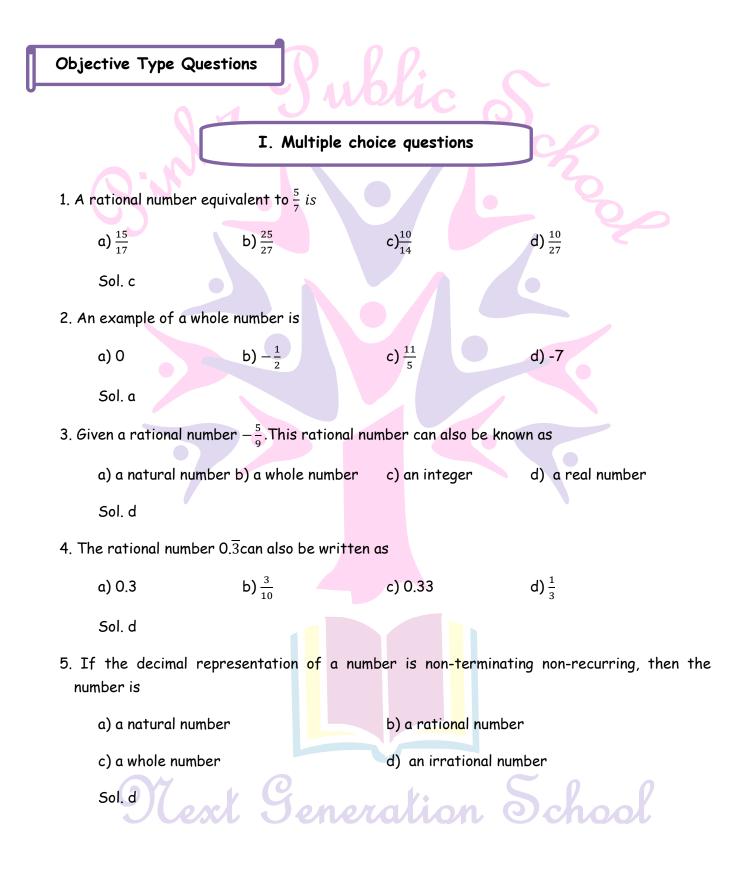


Grade IX

Lesson :1 NUMBER SYSTEM



- 6. A rational number between $\frac{1}{7}$ and $\frac{2}{7}$ is
- c)⁵/₁₄ a) $\frac{1}{14}$ b) $\frac{2}{21}$ d) $\frac{5}{21}$ **Sol**: $\frac{1}{7} = \frac{1}{7} \times \frac{3}{3} = \frac{3}{21}$; $\frac{2}{7} = \frac{2}{7} \times \frac{3}{3} = \frac{6}{21}$ \Rightarrow A rational number between $\frac{1}{7}$ and $\frac{2}{7}$ is $\frac{5}{21}$ ∴ Correct answer is (d). 7. The number 1.101001000100001 is a) a natural number b) a whole number c) a rational number d) an irrational number Sol. d 8. Irrational number between 1.011243....and 1.012243....is a) 1.011143.... b) 1.012343.... c) 1.01152243.... d) 1.013243 Sol. c 9. Every point on a number line a) can be associated with a rational number b) can be associated with an irrational number c) can be associated with a natural number d) can be associated with a real number. Sol. d 10. In meteorological department, te<mark>mp</mark>erature is measure<mark>s</mark> as a a) natural number b) whole number c) rational number d) irrational number Sol. c 11. The number of irrational numbers between 15 and 18 is infinite. b) false a) True Sol. a

12. Write a rational number between rational numbers $\frac{1}{9}$ and $\frac{2}{9}$

Sol. A rational number between $\frac{1}{9}$ and $\frac{2}{9}$ is $=\frac{\frac{1}{9}+\frac{2}{9}}{2}=\frac{3}{9x^2}=\frac{1}{6}$

- 13. Write a rational number not lying between $-\frac{1}{5}$ and $-\frac{2}{5}$
 - Sol. $-\frac{3}{5}$
- 14. Write $\frac{327}{500}$ in decimal form.
 - **Sol.** $\frac{327}{500} = 0.654$
- 15. Write a rational number which does not lie between the rational numbers $-\frac{2}{3}$ and $-\frac{1}{5}$
 - Sol. $\frac{3}{10}$
- 16. Write two irrational numbers

Sol. $\sqrt{7}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{14}$. etc

(any two)

(d) None of these

(d) None of these

Created by Pinkz

II. Multiple choice questions

(b) 5 $(\sqrt{3} + \sqrt{2})$ (c) $2\sqrt{3} + 3\sqrt{2}$

- 1. The product of any two irrational number is
 - (a) always an irrational number (b) always a rational number
 - (c) always an integer (d) sometimes rational, sometimes irrational
 - Sol. d
- 2. On adding $2\sqrt{3} + 3\sqrt{2}$, we get

3. On Dividing $6\sqrt{27}$ by $2\sqrt{3}$, we get

9

$$Sol: \frac{6\sqrt{27}}{2\sqrt{3}} = \frac{3 \times 3\sqrt{3}}{\sqrt{3}} =$$

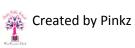
Sol. c

(a) a rational number (b) an irrational number (d) a natural number (c) an integer Sol. b 5. $(-3 + 2\sqrt{3} - \sqrt{3})$ is (a) an irrational number (b) a positive rational number (c) a negative rational number (d) no integer Sol. a 6. $(\sqrt{12} + \sqrt{10} - \sqrt{2})$ is (b) equal to zero (a) a positive rational number (c) an irrational number (d) a negative integer Sol. c 7. $2\sqrt{3} + \sqrt{3}$, is equal to (a) $2\sqrt{6}$ (b) 6 (c) 3 √3 (d) $4\sqrt{6}$ Sol. c 8. On simplifying $(\sqrt{5} + \sqrt{7})^2$, we get, (a) (b) $\sqrt{35}$ (c) $\sqrt{5} + \sqrt{7}$ (d) $12 + 2\sqrt{35}$ 12 Sol: $(\sqrt{5} + \sqrt{7})^2 = (\sqrt{5})^2 + (\sqrt{7})^2 + 2\sqrt{5} \sqrt{7}$ $= 5 + 7 + 2\sqrt{35} = 12 + 2\sqrt{35}$ Sol. d 9. For rationalizing the denominator of the expression $\frac{1}{\sqrt{12}}$, we multiply and divide by **(a)** √6 (c) √2 (d) $\sqrt{3}$ (b) 12 Sol. d 10. To rationalize the denominator of the expression $\frac{1}{\sqrt{7}-\sqrt{6}}$, we multiply and divide by (a) $\sqrt{7} + \sqrt{6}$ (c) $\sqrt{7} \cdot \sqrt{6}$ (b) √6 (d) √7

Sol. a

11. $\sqrt{10} \times \sqrt{15}$ is equal to

(a)
$$6\sqrt{5}$$
 (b) $5\sqrt{6}$ (c) $\sqrt{25}$ (d) $10\sqrt{5}$
Sol : $\sqrt{10} \times \sqrt{15} = \sqrt{2} \times \sqrt{5} \times \sqrt{3} \times \sqrt{5} = 5\sqrt{6}$
Sol b
12. $-\frac{\sqrt{28}}{\sqrt{343}}$ is
(a) a natural number (b) a fraction
(c) an irrational number (d) a rational number
Sol : $\frac{-\sqrt{28}}{\sqrt{343}} = \frac{-2\sqrt{7}}{7\sqrt{7}} = -\frac{2}{7}$
Which is of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
So, $\frac{-\sqrt{28}}{\sqrt{343}}$ is a rational number.
Sol.d
13. After rationalizing the denominator of $\frac{5}{3\sqrt{2}-2\sqrt{3}}$, we get denominator as 7.
a. True b. False
Sol. b
14. Addition of expression $5\sqrt{3} - 2\sqrt{7}$ and $2\sqrt{3} + \sqrt{5}is$
 $a.5\sqrt{3} - 2\sqrt{7} + 2\sqrt{3} - \sqrt{5}$ $b.10\sqrt{6} - 2\sqrt{7} + \sqrt{5}$
 $c.7\sqrt{3} - 2\sqrt{7} + \sqrt{5}$ is equal to
(a) $\sqrt{2}$ (b) 2 (c) 4 (d) 8
Sol : $\frac{\sqrt{52} + \sqrt{48}}{\sqrt{6} + \sqrt{12}} = \frac{4\sqrt{7} + 4\sqrt{3}}{2\sqrt{2} + 2\sqrt{3}} = \frac{4(\sqrt{2} + \sqrt{3})}{2(\sqrt{2} + \sqrt{3})} = \frac{4}{2} = 2$
Sol. b



16. Simplify $\sqrt{72}$ + $\sqrt{800}$ - $\sqrt{18}$

Sol:
$$\sqrt{72} + \sqrt{800} - \sqrt{18}$$

= $\sqrt{6 \times 6 \times 2} + \sqrt{2 \times 2 \times 2 \times 10 \times 10} - \sqrt{3 \times 3 \times 2}$
= $6\sqrt{2} + 20\sqrt{2} - 3\sqrt{2} = (6 + 20 - 3)\sqrt{2} = 23\sqrt{2}$

17. State with reasons whether $\sqrt{20} \times \sqrt{45}$ is a surd or not?

Sol: We have
$$\sqrt{20} \times \sqrt{45} = \sqrt{20} \times 45 = \sqrt{900}$$

= $\sqrt{30 \times 30} = 30$

Which is a rational number and therefore $\sqrt{20} \times \sqrt{45}$ is not a surd.

18. Simplify $(\sqrt{13} + \sqrt{5})(\sqrt{13} - \sqrt{5})$

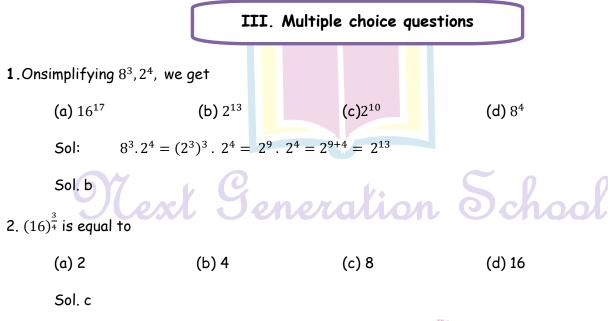
Sol:
$$(\sqrt{13} + \sqrt{5})(\sqrt{13} - \sqrt{5}) = (\sqrt{13})^2 - (\sqrt{5})^2$$

[: $(a+b)(a-b) = a^2 - b^2$]
= 13 - 5 = 8

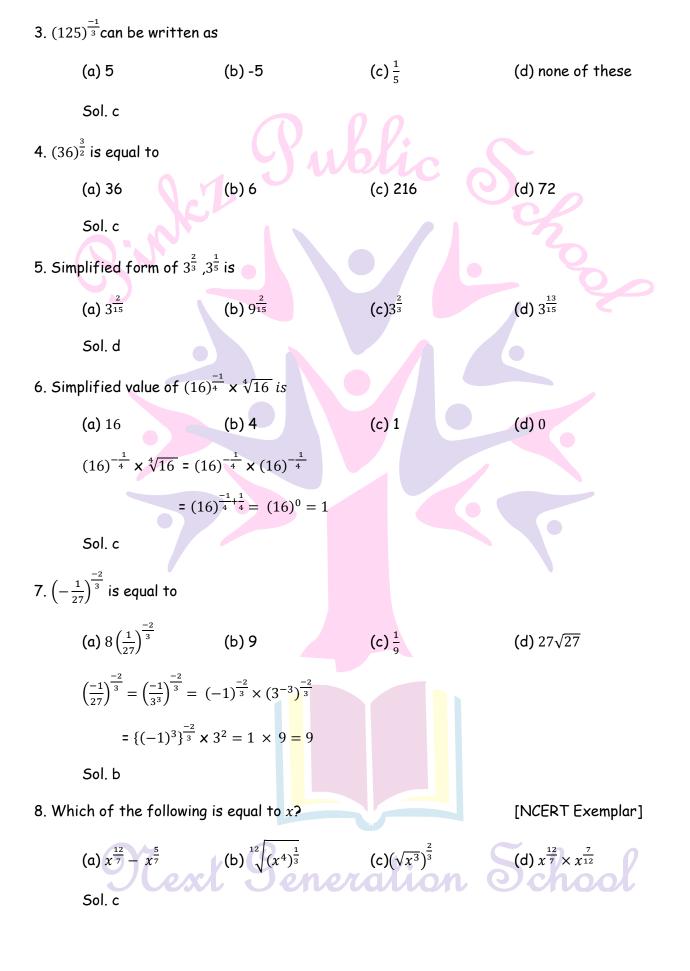
19. Simplify $\sqrt{125}$ X $\sqrt{5}$

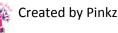
Sol:
$$\sqrt{125} \times \sqrt{5} = (5^3)^{\frac{1}{2}} \times (5)^{\frac{1}{2}} = (5)^{\frac{3}{2}} \times (5)^{\frac{1}{2}}$$

= $(5)^{\frac{3}{2} + \frac{1}{2}}$ [$a^m a^n = a^{m+n}$]
= $5^{\frac{4}{2}} = 5^2 = 25$



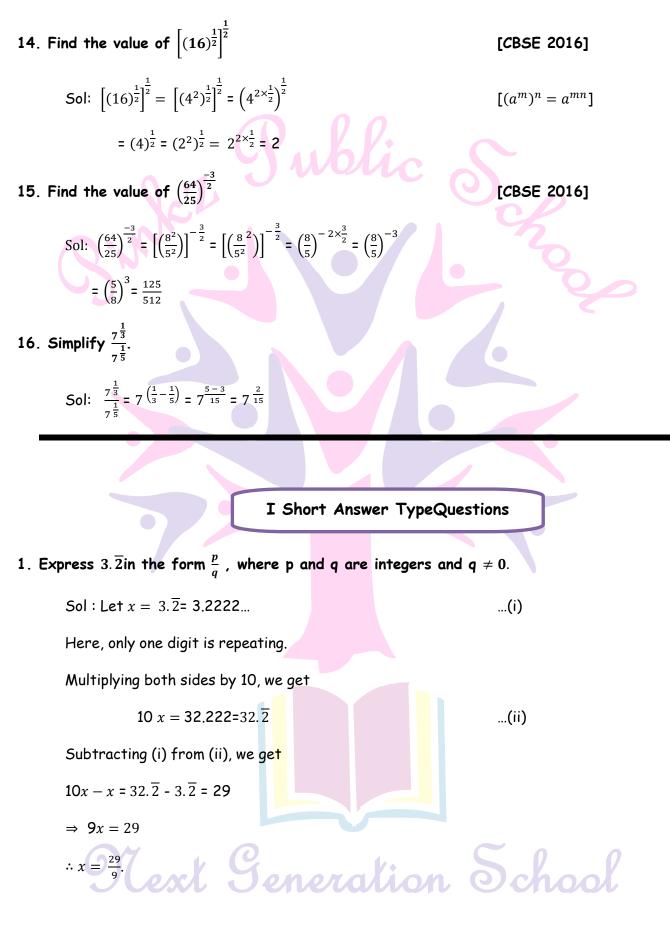
Created by Pinkz

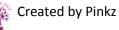




9. Find the value of $\frac{2^0+7}{5^0}$	0	[CBSE 2011]		
Sol: We know that $a^0 = 1$				
$\therefore \qquad \frac{2^0 + 7^0}{5^0} = \frac{1+1}{1} = \frac{2}{1} = 2$				
10. Find the value of $\sqrt{(}$		[CBSE 2011]		
Sol: $\sqrt{(3^{-2})} = (3^{-2})^{-2}$	$(2)^{\frac{1}{2}}$			
$= 3^{-2x\frac{1}{2}}$ $= 3^{-1}$		$[(a^m)^n = a^{mn}]$		
$=\frac{1}{3}$		$\left[a^{-m} = \frac{1}{a^m}\right]$		
11. Which is the greate	st among $\sqrt{2}$, $\sqrt[3]{4}$ and $\sqrt[4]{3}$?	[CBSE 2015]		
Sol: The order of the given surds are, 2,3 and 4 respectively.				
∴ L.C.M. of 2,3 and 4 = 12				
Now,	$\sqrt{2} = \sqrt[12]{2^6} = \sqrt[12]{64}$			
	$\sqrt[3]{4} = \sqrt[12]{4^4} = \sqrt[12]{256}$			
	$\sqrt[4]{3} = \sqrt[12]{3^3} = \sqrt[12]{27}$			
Clearly,	256 > 64 > 27			
\Rightarrow	$\sqrt[12]{256} > \sqrt[12]{64} > \sqrt[12]{27}$			
\Rightarrow	$\sqrt[3]{4} > \sqrt{2} > \sqrt[4]{3}$			
12. Find the value of 81 ^{0.16} x 81 ^{0.09} [CBSE 2015]				
Sol: $81^{0.16} \times 81^{0.0}$	⁹ = 81 ^{0.16} + 0 <mark>.0</mark> 9	$[a^m.a^n = a^{m+n}]$		
= (81)	$)^{0.25} = (81)^{\frac{25}{100}} = (3^4)^{\frac{1}{4}}$			
	$= 3^{4 \times \frac{1}{4}} = 3$			
13. Find the value of $x^{a-b} \times x^{b-c} \times x^{c-a}$ [CBSE 2016]				
Sol: $x^{a-b} \times x^{b-c} \times x^{b-c}$	$[a^m \cdot a^n \cdot a^p = a^{m+n+p}]$			
	$= x^0 = 1$	$[a^0 = 1]$		

Created by Pinkz





...(i)

..(ii)

2. Express 18.48 in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$

Sol : Let x= 18.48 = 18.484848...

Hero, two digits are repeating.

Multiplying both sides by 100, we get

 $100 x = 1848.4848... = 1848.\overline{48}$

Subtracting (i) from (ii), we get

 $100 x - x = 1848. \overline{48} - 18. \overline{48}$

Or 99 x= 1830

Or $x = \frac{1830}{99} = \frac{610}{33}$

3. Express $\frac{4}{7}$ in decimal form and state the kind of decimal expansion.

Sol : $\frac{4}{7}$ = 0.571428571428....= $\overline{0.571428}$

Therefore, the decimal expansion of the given rational number is non-terminating recurring (repeating).

4. Find the rational number of the form $\frac{p}{q}$ corresponding to the decimal representation 0.222, where p and q are integers and $q \neq 0$.

Sol : Let $x = 0.222 \dots = 0.\overline{2}$

Here, only one digit is repeating.

Multiplying both sides by 10, we get

9x = 2

 $x = \frac{2}{2}$

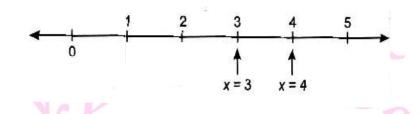
 $10x = 2.2222 \dots = 2.\overline{2} = 2 + 0.\overline{2} = 2 + x$

- \Rightarrow 10x x = 2
- \Rightarrow

Next Generation School

5. Represent the real numbers given by 2 < x < 5 on the number line.

Sol: 3 and 4 are the real numbers which lie between 2 and 5. Hence,



6. Represent $\sqrt{2}$ on the real number line

Sol : Using Pythagoras theorem,

$$\sqrt{2} = \sqrt{1^2 + 1^2}$$

$$\implies \qquad OB = \sqrt{OA^2 + AB^2} = \sqrt{2}$$

Hence, take OA = 1 unit on the number line and AB = 1 unit, which is perpendicular to OA. With O as centre and OB as radius, we draw an arc to intersect the number line at P. Then P corresponds to $\sqrt{2}$ on the number lines as shown in figure.

Clearly, OP = OB =
$$\sqrt{2}$$

C B
 $\sqrt{2}$
 $\sqrt{2}$

7. Find an irrational number between $\frac{1}{7}$ and $\frac{2}{7}$. Given that $\frac{1}{7} = 0.$ $\overline{142857}$

Sol: Given
$$\frac{1}{7} = 0.\overline{142857}$$

$$\therefore \qquad \frac{2}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

One of the non-terminating non-recurring number

between $\frac{1}{7}$ and $\frac{2}{7}$ is 0.15015001500015000015.....

Next Generation School

II Short Answer Type Questions

- 8. Examine whether $\sqrt{2}$ is rational or irrational number
 - Sol : Let us find the square root of 2 by division method.

We get $\sqrt{2} = 1.41421356$

N	1.41421356
1	$2.\overline{00}\ \overline{00}\ \overline{00}\ \overline{00}\ \overline{00}\ \overline{00}\ \overline{00}$
	1
24	100
	96
281	400
	281
2824	11900
	11296
28282	60400
	56564
282841	383600
	282841
2828423	10075900
	8485269
28284265	159063100
	141421325
282842706	1764177500
	1697056236
	67121264
-	

Thus the process will neither terminate nor a block of digits will repeat in the process. Hence, $\sqrt{2}$ has a non – terminating decimal expansion

 $\therefore \sqrt{2}$ is an irrational number

Next Generation School

9. Represent $\sqrt{17}$ on number line

Sol: 17 can be written as

 $17 = 16 + 1 = 4^2 + 1^2$

$$\therefore \quad \sqrt{17} = \sqrt{4^2 + 1^2} \implies OB = \sqrt{OA^2 + AB^2}$$

 \therefore On the number line, we mark

OA = 4 units

AB = 1 unit and $AB \perp OA$ at A.

Using a compass with centre O and radius OB, draw an are intersecting the number line at the point P. Then point P corresponds to $\sqrt{17}$ on the number line as shown in figure.

10. Express 1.4191919.... in the form $\frac{p}{a}$, where p and q are integers and $q \neq 0$.

Sol : Let $x = 1.4191919 \dots = 1.4\overline{19}$

Multiplying both sides by 10.we get

$$10x = 14.\overline{19}$$

Here, two digits are repeated continuously, therefore, again multiplying both side by 100, we get

$$1000x = 1419.\overline{19} = 1405 + 14.\overline{19}$$

$$= 1405 + 10 x$$

$$\Rightarrow \quad 1000x - 10x = 1405 \Rightarrow 990x = 1405$$

$$\Rightarrow \quad x = \frac{1405}{900} = \frac{281}{198}$$

$$Other Generation School$$

11. In the following equations, examine whether x, y and z represents rational or irrational number.

(i)
$$x^3 = 27$$
 (ii) $y^2 = 7$ (iii) $z^2 = 0.16$
Sol: (i) $x^3 = 27$
 $\Rightarrow \quad x = \sqrt[3]{27} = \sqrt[3]{3 \times 3 \times 3} = 3 = \frac{3}{1}$
So, it is a rational number.
(ii) $y^2 = 7$
 $\Rightarrow \quad y = \sqrt{7} \neq \frac{p}{q}$

So, it is an irrational number.

(iii)
$$z^2 = 0.16 = \frac{16}{100}$$

 $\therefore \qquad z = \sqrt{\frac{16}{100}} = \sqrt{\frac{4 \times 4}{10 \times 10}}$
 $= \frac{4}{10} = \frac{2}{5} = \frac{p}{q}$

Hence, it is a rational number,

- 12.State whether the following statements are true or false, Give reasons for your answers.
 - (i) Every whole number is a natural number.
 - (ii) Every integer is a rational number.
 - (iii) Every rational number is an integer.
 - Sol : (i) False, because whole numbers contains 0 but natural numbers does not, i.e. 0 is not a natural number.
 - (ii)True, because every integer can be expressed in the form $\frac{p}{q}$, q = 1
 - (iii) False, because $\frac{2}{5}$ is not an integer.

III. Short answer Type questions

1. Find the value of $\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$, if $\sqrt{3} = 1.73$

Sol : Consider $\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$, on rationalising the denominator by multiplying and dividing it by $\sqrt{2+\sqrt{3}}$ we get

$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} = \sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} x \sqrt{\frac{2+\sqrt{3}}{2+\sqrt{3}}}$$
$$= \sqrt{\frac{(2+\sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}}$$
$$= \frac{2+\sqrt{3}}{1} = 2 + \sqrt{3} = 2 + 1.73 = 2$$

- 2. Simplify $\frac{6-4\sqrt{3}}{6+4\sqrt{3}}$ by rationalising the denominator
 - Sol: Here the denominator is $6 + 4\sqrt{3}$

Multiplying the numerator and denominator by its conjugate $(6-4\sqrt{3})$ we get

3.73

$$\frac{6-4\sqrt{3}}{6+4\sqrt{3}} = \left(\frac{6-4\sqrt{3}}{6+4\sqrt{3}}\right) \times \left(\frac{6-4\sqrt{3}}{6-4\sqrt{3}}\right) = \frac{(6-4\sqrt{3})^2}{(6)^2 - (4\sqrt{3})^2}$$
$$= \frac{36-48\sqrt{3}+48}{36-48} \qquad [(a-b)^2 = a^2 - 2ab + b^2]$$
$$= \frac{36-48\sqrt{3}}{-12} = \frac{12(7-4\sqrt{3})}{-12} = 4\sqrt{3}-7$$

3. If $x = 3 + 2\sqrt{2}$, then find whether $x + \frac{1}{x}$ is rational or irrational

Sol: Given
$$x = 3 + 2\sqrt{2}$$

$$\therefore \frac{1}{x} = \frac{1}{3+2\sqrt{2}} = \frac{1}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}}$$

$$= \frac{3-2\sqrt{2}}{(3)^2 - (2\sqrt{2})^2} = \frac{3-2\sqrt{2}}{9-8} = 3 - 2\sqrt{2}$$

$$\therefore x + \frac{1}{x} = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$$
Which is a rational number.

Hence, $x + \frac{1}{x}$ for $x = 3 + 2\sqrt{2}$ is a rational number.

School

4. Simplify $\sqrt[4]{81} - 8(\sqrt[3]{216}) + 15(\sqrt[5]{32}) + \sqrt{225}$. Sol: Hence, $\sqrt[4]{81} = (81)^{\frac{1}{4}} = (3^4)^{\frac{1}{4}} = 3^{4 \times \frac{1}{4}} = 3$ $\sqrt[3]{216} = (216)^{\frac{1}{3}} = (6^3)^{\frac{1}{3}} = 6^{3 \times \frac{1}{3}} = 6$ $\sqrt[5]{32} = (32)^{\frac{1}{5}} = 2^{5 \times \frac{1}{5}} = 2$ $\sqrt{225} = (225)^{\frac{1}{2}} = (15^2)^{\frac{1}{2}} = 15^{2 \times \frac{1}{2}} = 15$ Hence, $\sqrt[4]{81} - 8(\sqrt[3]{216}) + 15(\sqrt[5]{32}) + \sqrt{225}$ $= 3 - 8 \times 6 + 15 \times 2 + 15$ = 3 - 48 + 30 + 15 = 48 - 48 = 05. Find the value of a and by if $\sqrt{3} + 1$ and the $\sqrt{2}$

5. Find the value of a and b, if $\frac{\sqrt{3}+1}{\sqrt{3}+1}$ = a + b $\sqrt{3}$

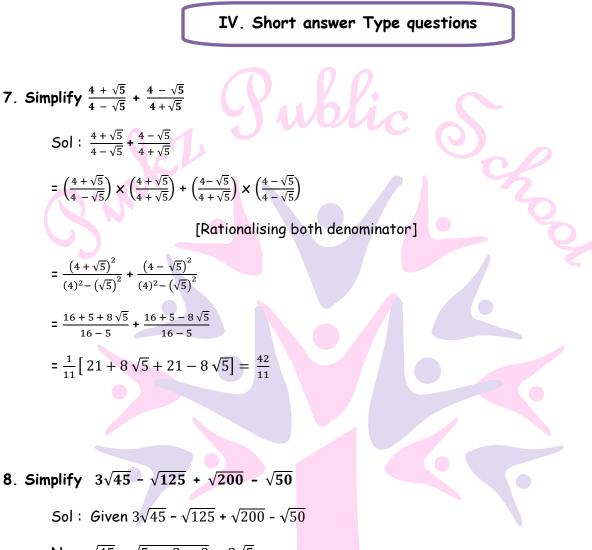
Sol : Here the denominator is $\sqrt{3}$ + 1

Multiplying the numerator and denominator by its conjugate $\sqrt{3} - 1$, we get

$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) \times \left(\frac{\sqrt{3}-1}{\sqrt{3}-1}\right)$$
$$= \frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}\right)^2 - 1^2} = \frac{3+1-2\sqrt{3}}{3-1}$$
$$= \frac{4-2\sqrt{3}}{2} = \frac{2(2-\sqrt{3})}{2} = 2 - \sqrt{3}$$
$$\therefore 2 - \sqrt{3} = a + b\sqrt{3}$$

Hence, on equating rational and irrational part both sides, we get a = 2, b = -1

6. If $\mathbf{a} = \sqrt{2} + 1$, find the value of $\left(a - \frac{1}{a}\right)^2$ Sol: Given $\mathbf{a} = \sqrt{2} + 1$ $\therefore \qquad \frac{1}{a} = \frac{1}{\sqrt{2} + 1}$ $\Rightarrow \qquad \frac{1}{a} = \left(\frac{1}{\sqrt{2} + 1}\right) \times \left(\frac{\sqrt{2} - 1}{\sqrt{2} - 1}\right)$ [Rationalising the denominator] $= \frac{\sqrt{2} - 1}{(\sqrt{2})^2 - 1} = \frac{\sqrt{2} - 1}{2 - 1} = \sqrt{2} - 1$ $\therefore \qquad a - \frac{1}{a} = (\sqrt{2} + 1) - (\sqrt{2} - 1)$ $= \sqrt{2} + 1 - \sqrt{2} + 1 = 2$ $\therefore \qquad \left(a - \frac{1}{a}\right)^2 = 2^2 = 4$



Simplify $3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$ Sol: Given $3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$ Now, $\sqrt{45} = \sqrt{5 \times 3 \times 3} = 3\sqrt{5}$ $\sqrt{125} = \sqrt{5 \times 5 \times 5} = 5\sqrt{5}$ $\sqrt{200} = \sqrt{2 \times 10 \times 10} = 10\sqrt{2}$ $\sqrt{50} = \sqrt{5 \times 5 \times 2} = 5\sqrt{2}$ $\therefore 3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$ $= 3 \times 3\sqrt{5} - 5\sqrt{5} + 10\sqrt{2} - 5\sqrt{2}$ $= 9\sqrt{5} - 5\sqrt{5} + 5\sqrt{2} = 4\sqrt{5} + 5\sqrt{2}$

9. If p = $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and q= $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then find p^2+q^2

Sol : Given p = $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

Multiplying and dividing R.H.S. by $\sqrt{3}$ - $\sqrt{2}$, we get

$$P = \left(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) \times \left(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)$$
$$= \frac{\left(\sqrt{3} - \sqrt{2}\right)^{2}}{\left(\sqrt{3}\right)^{2} - \left(\sqrt{2}\right)^{2}} = \frac{3 + 2 - 2\sqrt{6}}{3 - 2} = 5 - 2\sqrt{6}$$
And $q = \left(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) \times \left(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)$

[Rationalizing the denominator]

On solving, we get

$$r = 5 + 2\sqrt{6}$$

Now

$$pq = (5 - 2\sqrt{6})(5 + 2\sqrt{6})$$

$$= (5)^2 - (2\sqrt{6})^2 = 25 - 24 = 25$$

and $p + q = 5 - 2\sqrt{6} + 5 + 2\sqrt{6} = 10$

Now $(p+q)^2 = 10^2$

$$\Rightarrow \qquad p^2 + q^2 + 2pq = 100$$
$$\Rightarrow \qquad n^2 + q^2 + 2 \times 1 = 100$$

 $\Rightarrow \qquad p^2 + q^2 = 100 - 2 = 98$

10. If $x = 2 + \sqrt{3}$, Find the value of $x^3 + \frac{1}{x^3}$

Sol : Given
$$x = 2 + \sqrt{3}$$

$$\therefore \qquad \frac{1}{x} = \frac{1}{2+\sqrt{3}} = \left(\frac{1}{2+\sqrt{3}}\right) \times \left(\frac{2}{2}\right)$$

[Rationalizing the denominator]

 $\sqrt{3}$

$$\Rightarrow \frac{1}{x} = \frac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}$$

$$\therefore x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$$

$$\Rightarrow \qquad \left(x + \frac{1}{x}\right)^3 = 4^3$$

$$\Rightarrow \qquad x^3 + \frac{1}{x^3} + 3x\frac{1}{x}\left(x + \frac{1}{x}\right) = 64$$

$$\Rightarrow \qquad x^3 + \frac{1}{x^3} + 3 \times 4 = 64$$
$$\Rightarrow \qquad x^3 + \frac{1}{x^3} = 64 - 12 \implies x^3 + \frac{1}{x^3} + 52$$

11. If $\sqrt{5}$ = 2.236 and $\sqrt{6}$ = 2.449, find the value of $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ + $\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$ [CBSE 2016]

Sol : Let
$$x = \frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} = \left(\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}\right) \times \left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}\right)$$

[Rationalizing the denominator]

$$\Rightarrow x = \frac{(1+\sqrt{2})(\sqrt{5}-\sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2}$$
$$= \frac{\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}}{5-3}$$
$$= \frac{1}{2}(\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6})$$

Again let = $\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$

Similarly, on rationalizing the denominator and solving, we get,

$$y = \frac{1}{2} (\sqrt{5} + \sqrt{3} - \sqrt{10} - \sqrt{6})$$

$$\therefore \quad x + y$$

$$= \frac{1}{2} [\sqrt{5} - \sqrt{3} + \sqrt{10} - \sqrt{6} + \sqrt{5} + \sqrt{3} - \sqrt{10} - \sqrt{6}]$$

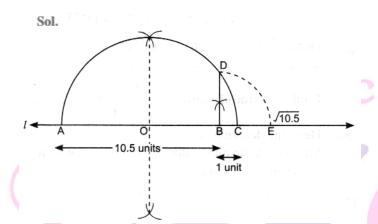
$$= \frac{1}{2} [2\sqrt{5} - 2\sqrt{6}] = \sqrt{5} - \sqrt{6}]$$

$$= 2,236 - 2,449 = -0.213$$

Next Generation School

12. Represent $\sqrt{10.5}$ on the number line.

[CBSE 2016]



Steps of Construction:

- (i) Draw a line AB such that AB=10.5 units on the number line.
- (ii) Extend the line / further from B up to C such that BC = 1 units
- (iii) Find the mid-point of AC and mark it as O.
- (iv) Draw a semicircle with centre O and radius OC.
- (v) Draw a line perpendicular to AC passing through point B and cut the semicircle at D
- (vi) Taking B as centre, draw an arc of radius BD which intersects the number line at E,
- (vii) Point E represents $\sqrt{10.5}$ on the number line.

 \therefore BD = BE = $\sqrt{10.5}$ units, with B as zero.

13. Simplify
$$3\sqrt{45} - \frac{5}{2}\sqrt{\frac{1}{3}} + 4\sqrt{3}$$

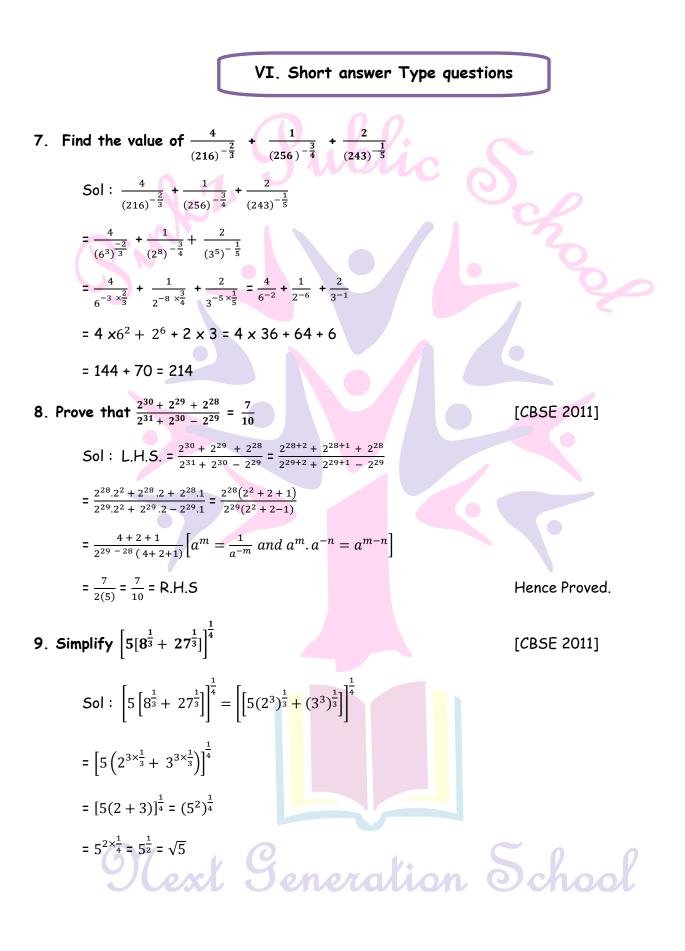
Sol: $3\sqrt{45} - \frac{5}{2}\sqrt{\frac{1}{3}} + 4\sqrt{3}$
 $= 3\sqrt{3 \times 3 \times 5} - \frac{5}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + 4\sqrt{3}$
 $= 9\sqrt{5} - \frac{5}{6}\sqrt{3} + 4\sqrt{3}$
 $= 9\sqrt{5} + (4 - \frac{5}{6})\sqrt{3} = 9\sqrt{5} + \frac{19}{6}\sqrt{3}$

V. Short answer Type questions
1. If
$$z = 0.064$$
, then find the value of $\binom{1}{2}^{\frac{1}{3}}$ [CBSE 2013]
Sol: Given $z = 0.064$
 $\therefore \frac{1}{2} = \frac{1}{0.064} = \binom{100}{64} = \binom{10}{3}^{\frac{3}{4}}$ $[(a^m)^n = a^{mn}]$
 $= \frac{10}{4} = \frac{5}{2} = 2.5$
2. Simplify $\left[\frac{18\frac{3}{4}}{9\frac{4}{3}}\right]$ [CBSE 2011]
Sol: $\frac{15\frac{1}{4}}{9\frac{4}{3}} = \frac{(5 \times 3)^{\frac{1}{4}}}{3^{\frac{3}{4}\frac{3}{4}}}$ $[a^m = a^{m-n}]$
 $= 5^{\frac{1}{4}} \times 3^{\frac{1}{4}\frac{3}{2}}$ $[a^m = \frac{1}{a^m}]$
3. Evaluate $\left(\frac{32}{243}\right)^{\frac{4}{3}} = \left[\binom{2}{3}^{5}\right]^{-\frac{5}{4}}$ $[a^m = a^{m-n}]$
 $= \binom{2}{3}^{-5\frac{5}{4}} = \left[\binom{2}{3}^{-5\frac{5}{4}}\right]$ $[a^m = a^{mn}]$
 $= \binom{2}{3}^{-5\frac{5}{4}} = \left[\binom{2}{3}^{-5\frac{5}{4}}\right]$ $[a^m = \frac{1}{a^m}]$
 $= \binom{2}{3}^{-5\frac{5}{4}} = \left[\binom{2}{3}^{-5\frac{5}{4}}\right]$ $[a^m = \frac{1}{a^m}]$
 $= \binom{2}{3}^{-5\frac{5}{4}} = \left[\binom{2}{3}^{-6\frac{5}{4}}\right]$ $[a^m = \frac{1}{a^m}]$
 $= \frac{1}{16}$ $[a^m = \frac{1}{a^m}]$

4. Simplify $\sqrt[4]{\sqrt[3]{x^2}}$ and express the result in the exponent form of x.[CBSE 2011]

Sol: Given
$$\sqrt[4]{\sqrt[3]{x^2}}$$

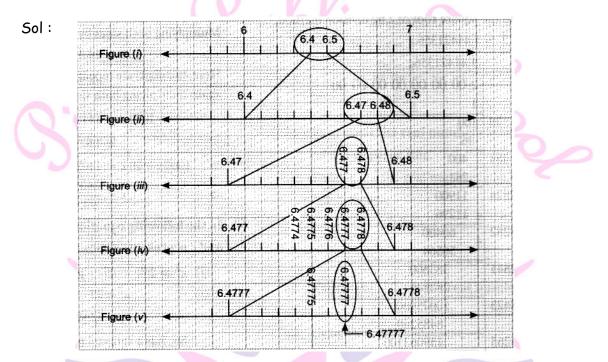
The given expression can be written as
 $\sqrt[4]{\sqrt[3]{x^2}} = [(x^2)^{\frac{1}{2}}]^{\frac{1}{4}} = (x^2 \times \frac{1}{3})^{\frac{1}{2}}$
 $= x^{2 \times \frac{1}{3} \times \frac{1}{4}} = x^{\frac{1}{6}}$
5. Find the value of $\frac{4}{(216)^{-\frac{3}{4}}} - \frac{1}{(256)^{-\frac{3}{4}}}$. [CBSE 2011]
Sol: Here, $(216)^{-\frac{3}{4}} = (6^3)^{-\frac{3}{2}} = 6^{-3} \times \frac{3}{4} = 6^{-2} = \frac{1}{6^2} = \frac{1}{36}$
And $\frac{1}{256^{-\frac{3}{4}}} = (256)^{\frac{3}{4}} = (4^3)^{\frac{3}{4}} = 4^{4 \times \frac{3}{4}} = 4^3 = 64$
 $: \frac{4}{(216)^{-\frac{3}{4}}} - \frac{1}{(256)^{-\frac{3}{4}}} = \frac{4}{4x} = 64$
 $= 4 \times 36 - 64 = 144 - 64$
 $= 80$
6. Simplify (i) $\left\{ \left[(625)^{-\frac{1}{2}} \right]^{-\frac{1}{4}} \right\}^2 = (625)^{(-\frac{1}{2}) \times (-\frac{1}{4}) \times 2}$
 $= (5^4)^{\frac{1}{4}} = 5^{4 \times \frac{1}{4}} = 5$
(ii) $64^{-\frac{1}{4}} \left[64^{\frac{1}{4}} - 64^{\frac{3}{4}} \right] = (4^3)^{\frac{1}{4}} \times \left[(4^3)^{\frac{1}{4}} - (4^3)^{\frac{3}{4}} \right]$
 $= 4^{-38^{\frac{1}{4}}} \times 4^{38^{\frac{1}{4}}} = 4^{3^{\frac{3}{4}}}$



10. Simplify $8^{\frac{2}{3}} - \sqrt{9} \times 10^{0} + \left(\frac{1}{144}\right)^{\frac{-1}{2}}$.	[CBSE 2011]
Sol: $8^{\frac{2}{3}} - \sqrt{9} \times 10^{0} + \left(\frac{1}{144}\right)^{\frac{1}{2}}$	
$= (2^3)^{\frac{2}{3}} - \sqrt{3^2} \times 1 + \left(\frac{1}{12^2}\right)^{-\frac{1}{2}}$	$[a^0 = 1]$
$= 2^{3 \times \frac{2}{3}} - (3^2)^{\frac{1}{2}} + \frac{1}{12^{-2 \times \frac{1}{2}}}$ $= 2^2 - 3 + \frac{1}{12^{-1}} = 4 - 3 + 12 = 16 - 3 = 13$	
11. Simplify $\sqrt[4]{81 x^8 y^4 z^{16}}$	[CBSE 2014&15]
Sol: $\sqrt[4]{81 x^8 y^4 z^{16}} = (81 x^8 y^4 z^{16})^{\frac{1}{4}}$	
$= (81)^{\frac{1}{4}} \times (x^8) \times (y^4)^{\frac{1}{4}} \times (z^{16})^{\frac{1}{4}}$ $= 3^{4 \times \frac{1}{4}} \times x^{8 \times \frac{1}{4}} \times y^{4 \times \frac{1}{4}} \times z^{16 \times \frac{1}{4}}$	$[(a^m)^n = a^{mn}]$
= $3 \times x^2 \times y \times z^4 = 3x^2 y z^4$	
12. Simplify $\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{\frac{1}{6}} \times 3^{-\frac{2}{3}}}$	[CBSE 2016]
Sol: $\frac{9^{\frac{1}{3}} X 27^{-\frac{1}{2}}}{3^{\frac{1}{6}} X 3^{-\frac{2}{3}}} = \frac{(3^2)^{\frac{1}{3}} X (3^2)^{-\frac{1}{2}}}{3^{\frac{1}{6} - \frac{2}{3}}}$	
$=\frac{3^{\frac{2}{3}} X 3^{-\frac{3}{2}}}{3^{-\frac{3}{6}}} = \frac{3^{\frac{2}{3}-\frac{3}{2}}}{3^{-\frac{1}{2}}} = \frac{3^{-\frac{5}{6}}}{3^{-\frac{1}{2}}}$	
$= 3^{-\frac{5}{6}} \cdot 3^{\frac{1}{2}} = 3^{\frac{1}{2} - \frac{5}{6}} = 3^{\frac{3-5}{6}} = 3^{-\frac{2}{6}} = 3^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{3}}$	
Next Generation	r School

I. Long answer choice questions

1. Visualise the representation of 6.47 on the number line up to 5 decimal places, that is up to 6.47777. Draw figure only.



- 2. Express $1.3\overline{2} + 0.\overline{35}$ as a fraction in simplest form.
 - Sol : Let $x = 1.3\overline{2}$ and $y = 0.\overline{35}$ (i) Consider $x = 1.3\overline{2} = 1.32222 \dots$ $\Rightarrow 10x = 13.222 \dots = 13.\overline{2} \dots ...(i)$ $\Rightarrow 100x = 132.\overline{2} \dots ...(ii)$ Subtracting (i) from (ii), we get $100x - 10x = 132.\overline{2} - 13.\overline{2}$ 90x = 119 $x = \frac{119}{90}$ (ii) Consider $y = 0.\overline{35} = 0.353535 \dots$ (iii) $\Rightarrow 100y = 35.3535 \dots 35.\overline{35} \dots$

Subtracting (iii) from (iv), we get

99
$$y = 35$$

 $y = \frac{35}{99}$

Therefore,

$$1.3\overline{2} + 0.\overline{35} = x + y = \frac{119}{90} + \frac{35}{99} = \frac{1309 + 350}{90 \times 11}$$

$$= \frac{1659}{90 \times 11} = \frac{553}{330}$$
II. Long answer choice questions
$$1. \text{ Evaluate } \frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}} \text{ when it is given that } \sqrt{5} = 2.2 \text{ and } \sqrt{10} = 3.2$$
[CBSE 2013]
Sol : Consider the denominator
$$\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}$$

$$= \sqrt{10} + \sqrt{5} \times 2 \times 2 + \sqrt{2} \times 2 \times 2 \times 5 - \sqrt{5} - \sqrt{4} \times 4 \times 5$$

$$= \sqrt{10} + 2\sqrt{5} - 5\sqrt{5} = 3\sqrt{10} - 3\sqrt{5}$$

$$= 3(\sqrt{10} - \sqrt{5})$$

$$\therefore \frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}$$

$$= \frac{15}{3(\sqrt{10} - \sqrt{5})} = \frac{5}{\sqrt{10} - \sqrt{5}}$$

Multiplying and dividing by the conjugate of $\sqrt{10} - \sqrt{5}$, *i.e.*, $\sqrt{10} + \sqrt{5}$, we get

$$\frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}$$

$$= \left(\frac{15}{\sqrt{10} - \sqrt{5}}\right) \times \left(\frac{\sqrt{10} + \sqrt{5}}{\sqrt{10} + \sqrt{5}}\right)$$

$$= \frac{5(\sqrt{10} + \sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2} \qquad [(a + b) (a - b) = a^2 - b^2]$$

$$= \frac{5(\sqrt{10} + \sqrt{5})}{10 - 5} = \sqrt{10} + \sqrt{5} = 3.2 + 2.2 = 5.4$$

2. If $a = \frac{\sqrt{10} + \sqrt{5}}{\sqrt{10} - \sqrt{5}}$ and $b = \frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} + \sqrt{5}}$, then show That $\sqrt{a} = \sqrt{b} - 2\sqrt{ab} = 0$. [CBSE 2014] Sol : $\sqrt{a} = \sqrt{\frac{\sqrt{10} + \sqrt{5}}{\sqrt{10} - \sqrt{5}}}$ $= \sqrt{\left(\frac{\sqrt{10} + \sqrt{5}}{\sqrt{10} - \sqrt{5}}\right)} \times \sqrt{\left(\frac{\sqrt{10} + \sqrt{5}}{\sqrt{10} + \sqrt{5}}\right)}$ [Rationalizing the denominator] $= \sqrt{\frac{(\sqrt{10} + \sqrt{5})^2}{(\sqrt{10})^2 - (\sqrt{5})^2}}$ $[::(a-b)(a+b) = a^2 - b^2]$ $=\frac{\sqrt{10}+\sqrt{5}}{\sqrt{10-5}}$ $\therefore \quad \sqrt{a} = \frac{\sqrt{10} + \sqrt{5}}{\sqrt{5}}$ $\sqrt{b} = \sqrt{\frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} + \sqrt{5}}}$ Similarly, After rationalizing the denominator, we get $\sqrt{b} = \frac{\sqrt{10} - \sqrt{5}}{\sqrt{5}}$ And $\sqrt{a, b} = \sqrt{a} \times \sqrt{b}$ $= \left(\frac{\sqrt{10} + \sqrt{5}}{\sqrt{5}}\right) \times \left(\frac{\sqrt{10} - \sqrt{5}}{\sqrt{5}}\right)$ $=\frac{(\sqrt{10})^2 - (\sqrt{5})^2}{(\sqrt{5})^2} = \frac{10 - 5}{5} = \frac{5}{5} = 1$ $\therefore \text{ L.H.S.} = \sqrt{a} - \sqrt{b} - 2\sqrt{ab}$ $=\left(\frac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}\right)\times\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{5}}\right)-2\times 1$ $=\frac{1}{\sqrt{5}}(\sqrt{10}+\sqrt{5}-\sqrt{10}+\sqrt{5})-2$ $=\frac{2\sqrt{5}}{\sqrt{5}}-2=2-2$ School lion = 0 = R.H.S. Hence proved.

3. If
$$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$$
 any $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $x^2 + y^2 + xy$

Sol: Consider
$$x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$

$$= \left(\frac{\sqrt{2}}{\sqrt{2} - 1}\right) x \left(\frac{\sqrt{2} + 1}{\sqrt{2} + 1}\right)$$
[Rationalising the denominator]

$$= \frac{\left(\sqrt{2} + 1\right)^{2}}{\left(\sqrt{2}\right)^{2} - 1^{2}} = \frac{2 + 1 + 2\sqrt{2}}{2 - 1}$$

$$= 3 + 2\sqrt{2}$$
Similarly, $y = 3 - 2\sqrt{2}$
Now $xy = (3 + 2\sqrt{2})(3 - 2\sqrt{2})$

$$= (3)^{2} - (2\sqrt{2})^{2} = 9 - 8 = 1$$
And $x + y = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6$
Squaring both sides, we get
 $(x + y)^{2} = 36 \Rightarrow x^{2} + y^{2} + 2xy = 36$
 $\Rightarrow x^{2} + y^{2} + 2 \times 1 = 36 \Rightarrow x^{2} + y^{2} = 34$
Hence, $x^{2} + y^{2} + xy = 34 + 1 = 35$
4. Simplify $\sqrt{\frac{\sqrt{20} + \sqrt{11}}{\sqrt{20} - \sqrt{11}}}$. [CBSE2014]

Rationalisingthe denominator, we get

Sol:
$$\sqrt{\frac{\sqrt{20} + \sqrt{11}}{\sqrt{20} - \sqrt{11}}} = \sqrt{\frac{\sqrt{20} + \sqrt{11}}{\sqrt{20} - \sqrt{11}}} \times \sqrt{\frac{\sqrt{20} + \sqrt{11}}{\sqrt{20} + \sqrt{11}}}$$

$$= \sqrt{\frac{(\sqrt{20} + \sqrt{11})^2}{(\sqrt{20})^2 - (\sqrt{11})^2}} = \frac{\sqrt{20} + \sqrt{11}}{\sqrt{20 - 11}} = \frac{\sqrt{20} + \sqrt{11}}{\sqrt{9}}$$

$$= \frac{1}{3}(\sqrt{20} + \sqrt{11})$$
School

5. If $x + \frac{1}{x} = \sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$ [CBSE 2016] Sol: Given $x + \frac{1}{x} = \sqrt{3}$ $\Rightarrow \qquad \left(x + \frac{1}{x}\right)^3 = (\sqrt{3})^3$ [Cubing both sides] $\Rightarrow x^3 + \frac{1}{x^3} + 3x \cdot \frac{1}{x} \left(x + \frac{1}{x}\right) = 3^{\frac{3}{2}}$ $\Rightarrow x^3 + \frac{1}{x^3} + 3\sqrt{3} = 3\sqrt{3^3}$ $= \sqrt{3 \times 3 \times 3}$ $\Rightarrow x^3 + \frac{1}{x^3} + 3\sqrt{3} = 3\sqrt{3}$ $\Rightarrow x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3}$ $\Rightarrow x^3 + \frac{1}{x^3} = 0$

6. If a = 7 - $4\sqrt{3}$, find the value of $\sqrt{a} + \frac{1}{\sqrt{a}}$. [CBSE 2011, 2014, 2016:HOTS]

Sol: Given $a = 7 - 4\sqrt{3}$,

$$\therefore \quad \frac{1}{\sqrt{a}} = \frac{1}{7 - 4\sqrt{3}}$$
$$= \left(\frac{1}{7 - 4\sqrt{3}}\right) \times \left(\frac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}}\right)$$

[Rationalising the denominator]

$$\Rightarrow \frac{1}{a} = \frac{7 + 4\sqrt{3}}{7^2 - (4\sqrt{3})^2}$$

[:: $(a - b)(a + b) = a^2 - b^2$]
= $\frac{7 + 4\sqrt{3}}{49 - 48} = 7 + 4\sqrt{3}$
 $\therefore a + \frac{1}{a} = 7 - 4\sqrt{3} + 7 + 4\sqrt{3} = 14$
Now $\left(\sqrt{a} + \frac{1}{\sqrt{a}}\right)^2 = a + \frac{1}{a} + 2 \cdot a \cdot \frac{1}{a}$
= $14 + 2 = 16$
 $\therefore \sqrt{a} + \frac{1}{\sqrt{a}} = \sqrt{16} = 4$

7. Prove that
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5.$$

Sol: $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5.$
 $= \left[\frac{1}{3-\sqrt{8}} \times \frac{3+\sqrt{8}}{3+\sqrt{8}}\right] - \left[\frac{1}{\sqrt{8}-\sqrt{7}} \times \frac{\sqrt{8}+\sqrt{7}}{\sqrt{8}+\sqrt{7}}\right] + \left[\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}\right] - \left[\frac{1}{\sqrt{6}-\sqrt{5}} \times \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\right] + \left[\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}\right]$
 $= \left[\frac{3+\sqrt{8}}{9-8}\right] - \left[\frac{\sqrt{8}+\sqrt{7}}{8-7}\right] + \left[\frac{\sqrt{7}+\sqrt{6}}{7-6}\right] - \left[\frac{\sqrt{6}+\sqrt{5}}{6-5}\right] + \left[\frac{\sqrt{5}+2}{5-4}\right]$
 $= 3+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+2=5$
8. Rationalise the denominator $\frac{4}{2+\sqrt{3}+\sqrt{7}}$ [CBSE 2011]

Sol:
$$\frac{4}{2+\sqrt{3}+\sqrt{7}} = \frac{4}{(2+\sqrt{3})+\sqrt{7}} \times \frac{(2+\sqrt{3})-\sqrt{7}}{(2+\sqrt{3})-\sqrt{7}} = \frac{4(2+\sqrt{3})-\sqrt{7}}{(2+\sqrt{3})^2-(\sqrt{7})^2}$$
 [Using (a + b) (a - b) = $a^2 - b^2$]
= $\frac{4(2+\sqrt{3}-\sqrt{7})}{4+3+4\sqrt{3}-7}$
= $\frac{4(2+\sqrt{3}-\sqrt{7})}{7+4\sqrt{3}-7} = \frac{4(2+\sqrt{3}-\sqrt{7})}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
= $\frac{\sqrt{3}(2+\sqrt{3}-\sqrt{7})}{3} = \frac{2\sqrt{3}+3-\sqrt{21}}{3} = \frac{1}{3}$ [3 + $2\sqrt{3} - \sqrt{21}$]

III. Long answer choice questions

1. If x is a positive real number and the exponents are rational numbers, then simplify.

$$\left(\frac{x^{b}}{x^{c}}\right)^{b+c-a} \times \left(\frac{x^{c}}{x^{a}}\right)^{c+a-b} \times \left(\frac{x^{a}}{x^{b}}\right)^{a+b-c}$$
[CBSE 2011&2016]
Sol: Given $\left(\frac{x^{b}}{x^{c}}\right)^{b+c-a} \times \left(\frac{x^{c}}{x^{a}}\right)^{c+a-b} \times \left(\frac{x^{a}}{x^{b}}\right)^{a+b-c}$

$$= \frac{(x^{b})^{(b+c-a)}}{(x^{b})^{a+b-c}} \times \frac{(x^{c})^{c+a-b}}{(x^{c})^{b+c-a}} \times \frac{(x^{a})^{a+b-c}}{(x^{a})^{c+a-b}}$$

$$= \frac{(x)^{b^{2}+bc-ab}}{(x^{a})^{a+b-c}} \times \frac{(x)^{c^{2}+ca-bc}}{(x^{b})^{c+c^{2}-ac}} \times \frac{(x)^{a^{2}+ab-ac}}{(x^{a})^{a+a-b}}$$

$$= \frac{(x)^{b^{2}+bc-ab}}{(x^{a})^{a+b^{2}-bc}} \times \frac{(x)^{c^{2}+ca-bc}}{(x^{b})^{c+c^{2}-ac}} \times \frac{(x)^{a^{2}+ab-ac}}{(x^{a})^{a+a-b}}$$

$$= \frac{(x)^{b^{2}+bc-ab}}{(x^{a})^{a+b^{2}-bc+bc+c^{2}-ac+ac+a^{2}-ab}} \qquad [\because x^{m} \times x^{n} \times x^{p} = x^{m+n+p}]$$

$$= \frac{(x)^{(a^{2}+b^{2}+c^{2})}}{(x^{a^{2}+b^{2}+c^{2})}} \qquad [x^{m}x^{m}-n]$$

$$= x^{0} = 1 \qquad [x^{0} = 1]$$

Created by Pinkz



31