{22}{7} \times 28=176 \mathrm{~cm}$
$\mathcal{N u m b e r}$ of rotation $=\frac{\text { Total distance }}{\text { Distane covered in one rotation }}=\frac{35200}{176}=200$
Hence, the wheel will rotate 200 times
6. The minute fiand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour. (Take $\pi=3.14$)

Radius $=$ length of minute fand $=15 \mathrm{~cm}$
Distance travelled by minute fand in 1 hour.
$=$ circumstances of circle .
$=2 \pi r=2 \times 3.14 \times 15=94.2 \mathrm{~cm}$

7. A rectangular park is 45 m long and 30 m wide. A path 2.5 m wide is constructed outside the park. Find the area of the path.

Sol. Let $\mathfrak{A B C D}$ represent the rectangular park and the shaded region reprecent the path 2.5 m wide. To find the area of the path, we need to find / Area of rectangle $\mathcal{P Q} \mathcal{R S}$ - Are a of rectangle $\mathcal{A B C D}]$

We have

$$
\begin{aligned}
& \mathcal{P Q}=(45+2.5+2.5) M=50 M \\
& \mathcal{P S}=(30+2.5+2.5) M=35 M
\end{aligned}
$$

Area of the rectangle $\mathcal{A B C D}=\mathcal{L} X \mathcal{B}$

$$
=45 \times 30 m^{2}=1350 \mathrm{~m}^{2}
$$

Area of the rectangle $P Q \mathcal{R} S=\mathcal{L} X \mathcal{B}$

$$
=50 \times 30 \mathrm{~m}^{2}=1750 \mathrm{~m}^{2}
$$

Area of the path $=\mathcal{A r e a}$ of the rectangle $\mathcal{P Q} \mathcal{R S}=\mathcal{A r e}$ a of the rectangle $\mathcal{A B C D}$

$$
=(1750-1350) m^{2}=400 m^{2}
$$

8. A path 5 m wide runs along inside a square park of side 100 m . Find the area of the path. Also find the cost of cementing it at the rate of $\mathcal{R s} .250$ per $10 \mathbf{m}^{2}$

Sol. Let $\mathcal{A B C D}$ be the square park of side 100 m . The shaded region represents the path 5 m wide.
$P Q=100-(5+5)=90 m$
$\mathcal{A r e a}$ of square $\mathcal{A B C D}=(\text { side })^{2}$
$\begin{aligned} & =(100)^{2} m^{2}=10000 \mathrm{~m}^{2} \\ \text { Area of square } \mathcal{P Q} \mathcal{R S} & =(\text { side })^{2}\end{aligned}$

$$
=(90)^{2} m^{2}=8100 m^{2}
$$

Therefore, area of the path $=(10000-8100) \mathrm{m}^{2}=1900 \mathrm{~m}^{2}$
Cost of cementing $10 \mathrm{~m}^{2}=\mathcal{R s} .250$
Therefore, cost of cementing $1 m^{2}=$ Rs. $\frac{250}{10}$
So, cost of cementing $1900 m^{2}=R s . \frac{250}{10} \chi 1900=$ Rs. 47500
9. A verandah of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find;
i) the area of the veranda
ii) The cost of cementing the floor of the veranda at the rate of Rs. 200 per m2.

Length of the rectangle $P Q \mathcal{R S}$
$=5.5+2.25+2.25=10 \mathcal{M}$

Breadth of rectangle $\mathcal{P Q} \mathcal{R S}$
$=4+2.25+2.25=8.5$

Fig. 11.18
i) Area of veranda
=Area of $\mathcal{P Q R S}$ - Area of \qquad $\mathfrak{A B C D}=(10 \times 8.5)-(4 \times 5.5)$
$=85-22=63 \mathrm{~m} 2$
ii) Cost of commencing of floor $=63 \times 200=\mathcal{R s} \cdot 12,600$

Hence the area of verand $a=63 \mathrm{~m} 2$
and cost of cementing at the rate $\mathcal{R s} .200 / \mathrm{mL}=\mathcal{R s} .12,600$.
10. Find the area of the quadrilateral $\mathcal{A B C D}$. Here $\mathcal{A C}=22 \mathrm{~cm}, \mathcal{B M}=3 \mathrm{~cm}, \mathcal{D N}=3 \mathrm{~cm}$ and $\mathcal{B} \mathcal{M} \perp \mathcal{A C}, \quad \mathcal{D} \mathcal{N} \perp \mathcal{A C}$.

Area of quadrilateral
$=\mathcal{A r e}$ a of $\triangle \mathcal{A B C}+\mathcal{A r e}$ a of $\triangle \mathcal{A C D}$
$=\frac{1}{2} \times \mathcal{A C} \times \mathcal{B M}+\frac{1}{2} \mathcal{A C} \times \mathcal{D N}$
$=\frac{1}{2} \times 22 \times 3+\frac{1}{2} 22 \times 3$
$=33+33=66 \mathrm{CM}^{2}$

