Grade VII

Lesson:7 Congruence of Triangle

Objective Type Questions

I. Multiple choice questions

1. Name of the angle included between the sides $\mathcal{D E}$ and $\mathcal{E F}$ of $\triangle \mathcal{D E F}$:
a) $\angle \mathcal{D E F}$
6) $\mathfrak{E F D}$
C) $\mathcal{E D F}$
D) None of these
2. In $\mathcal{S A S}$ congruency:
a) Corresponding sides are equal
6) Corresponding angles are equal
c) \mathcal{T} wo corresponding sides and angle included are equal d) $\mathfrak{N o n e}$ of these
3. The symbol of correspondence is:
$a .=$ b) \leftrightarrow
c. \neq
d. \cong
4. If $\triangle \mathcal{A B C} \cong \mathcal{P Q R}$ then any $\angle \mathcal{B}$ correspond to:
a) $\angle P$
b) $\angle R$
c) $\angle Q$
d. None of these

$1 . a$	$2 . c$	3.6	$4 . c$

II. Multiple choice questions

1. Which one of the following is not a criterion for congruence of two triangles?
a) $\mathcal{A S A}$
b) $\mathcal{S S A}$
c) $\mathcal{S} \mathcal{A S}$
d) SSS

2 If $\triangle \mathcal{A B C} \Delta \mathcal{D B C}$ are on the same base $\mathcal{B C}, \mathcal{A B}=\mathcal{D C}$ and $\mathcal{A C}=\mathcal{D B}$, then which of the following gives a congruence relationsfip?
a) $\Delta \mathcal{A B C} \cong \Delta \mathcal{D B C}$
6) $\Delta \mathcal{A B C} \cong \Delta \subset \mathcal{B D}$
c) $\triangle \mathcal{A B C} \cong \triangle \mathcal{D C B}$

$$
\text { d) } \triangle \mathcal{A B C} \cong \triangle \mathcal{B C D}
$$

3. If for $\triangle \mathcal{A B C} \Delta \mathcal{D E F}$, the correspondence $\mathcal{C A B} \longleftrightarrow \mathcal{E D \mathcal { F }}$ gives a congruence, then which of the following is not true?
a) $\mathcal{A C}=\mathcal{D E}$
6) $\mathcal{A B}=\mathcal{E} \mathcal{F}$
c) $\angle \mathcal{A}=\angle \mathcal{D}$
d) $\angle C=\angle E$
4. By which of the following criterion two triangles cannot be proved congruent?
a) $\mathcal{A A A}$
b) $\mathcal{S S S}$
c) $\mathcal{S} \mathcal{A S}$
d) $\mathcal{A S} \mathcal{A}$
5. Two triangles are congruent, if two angles and the side included between them in one of the triangles are equal to the two angles and the side included between them of the other triangle. This is Known as the.
a) $R \mathcal{H S}$ congruence criterion
b) $\mathcal{A S} \mathcal{A}$ congruence criterion
c) $\mathcal{S A S}$ congruence criterion
d) $\mathcal{A A A}$ congruence criterion

1.6	$2 . c$	3.6	$4 . a$	5.6

III. Multiple choice questions

1. Number of elements of a triangle is.
a) 6
b) 5
c) 4
d) 3
2. Two figures are said to be congruent, if they have exactly the same
a) area
6) perimeter
c) shape and size
d) Cength and width
3. By which congruency criterion, the two triangles in the following figure are congruent?

a) $\mathfrak{R H S}$
b) $\mathcal{A S} \mathcal{A}$
c) SSS
d) $\mathcal{S A S}$
4. $\triangle \mathcal{P Q} \mathcal{R}$ is congruent to $\Delta \mathcal{S T U}$ (in figure), then what is the length of $\mathcal{T U}$?

a) 5 cm
c) 7 cm

正
b) 6 cm
d) Cannot be determined
5. If $\Delta \mathcal{A B C} \cong \Delta P Q \mathcal{R}$, then the value of $\angle \mathcal{A}$ will be.

a) 25°
b) 60°
c) 55°
d) 90°
6. Which of the following rule of congruency say that $\Delta \mathcal{A B C} \cong \triangle \mathcal{P Q} \mathcal{R}$ (in the above $Q .7$)
a) SSS
6) $\mathfrak{R H S}$
c) $\mathcal{A S} \mathcal{A}$
d) $\mathcal{S A S}$
7. $\mathcal{B y}$ applying $\mathcal{A S} \mathcal{A}$ congruence rule, it is to be established that $\triangle \mathcal{A B C} \cong \triangle Q \mathcal{R P}$ and it is given that $\mathcal{B C}=\mathcal{R} P$. What additional information is needed to establish the congruence?
a) $\mathcal{A B}=Q \mathcal{R}$ and $\angle C=\angle P$
b) $\angle \mathcal{B}=\angle \mathcal{R}$
$\angle A=\angle Q$
c) $\angle \mathcal{B}=\angle \mathcal{R}$
$\angle C=\angle P$
d) None of the above
8. Which congruence criterion do you use in the following $Z X=\mathcal{R} P, \mathcal{R Q}=Z \mathcal{Y}, \angle \mathcal{P R Q}=\angle X \mathcal{Y} Z . S$, $\triangle \mathcal{P Q} \mathcal{R} \cong \triangle X \mathcal{Y} Z$.
a) $\mathcal{A S} \mathcal{A}$ rule
6) SSS rule
c) $\mathcal{R H S}$ rule
d) $\mathcal{S A S}$ rule

$1 . a$	$2 . c$	3.6	$4 . c$	$5 . a$	6.6	7.6	8.6

1. If two line segments have the \qquad length, then they are congruent.

If two line segments have the equallength, then they are congruent, because for congruency of two figures, we always have equal/ same shape and size.
2. Two triangles are said to be congruent, if pairs of corresponding side and the corresponding \qquad are equal.

Two triangles are said to be congruent, if pairs of corresponding side and the corresponding angle are equal.
3. When the hypotenuse and one side of one right angled triangle are respectively equal to the hypotenuse and one side of the other right triangle, the triangles are congruent. This is called \qquad congruence of triangle.

When the hypotenuse and one side of one right angled triangle are respectively equal to the hypotenuse and one side of the other right triangle, the triangles are congruent. This is called RHS congruence of triangle.
4. Two angles are said to be congruent, if they have \qquad -

Two angles are said to be congruent, if they have equal measure.
\mathcal{B}

$\mathcal{B} \quad \mathcal{A}$

Here $\angle \mathcal{A B C}=\angle \mathcal{D E F}$; because their measures are same.
5. In $\triangle \mathcal{X N M} \mathcal{N}$ the included angle between $\mathcal{M N}$ and $\mathcal{N K}$ is \qquad .

In $\triangle \mathcal{X M N}$, the included angle between $\mathcal{M N}$ and $\mathcal{N K}$ is $\angle \mathcal{M N} \mathcal{N}$.
6. Two squares are congruent, if they have same \qquad .

Two squares are congruent, if they have same length.
7. In the given figures, $\Delta \mathcal{P Q} \mathbb{R} \cong \Delta$ \qquad

In the given figures, $\triangle \mathcal{P Q} \mathcal{R} \cong \triangle X Y Z$
8. In the given figure, $\Delta \mathcal{P Q} \mathcal{R} \cong \Delta$ \qquad _.

In the given figures, $\triangle \mathcal{P Q} \mathcal{R} \cong \Delta \mathcal{R S} P$
9. In the given figure, $\Delta \mathcal{A R O} \cong \Delta$ \qquad -

In the given figures, $\triangle \mathcal{A R O} \cong \triangle \mathcal{P Q} O$.
10. In the following figure, Δ \qquad $\cong \triangle \mathcal{B D C}$.

In the given figures,$\triangle \mathcal{C A B} \cong \Delta \mathcal{B D C}$.
I. True or False

1. If two triangles are equal in area, then they will be congruent.

False, for congruent of a triangle, the triangle should have equal length, shape and size.
2. If the hypotenuse of a right angled triangle is equal to the hypotenuse of another right angled triangle, then the triangles are congruent.

False, because for congruence of two right angled triangle, there is need hypotenuse and one side of a right angled triangle is equal to the hypotenuse and one side of another right angled triangle.
3. If three angles of a triangle are equal to the corresponding angles of another triangle, then the triangles are congruent.

False, for congruence of triangle, we can follow SSS, ASA, SAS and RHS congruence criterion.
4. If two legs of a right angled triangle, are equal to two legs of another right angled triangle, then the right angled triangles are congruent.

True, if two legs of a right angled triangle, are equal to two legs of another right triangle, then the right angled triangles are congruent. This is based on $\mathcal{R H S}$ congruence criterion.
5. If two sides and one included angle of a triangle are equal to the two sides and one included angle of another triangle, then the two triangles are congruent.

True, if two sides and one angle of a triangle are equal to the two sides and one angle of another triangle, then the two triangles are congruent. i.e. this congruence criterion is called $\mathcal{S A S}$ congruent criterion.
6. If two triangles are congruent, then the corresponding angles are equal.

True, if two triangles are congruent, then the corresponding angles are equal.
7. If two angles and a included side of a triangle are equal to two angles and a included side of another triangle, then the triangles are congruent.
\mathcal{T} rue, by $\mathcal{A S} \mathcal{A}$ congruence criterion.
8. If fypotenuse and an acute angle of one right angled triangle are equal to the fypotenuse and an acute angle of another right angled triangle, then the triangles are congruent.

True, if hypotenuse and an acute angle of one right angled triangle are equal to the hypotenuse and an acute angle of another right angled triangle. Then, the triangles are congruent and this congruency rule is called $\mathcal{R H S}$ congruence criterion.
9. $\mathcal{A} \mathcal{A S}$ congruence criterion is same as $\mathcal{A S} \mathcal{A}$ congruence criterion.

False, only four congruence criterion apply for congruency.
10. In the adjoining figure, if $\mathcal{A D} \perp \mathcal{B C}$ and $\mathcal{A D}$ is the bisector of $\angle \mathcal{B}$:

RHS congruence criterion.

I. Match the following

| Column I | Column II |
| :--- | :--- | :--- |
| a) Which rule will be applied, if two sides | |
| and one angle are equal | | i) ASA rule

2. On the basis of adjacent figures match $\operatorname{Column} \mathcal{A}$ to $\operatorname{Column~} \mathcal{B}$ (if $\triangle A B C \cong \triangle \mathcal{P Q}$).

Column A
(a) $A B$ equal to

Column B
(i) $P R$
(b) $A C$ equal to
(ii) $\angle Q$
(c) $\angle B$ equal to
(iii) $P Q$
(d) Congruence criterion will be

I. Very Short Answer Questions

1. Write the pair of angles which are equal if $\Delta \mathcal{A B C}=\triangle \mathcal{P Q} \mathcal{R}$.
$\angle \mathcal{A}=\angle \mathcal{P}$
$\angle \mathcal{B}=\angle Q$
$\angle C=\angle R$
2. Write pair of sides which are equal if $\triangle \mathcal{A B C} \cong \triangle X \mathcal{Z}$

$$
\mathcal{A B}=X \mathcal{Y}
$$

$\mathcal{B C}=Y Z$
$\mathcal{C A}=Z X$.
3. When can we say that two squares are congruent? When they have equal sides.
4. In the given figure which congruency criteria is used?

$\mathcal{S} \mathcal{A} S$

II Very Sfort Answer Questions

1. What is RHS congruency?

RHS means Right angle Hypotenuse side congruency
2. Is $\mathcal{A A S}$ congruence criterion same as $\mathcal{A S} \mathcal{A}$ criteria?
\mathcal{N} o, because in $\mathcal{A A S}$ criterion both angles are not lying over one side while in $\mathfrak{A S} \mathcal{A}$ both angles should lie over a line.
3. Which two circles are congruent?

Two circles are said to be congruent if the radio of both of circle are same.
4. If $\triangle \mathcal{A B C} \cong \triangle P Q R$ then what you can say about corresponding parts?
$\Delta \mathcal{A B C} \cong \Delta \mathcal{P Q} \mathcal{R}$ then corresponding parts should be equal fience
$\mathcal{A B}=\mathcal{P Q}, \mathcal{B C}=Q \mathcal{R}$ and $S C=P \mathcal{R}$ and
$\angle \mathcal{A}=\angle P, \angle B=\angle Q$ and $\angle C=\angle \mathcal{R}$
5. Which two things required to be congruent?

Two things required are same shape and same size.

1. In the given figure, two triangles $\triangle \mathcal{A B C}$ and $\triangle \mathcal{P Q} \mathcal{R}$ are given. Examine whether the triangles are congruent.

In the given triangles
$\triangle \mathcal{A B C}$ and $\triangle P Q \mathcal{R}$
$\mathcal{A B}=Q \mathcal{P}=3.5$
$\mathcal{A C}=Q \mathcal{R}=5.1$
$\mathcal{B C}=\mathcal{P R}=7.1$
So there exists S.S.S.congruency Hence $\triangle \mathcal{A B C}$ and $\triangle \mathcal{P Q} \mathcal{R}$
2. In the given figure $\mathcal{D A} \perp \mathcal{A B}, \mathcal{C B} \perp \mathcal{A B}$ and $\mathcal{A C}=\mathcal{B D}$ State the these pairs of equal to $\triangle \mathcal{A B C}$ and $\triangle \mathcal{B A D}$. $\mathcal{A C}=\mathcal{B D}$

Hypotenuse (given)

$\angle A=\angle \mathcal{B}=90$ (give n) $\mathcal{A B}=\mathcal{A B}[\mathcal{C O} \mathcal{M M O} \mathcal{N}(S I D E)$

1. In given figure $\triangle \mathcal{A B C}$ is an isosceles triangle with $\mathfrak{A B}=\mathcal{A C}$ Take a trace copy of $\triangle \mathcal{A B C}$ and also name it as $\Delta \mathcal{A C}$ a) State the three pairs of equal parts in $\triangle \mathcal{A B C}=\Delta$
6) In $\Delta \mathcal{A B C}=\Delta \mathcal{A C B}$? Why or Why not?
c) Is $\angle \mathcal{B}=\angle C$?

a) In the given triangles $\triangle \mathcal{A B C}$ and $\triangle \mathcal{A C B}$
$\mathcal{A B}=\mathcal{A C}$
$\mathcal{A C}=\mathscr{A B}$
$\angle \mathcal{A}=\angle \mathcal{A}$
7) As all the three corresponding sides of $\triangle \mathcal{A B C}$ and $\triangle \mathcal{A C B}$ are equal.

Hence, by S.S.S. congruency
$\triangle \mathcal{A B C}$ and $\triangle \mathcal{A C B}$
c) $\mathcal{B} y \mathcal{C}$. P.C.I. $\angle \mathcal{B}=\angle C$.
2. In the given figure, $\triangle \mathcal{A B C}$ is an isosceles triangle in which $\mathcal{A B}=\mathcal{A C}$. If $\mathfrak{A B}$ and $\mathcal{A C}$ are produced to \mathcal{D} and \mathcal{E} respectively such that $\mathcal{B D}=\mathcal{C E}$. Prove that $\mathcal{B E}=\mathcal{C D}$. Since,
$\mathfrak{A B}=\mathcal{A c}$ [give n]
$\mathcal{B D}=\mathcal{C E}$ [given]

$$
\begin{aligned}
& \therefore \mathcal{A B}+\mathcal{B D}=\mathcal{A C}+\mathcal{C E} \text { [adding the two] } \\
& \Rightarrow \quad \mathcal{A D}=\mathcal{A E}
\end{aligned}
$$

$\mathfrak{N o w}$ in $\triangle \mathcal{A D C}$ and $\triangle \mathcal{A E B}$
$\mathcal{A D}=\mathcal{A E}$. [proved above]
$\mathcal{A C}=\mathcal{A B} \quad[\mathcal{G} I \mathcal{V} \mathcal{E} \mathcal{N}]$
$\angle \mathcal{A}=\angle \mathcal{A}($ common $)$
So by S.A.S. congruency we have
$\triangle \mathcal{A D C}$ and $\triangle \mathcal{A E B}$
$\Rightarrow \mathcal{C} . \mathcal{P} . \mathcal{C} . \mathcal{T} \quad \mathcal{C D}=\mathcal{B E}$.
3. In the given figure, $\mathcal{A D}=\mathcal{B C}$ and $\mathcal{A D} \| \mathcal{B C}$. Is $\mathcal{A B}=\mathcal{D C}$? Give reasons to support your answer.

In the given figure, it is give that
$\mathcal{A D}=\mathcal{B C}$
And $\mathfrak{A D} \| \mathcal{B C}$
$\mathcal{N o w}$ in $\triangle \mathcal{A D C}$ and $\triangle \mathcal{A B C}$
$\mathcal{A D}=\mathcal{B C}$

$$
\angle \mathcal{D A C}=\angle \mathcal{A C B}
$$

[$\mathcal{A s} \mathcal{A D} \| \mathcal{B C}$ and $\mathcal{A C}$ is transversal
$\angle \mathcal{D A C}=\angle \mathcal{A C B}$ are alternate angles]
$\mathcal{A C}=\mathcal{A C}($ common $)$
So by S.A.S. congruency we have
$\triangle \mathscr{A D C}$ and $\triangle \mathcal{A B C}$
$\Rightarrow 6 y$ C.P.C.I. $\mathcal{A B}=\subset \mathcal{D}$
4. In the given figure, triangles $\triangle \mathcal{A B C}$ and $\triangle \mathcal{B C D}$ are right angled at \mathcal{A} and \mathcal{D} respectively; Prove that $\triangle \mathcal{A B C}$ and $\triangle \mathcal{D C B}$.

Is $\mathcal{A B}=\mathcal{D C}$? give reason
In $\Delta \mathcal{A B C}$ and $\triangle \mathcal{D C B}$,
$\mathcal{A C}=\mathcal{D B} \quad[\mathcal{G} I \mathcal{V} \mathcal{E} \mathcal{N}]$
$\angle \mathcal{B A C}=\angle C D \mathcal{B}=90^{\circ}[\mathcal{G I V E N}]$
\Rightarrow by C.P.C.T. $\mathcal{A} \mathcal{B}=\mathcal{D C}$.

1. If $\triangle \mathcal{D E F} \cong \triangle \mathcal{B C A}$, write the part(s) of $\triangle \mathcal{B C A}$ that correspond to
i) $\angle \mathcal{E}$
ii) $\overline{\mathbf{E F}}$
iii) $\angle \mathcal{F}$
iv) $\overline{\mathbf{D F}}$
$\Delta \mathcal{D E F}=\cong \Delta \mathcal{B C A}$
i) $\overline{\angle E}=\angle C$
ii) $\overline{\mathbf{E F}}=\overline{\mathbf{C A}}[\therefore$ corresponding parts are equal]
iii) $\angle \mathcal{F}=\angle \mathcal{A}$
iv) $\overline{\mathbf{D F}}=\overline{\mathbf{B A}}$ 2. In figure, $\mathcal{A B}=\mathcal{A C}$ and $\mathcal{A D}$ is the bisector of $\angle \mathcal{B A C}$.

i. State three pairs of equal parts in triangles $\mathcal{A D B}$ and $\mathcal{A D C}$.
ii. Is $\angle \mathcal{B}=\angle \boldsymbol{C}$? Give reasons.
i. The three pairs of equal parts are as follows.
$\mathcal{A B}=\mathscr{A C}($ Give $n)$
$\angle \mathcal{B A D}=\angle \mathcal{C A D} \quad(\mathcal{A D}$ bisects $\angle \mathcal{B A C})$
$\mathfrak{A n d} \mathcal{A D}=\mathcal{A D} \quad($ Common $)$
ii. Yes, $\Delta \mathcal{A D B} \cong \triangle \mathcal{A D C}(\mathcal{B y} \mathcal{S A S}$ congruence rule $)$
iii. $\angle B=\angle C$ (Corresponding parts of congruent triangles)
2. In $\triangle \mathcal{A} \mathcal{B C}, \angle \mathcal{A}=30^{\circ}, \angle \mathcal{B}=40^{\circ}$

$$
\begin{aligned}
& \angle C=110^{\circ} \\
& \angle R=110^{\circ}
\end{aligned}
$$

In $\triangle P Q \mathcal{R}, \angle P=30^{\circ}, \angle Q=40^{\circ}$
\mathcal{A} student says that $\triangle \mathcal{A B C} \cong \triangle \mathcal{P Q R}$ by $\mathcal{A} \mathcal{A} \mathcal{A}$ congruence criterion. Is he justified? Why or why not?
$\mathcal{N}(0$, it is not justified because.
i) there is no such condition for congruency and
ii) though angles are equal but there is no information about lines. For congruency the shape and size both must be similar of the two given figure.
4. Explain, why $\Delta \mathcal{A B C} \cong \Delta \mathcal{F E D}$.

i) $\overline{\mathrm{BC}}=\overline{\mathrm{ED}}$
(Given)

> ii) $\angle \mathcal{B}=\angle \mathcal{E}$
> iii) $\angle \mathcal{A}=\angle \mathcal{F}$
$\left(\mathcal{B o t h}\right.$ of $\left.90^{\circ}\right)$
$\therefore \Delta \mathcal{A B C} \cong \Delta \mathcal{F E D}$.
(Given)
($\mathcal{B} y \mathcal{A} \mathcal{A S}$ congruency)
5. $\triangle \mathcal{A B C}$ is an isosceles triangle with $\mathcal{A B}=\mathcal{B C}$ and \mathcal{D} is the mid-point of base $\mathcal{B C}$ (Figure).
i. State three pairs of equal parts in the triangles $\mathcal{A B D}$ and $\mathcal{A C D}$.
ii. Is $\triangle \mathcal{A B D} \cong \triangle \mathcal{A C D}$? If so why?
i) In $\triangle \mathcal{A B D}$ and $\triangle \mathcal{A C D}$
a) $\mathcal{A B}=\mathcal{A C}$
(Give n)
6) $\mathcal{B D}=\mathcal{C D}$
c) $\mathcal{A D}=\mathcal{A D}$
$(\mathcal{D}$ is mid point of $\mathcal{B C})$
(common)
ii) $\mathcal{Y e s}, \triangle \mathcal{A B D} \cong \triangle \mathcal{A C D}$

By SSS Congruency.

I. Long Answer Questions

1. If O is a point in the exterior of $\triangle \mathcal{A B C}$. Show that:
$2(O \mathcal{A}+O \mathcal{B}+O C)>(\mathcal{A B}+\mathcal{B C}+\mathcal{C} \mathcal{A})$.

In $\triangle \mathcal{A O B}$
$O \mathcal{A}+O \mathcal{B}>\mathcal{A B}$ \qquad (i)

Similarly, in $\triangle \mathcal{B O C}$,

$$
\begin{equation*}
O \mathcal{B}+O C>\mathcal{B C} \tag{2}
\end{equation*}
$$

and in $\triangle \mathcal{A O C}$
$O \mathcal{A}+O C>\mathcal{A C}$ \qquad (3)
$\mathcal{B} y$ adding (i), (ii), and (iii), we get
$O \mathscr{A}+O \mathcal{B}+O \mathcal{B}+O \mathcal{C}+O \mathcal{A}+O C>\mathcal{A B}+\mathcal{B C}+\mathcal{C A}$
$\Rightarrow 2 O \mathcal{A}+2 O \mathcal{B}+2 O C>\mathcal{A B}+\mathcal{B C}+\mathcal{C A}$
$\Rightarrow 2(O \mathcal{A}+O \mathcal{B}+O C)>\mathcal{A B}+\mathcal{B C}+\mathcal{C A}$.
2. A ladder 17 m long reaches a window which is 8 m above the ground on one side of street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window at a height of 15 m . Find the width of street.

Let $\mathcal{A B}$ is the street and \mathcal{C} be the foot of ladder. Let \mathcal{D} and E be windows at heights of 8 m and $15 m$ respectively from the ground.

Then CD and CE are the positions of ladder. From the right angle $\triangle \mathcal{D A C}, \mathcal{B y}$ Pythagoras
Theorem, $\mathcal{C D}^{2}=\mathcal{A} \mathcal{C}^{2}+\mathcal{A D}^{2}$
$\Rightarrow \mathcal{A C}^{2}=\mathcal{C D}^{2}-\mathcal{A D}^{2}$
$=17^{2}-8^{2}$

$$
\begin{aligned}
& =289-64 \\
& =225 \\
& \Rightarrow \mathcal{A C}=\sqrt{225}=15 .
\end{aligned}
$$

Again from right $\Delta \mathcal{E B C}$, by Pythagoras The orem

$$
\mathcal{C E} E^{2}=\mathcal{B C} C^{2}+\mathcal{B E} E^{2}
$$

$$
\mathcal{B C} C^{2}=C E^{2}-\mathcal{B E} E^{2}
$$

$$
=17-15
$$

$$
=289-225
$$

$$
=64
$$

$$
\Rightarrow \quad \mathcal{B C}=\sqrt{64}
$$

$$
=8 \mathrm{~m}
$$

\therefore Width of street,
$\mathcal{A B}=\mathcal{A C}+\mathcal{B C}$
$=15+8=23 \mathrm{~m}$.
3. Two poles of height 9 m and 14 m stand upright on a plane ground. If the distance Getween their tops is 13 m , find the distance between their feets.

In the above figure, $\mathcal{A B}$ and $\mathcal{C D}$ are two poles whose heights are 9 m and 14 m respectively.
$\Longrightarrow \mathcal{A B}=\mathcal{E} C=9 m$

And $\mathcal{B D}=13 \mathrm{~m}$
$\mathcal{D E}=14-9=5 m$

\mathcal{N} ow in right $\Delta \mathcal{B D E}$, by Pythagoras
$\mathcal{B D}{ }^{2}=\mathcal{B E} \mathcal{E}^{2}+\mathcal{D E} \mathcal{E}^{2}$
$13^{2}=\mathcal{B E}{ }^{2}+5^{2}$
$\Rightarrow \mathcal{B E}^{2}=(13)^{2}-(5)^{2}$
$=169-25$.
$\mathcal{B C} C^{2}=144$.

$\Rightarrow \mathcal{B E}=\sqrt{144}$
$\Rightarrow=12 \mathrm{~m}$.
Hence distance between their feet $=12 \mathrm{~m}$.
3. In figure $\mathcal{D E}=I \mathcal{H}, \mathcal{E} G=\mathcal{F} I$ and $\angle \mathcal{E}=\angle I$, Is $\Delta \mathcal{D E F} \cong \mathcal{H I} \mathcal{G}$?

If yes, by which congruence criterion?
Given $\mathcal{E} \mathcal{G}=\mathcal{F} I$
Adding $\mathcal{G F}$ on both sides, we get
$\therefore \mathcal{E} \mathcal{G}+\mathcal{G F}=\mathcal{G} \mathcal{F}+\mathcal{F} I$

$$
\Rightarrow \mathcal{E F}=\mathcal{G} I
$$

In \qquad (!) (from figure)

In $\Delta \quad \mathcal{D E \mathcal { F }} \quad$ and $\triangle \mathcal{H I G} \quad \mathcal{D E}=I \mathcal{H}$ (given)

$\angle \mathcal{D E F}=\quad \angle \mathscr{H I G}=$
and $\mathcal{E F}=\mathcal{G} I$
(From 1)
$\mathcal{H e r e}$, we see that, if two sides and the angle included between them of a triangle are equal to two corresponding sides and the angle included them of other triangle, then the triangles are congruent by $\mathcal{S A S}$ congruence rule

Hence In Δ DEF $\cong \Delta \mathcal{H I} \mathcal{G}$.
II. Long Answer Questions

1. In the given figure $\mathcal{D A} \perp \mathcal{A B}, \mathcal{C B} \perp \mathcal{A B}$ and $\mathcal{A C}=\mathcal{B D}$

State the three pairs of equal parts in $\Delta \mathcal{A B C}$ and $\Delta \mathcal{D A}$
Which of the following statement is meaningful?
i). $\Delta \mathcal{A B C} \cong \Delta \mathcal{B A D}$

2. $\Delta \mathcal{A B C} \cong \triangle \mathcal{A B C}$

The three pairs of equal parts are :
$\angle A B C=\angle \mathcal{B A D}=90^{\circ}$
$\mathcal{A C}=\mathcal{B D} \quad$ (give $n)$
$\mathcal{A B}=\mathcal{B A} \quad[\mathcal{C O} \mathcal{M M O} \mathcal{N} S I D E]$
From the above, . $\triangle \mathcal{A B C} \cong \triangle \mathcal{B A D} \quad(\mathcal{B} y \mathcal{R H S}$ congruence rule)
So, statement (i) is true.
Statement (ii) is not meaningful, in the sense that the correspondence among the vertices is not satisfied.
2. Triangles $\mathcal{D E F}$ and $\mathcal{L M N}$ are both isosceles with $\mathcal{D E}=\mathcal{D F}$ and $\mathcal{L M}=\mathcal{L N}$. Respectively. If $\mathcal{D E}=\mathcal{L \mathcal { M }}$ and $\mathcal{E F}=\mathcal{M} \mathcal{N}$, then are the two triangles congruent? If $\angle \mathcal{E}=40^{\circ}$ what is the measure of $\angle \mathcal{N}$? Yes, both the Δ 's can be congruent if

i) $\angle \mathcal{E}=\angle M \quad$ (By SAS congruent)
or (ii) $\mathcal{D F}=\mathcal{L N} \quad(\mathcal{B} y S S S$ congruency $)$
\mathcal{N} ow in $\triangle \angle \mathcal{M N} \angle M=40^{\circ}$
(By (i)
And $\because \angle M=\angle N$
$\therefore \angle M=\angle N=40^{\circ}$ (Equal sides have equal opposite angle)
Hence measure of $\angle N=40^{\circ}$
3. IN the given figure $Q S \perp P \mathcal{R}, \mathcal{R T} \perp \mathcal{P Q}$ and $Q S=\mathcal{R I}$.
i) Is $\triangle Q S \mathcal{R}=\triangle \boldsymbol{R T Q}$? Give reasons,
ii) Is $\angle P Q \mathcal{R}=\angle P R Q$? Give reasons i) Yes because,
$Q S=R \mathcal{T} \quad$ (Given)
$Q R=Q \mathcal{R} \quad$ (common)
$\angle \mathcal{T}=\angle S \quad\left(B o t h\right.$ of $\left.90^{\circ}\right)$
$\therefore \Delta Q S R=\Delta R T Q \quad(\mathcal{B Y} \mathcal{R H S}$ congruency)

ii) Yes, $\mathcal{B y} \mathcal{C P C T}$.

