Grade VII

```
Lesson:6 The Triangle and its properties
```

Objective Type Questions
I. Multiple choice questions

1. In a triangle $\mathfrak{A B C} \angle \mathcal{A}+\angle \mathcal{B}+\angle C=$
a) 360°
b) 90°
c) 180°
d) 60°
2. Least number if possible acute angles in a triangle is:
a) 0
b) 1
c) 2
d) 3
3. Angles of a triangle are in the ratio 1:2:3. The smallest angle is :
a) 15°
b) 90°
c) 60°
c) 30°
4. How many altitudes can a triangle fave.
a) one
6) two
c) three
d) four
5. The exterior angle of a triangle is 120° and one of its interior opposite angle is 70°. Find the measure of its other interior opposite angle?
6. The angles of a triangle are in the ratio 2:3:5. What is the largest angle of the triangle?
a) 54°
b) 36°
c) 90°
d) 100°
7. $\triangle \mathcal{A B C}$ is rigft-angled at \mathcal{C}. If $\mathcal{A C}=5 \mathrm{~cm}$ and $\mathcal{B C}=12 \mathrm{~cm}$, what is the length of $\mathfrak{A B}$?
a) 7 cm
b) 17 cm
c) 13 cm
d) 20 cm
8. What is the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm ?
a) 164 cm
b) 162 cm
c) 81 cm
d) 98 cm
9. $\triangle \mathcal{A B C} \cong \triangle \mathcal{D E F}$, If $\mathcal{A B}=7 \mathrm{~cm}$, what is the length of $\mathcal{D E}$?
a) 14 cm
b) 16 cm
c) 7 cm
d) 18 cm
10. In Fig. side $Q \mathcal{R}$ of a $\Delta \mathcal{P Q R}$ has been produced to the point S. If $\angle P R S=115$ and $\angle \mathcal{P}=45$, then $\angle Q$ is equal to,

a) 70°
b) 105°
c) 51^{0}
d) 80°
11. In an equilateral triangle $\mathcal{A B C}, \mathcal{A D}$ is an altitude. Then $4 \mathcal{A D}^{2}$ is equal to:

a) $2 \mathcal{B D} D^{2}$
b) $\mathcal{B} C^{2}$
c) $3 \mathcal{A B}^{2}$
d) $2 \mathcal{C D}^{2}$
12. Which of the following cannot be the sides of a triangle?
a) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
b) $2 \mathrm{~cm}, 4 \mathrm{~cm}, 6 \mathrm{~cm}$
c) $2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 4.5 \mathrm{~cm}$
d) $2.3 \mathrm{~cm}, 6.4 \mathrm{~cm}, 5.2 \mathrm{~cm}$
13. Which one of the following is not a criterion for congruence of two triangles?
a) $\mathcal{A S A}$
b) $\mathcal{S S A}$
c) $\mathcal{S A S}$
d) $\mathcal{S S S}$
14. P s is the bisector of $\angle P$ and $P Q=P R$. Then $\triangle P R S$ and $\triangle P Q S$ are congruent by the criterion:

a) $\mathcal{A A A}$
b) $\mathcal{S A S}$
c) $\mathcal{A S} \mathcal{A}$
d) 60 th (b) and (c)
15. The sides of a triangle have lengths (incm) 10, 6.5 and a, where a is a whole number. The minimum value that a can take is:
a) 6
b) 5
c) 3
d) 4
16. Triangle $\mathcal{D E F}$ is a right triangle with $\angle \mathcal{E}=900$. What type of angle are $\angle \mathcal{D}$ and $\angle F$?
a) They are equal angles
6) They form a pair of adjacent angles.
c) They are complementary angles
d) They are supplementary angles.
17. $P Q=\mathcal{P S}$. The value of x is.
a) 35
b) 45
c) 55
d) 70
18. In a right-angled triangle, the angles other than the right angle are:
a) Obtuse
b) right
c) acute
d) straight
19. In an isosceles triangle, one angle is 70°. The other two angels are of:
(i) 55° and 55°
(ii) 70° and 40°
(iii) any measure

In the given option(s) which of the above statement (s) are true?
a) ionly
6) (ii) only
c) iii only
d) i and ii
20. In a triangle, one angle is of 90° then:
(i) The other two angles are of 45 o each
(ii) In remaining two angles, one angle is 90 and other is 45
(iii) Remaining two angles are complementary n

In the given option (s) which is true?
a) (i) only
b) ii) only
c) (iii) only
(iv) (i) and (ii)
21. Lengths of sides of triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . The triangle is .
a) Obtuse angles triangle
6) Acute-angled triangle
c) Right-angled triangle
d) $A n$ isosceles right triangle.
22. $\mathscr{P B}=P \mathcal{D}$. The value of x is:

a) 85°
b) 90°
c) 25°
d) 35°
23. In $\Delta \mathcal{P Q R}$
a) $\mathcal{P Q} \cdot Q \mathcal{R}>P R$
6) $P Q=Q R<P R$
C) $P Q-Q \mathcal{R}<P R$
d) $P Q+P R<Q R$
24.In $\Delta \mathcal{A B C}$
a) $\mathfrak{A B}+\mathcal{B C}>\mathcal{A C}$
6) $\mathfrak{A B}+\mathcal{B C}<\mathcal{A C}$
C) $\mathcal{A B}+\mathcal{A C}<B C$
d) $\mathcal{A C}+\mathcal{B C}<A B$
25. The triangle $\mathcal{A B C}$ formed by $\mathcal{A B}=5 \mathrm{~cm}, \mathcal{B C}=8 \mathrm{~cm}, \mathcal{A C}=4 \mathcal{C M}$ is:
a) an isosceles triangle only
6) a scalene triangle only
c) an isosceles right triangle
d) scalene as well as a right triangle
26.Two trees 7 mand 4 migh stand upright on a ground. If their bases (roots) are 4 m a part, then the distance between their tops is:
a) 3 m
b) 5 m
c) 4 m
d) 11 m
27. If in an isosceles triangle, each of the base angles is 40° Then the triangle is :
a) Right-angled triangle
6) Acute angled triangle
c) Acute angled triangle
d) Isosceles right-angled triangle
28. If two angles of a triangle are 60° each, then the triangle is:
a) Isosceles 6ut not equilateral
b) Scalene
c) Equilateral
d) Right-angled
29. The perimeter of the rectangle whose length is 60 cm and a diagonal is 61 cm is :
a) 120 cm
b) 122 cm
c) 71 cm
d) 142 cm
30. In $\triangle P Q R$ if $P Q=Q \mathcal{R}$ and $\angle Q=100^{\circ}$, then $\angle \mathcal{R}$ is equal to:
a) 40°
b) 80°
c) 120°
d) 50°
31. Which of the following statement is not correct?
a) The sum of any two sides of a triangle is greater than the third side
6) \mathcal{A} triangle can fave all its angles acute
c) \mathcal{A} right-angled triangle cannot be equilateral
d) Difference of any two sides of a triangle is greater than the third side.
32. $\mathcal{B C}=\mathcal{C A}$ and $\angle \mathcal{A}=40^{\circ}$ Then $\angle A C D$ is equal to:

a) 40°
b) 80°
c) 120°
d) 60°
33. The length of two sides of a triangle are 7 cm and 9 cm . The length of the third side may Cie between:
a) 1 cm and 10 cm
b) 2 cm and 8 cm
c) 3 cm and 16 cm
d) 1 cm and 16 cm
34. The value of x is:

a) 75°
b) 90°
c) 120°
d) 60°
35. The value of $\angle \mathcal{A}+\angle \mathcal{B}+\angle C+\angle \mathcal{D}+\angle \mathcal{E}+\angle \mathcal{F}$ is:

a) 190°
b) 540°
c) 360°
d) 180°
36. $P R, R S=\mathcal{R} Q$ and $\mathcal{S T}\left[\mathcal{L} Q\right.$. If the exterior angle $\mathcal{R P C l}$ is 140°, then the measure of $\mathcal{T S} \mathcal{R}$ is:

a) 55°
b) 40°
c) 50°
d) 45°
37. $\angle \boldsymbol{B} A \mathcal{A}=90^{\circ}, \mathscr{A D} \perp \mathcal{B C}$ and $\angle \boldsymbol{B} \mathscr{A D}=50^{\circ}$ then, $\angle \boldsymbol{A C D}$ is:

a) 50°
b) 40°
c) 70°
d) 60°
38. If one angle of a triangle is equal to the sum of the other two angles, the triangle is:
a) obtuse
6) acute
c) right
d) equilateral
39. If the exterior angle of a triangle is 130° and its interior opposite angles are equal then measure of each interior opposite angle is:
a) 55°
b) 65°
c) 50°
d) 60°
40. If one of the angles of a triangle is 1100, then the angle between the bisector of the other two angles is:
a) 70°
b) 110°
c) 35°
d) 145°
41. In $\triangle \mathcal{A B C}, \mathcal{A D}$ is the bisector of $\angle A$ meeting $\mathcal{B C}$ at $\mathcal{D}, \mathcal{C} \mathcal{F} \perp \mathcal{A B}$ and \mathcal{E} is the mid-point of $\mathcal{A C}$, Then median of the triangle is:
a) $\mathfrak{A D}$
6) $\mathcal{B E}$
c) $\mathcal{F} C$
d) $\mathcal{D E}$
42. Which of the following triplets cannot be the angles of a triangle?
a) $67^{\circ}, 51^{\circ}, 62^{\circ}$
b) $70^{\circ}, 83^{\circ}, 27^{\circ}$
c) $90^{\circ}, 70^{\circ}, 20^{\circ}$
d) $40^{\circ}, 132^{\circ}, 18^{\circ}$
43. Which of the following can be the length of the third side of a triangle whose two sides measure 18 cm and 14 cm ?
a) 4 cm
6) 3 cm
c) 5 cm
d) 32 cm
44. If we join a vertex to a point on opposite side which divides that side in the ration $1: 1$ then what is the special name of that line segment?
a) Median
6) Angle bisector
c) Altitude
d) Hypotenuse
45. The measures of x and y in Fig. Are respectively:

a) $30^{\circ}, 60^{\circ}$
b) $40^{\circ}, 40^{\circ}$
c) $70^{\circ}, 70^{\circ}$
d) $70^{\circ}, 60^{\circ}$
46. If length of two sides of a triangle are 6 cm and 10 cm then the length of the third side can be:
a) 3 cm
b) 4 cm
c) 2 cm
d) 6 cm
47. In a right-angled triangle $\mathcal{A B C}$, If angle $\mathcal{B}=90^{\circ} \mathcal{B C}=3 \mathrm{~cm}$ and $\mathcal{A C}=5 \mathrm{~cm}$, then length of side $\mathcal{A B}$ is :
a) 3 cm
b) 4 cm
c) 5 cm
d) 6 cm
48. In a right-angled triangle, $\mathcal{A B C}$, if $\angle B=900$, then which of the following is true?
a) $\mathfrak{A B} \mathcal{B}^{2}=\mathcal{B C} \mathcal{C}^{2}+\mathcal{A} \mathcal{C}^{2}$
b) $\mathcal{A} \mathcal{C}^{2}=\mathcal{A} \mathcal{B}^{2}+\mathcal{B C} C^{2}$
c) $\mathcal{A B}=\mathcal{B C}+\mathcal{A} \mathcal{C}$
d) $\mathcal{A C}=\mathcal{A} \mathcal{B}+\mathcal{B C}$
49. In $\triangle A B C, \angle A=100^{\circ}, \mathcal{A D}$ bisects $\angle A=$ and $\mathcal{A D} \perp \mathcal{B C}$. Then $\angle B$ is equal to:
a) 80°
b) 20°
c) 40°
d) 30°
50. In $\triangle A B C, \angle A=50^{\circ} \angle \mathcal{B}=70^{\circ}$ and bisector of $\angle C$ meets $\mathcal{A B}$ at \mathcal{D}, measure of $\angle A D C$.

a) 50°
b) 100^{0}
c) 30°
d) 70°
 of the following is not true?
a) $\mathcal{A C}=\mathcal{D E}$
b) $\mathcal{A B}=\mathcal{E} \mathcal{F}$
c) $\angle A=\angle D$
d) $\angle C=\angle E$
52. \mathcal{M} is the mid-points of 6oth $\mathcal{A C}$ and $\mathcal{B D}$, Then

a) $\angle 1=\angle 2$
b) $\angle 1=\angle 4$
c) $\angle 2=\angle 4$
d) $\angle 1=\angle 3$
53. If \mathcal{D} is the mid-point of the side $\mathcal{B C}$ in $\triangle \mathcal{A B C}$ where $\mathcal{A B}=\mathcal{A C}$, then $\angle \mathcal{A D C}$ is :
a) 60°
b) 45°
c) 120°
d) 90°
54. Two triangles are congruent, if two angels and the side included between them in one of the triangles are equal to the two angles and the side included between them of the other triangle. This is known as the:
a) $\mathbb{R H S}$ congruence criterion
6) $\mathcal{A S} \mathcal{A}$ congruence criterion
c) $\mathcal{S A S}$ congruence criterion
d) $\mathcal{A A A}$ congruence criterion
55. By which congruency criterion, the two triangles are congruent?

a) $\mathcal{R H S}$
b) $\mathcal{A S} \mathcal{A}$
c) SSS
d) $\mathcal{S A S}$
56. By which of the following criterion two triangles cannot be proved congruent?
a) $\mathcal{A A A}$
b) $\mathcal{S S S}$
c) $\mathcal{S A S}$
d) $\mathcal{S} \mathcal{A S}$
57. $\Delta \mathcal{P Q R}$ is congruent to $\Delta \mathcal{S T U}$, then what is the length of $\mathcal{T U}$?
a) 5 cm
b) 6 cm
c) 7 cm
d) cannot be determined

58. If $\triangle \mathcal{A B C}$ and $\triangle \mathcal{D B C}$ a re on the same base $\mathcal{B C}, \mathcal{A B}=\mathcal{D C}$ and $\mathcal{A C}=\mathcal{D B}$, then which of the following gives a congruence relationsfip?
a) $\triangle \mathcal{A B C}$ and $\triangle \mathcal{D B C}$
b) $\triangle \mathcal{A B C}$ and $\triangle \mathcal{C B D}$
c) $\triangle \mathcal{A B C}$ and $\triangle \mathcal{D C B}$
d) $\triangle \mathcal{A B C}$ and $\triangle \mathcal{B C D}$

$1 . c$	$2 . c$	$3 . d$	$4 . c$	5.6	$6 . c$	$7 . c$	$8 . d$	$9 . c$	$10 . a$
$11 . c$	121.6	13.6	14.6	$15 . d$	$16 . c$	17.6	$18 . c$	$19 . d$	$20 . c$
$21 . c$	$22 . c$	$23 . c$	$24 . a$	25.6	26.6	$27 . c$	$28 . c$	$29 . d$	$30 . a$
$31 . d$	32.6	33.6	$34 . c$	$35 . c$	36.6	$37 . a$	$38 . c$	39.6	$40 . d$
41.6	$42 . d$	$43 . d$	44.6	$45 . d$	$46 . d$	47.6	48.6	$49 . c$	50.6
51.6	52.6	53.36	54.6	$55 . c$	$56 . a$	57.6	58.6		

II. Multiple cfroice questions

1. In a $\triangle \mathcal{A} \mathcal{B C}$, if $\angle \mathcal{A}=60^{\circ}$ and $\angle \mathcal{B}=30^{\circ}$, then the exterior angle formed by producing $\mathcal{B C}$ is equal to.
a) 180°
b) 99°
c) 90°
d) 105°
2. The top of a broken tree touches the ground at a distance of 12 m from its base. If the tree is broken at a height of 5 m from the ground, then the actualkeight of the tree is.

a) 25 m
b) 13 m
c) 18 m
d) 17 m

I. Fill in the Blanks

1. The line segment joining a vertex of a triangle to the mid-point of its opposite side is called its \qquad _.
2. A triangle is said to be \qquad If each of its sides has the same length.
3. $\angle P R S=\angle Q P \mathcal{R}+\angle$ \qquad .

4. Let $\mathcal{A B C}$ and $\mathcal{D E F}$ be two triangles in which $\mathcal{A B}=\mathcal{D E}, \mathcal{B C}=\mathcal{F D}$ and $\mathcal{C A}=\mathcal{E F}$. The two triangles are congruent under the correspondence $\mathcal{A B C} \leftrightarrow$ \qquad _.
5. The \qquad triangle always has altitude outside itself.
6. The sum of an exterior angle of a triangle and its adjacent angle is always \qquad $-\quad$.
7. The longest side of a right angled triangle is called its \qquad _.
8. Measures of each of the angles of an equilateral triangle is \qquad
9. In an isosceles triangle, two angles are always \qquad -.
10. In an isosceles triangle, angles opposite to equal sides are \qquad .
11. If one angle of a triangle is equal to the sum of other two, then the measure of that angle is \qquad _.
12. Every triangle haas atleast \qquad acute angle (s).
13. Two line segments are congruent, if they are of \qquad lengths.
14. Two angles are said to be \qquad if they have equal measures.
15. Two rectangles are congruent, if they have same \qquad and \qquad _.
16. Two squares are congruent, if they have same \qquad -
17. $\Delta P Q \mathcal{R} \cong \Delta$ \qquad _.

18. $\Delta \mathcal{P Q R} \cong \Delta$ \qquad _.

$19 . \Delta$ \qquad $\cong \triangle P Q \mathcal{R}$

$20 . \Delta \mathcal{A R O} \cong \Delta$ \qquad _.

$\mathcal{A N S}$ WERS

1. Median	2. Equilateral	$3 . P Q R$	$4 . E D \mathcal{L}$	5.06 tuse
6. Supplementary	7. Hypotenuse	8.60°	9.Equal/acute (any one)	10. Equal
11. 90^{0}	$12 . \mathcal{T}$ wo	13.Equal/same	14.Equal/coiners	$\begin{aligned} & 15 . \text { Length, } \\ & \text { breadth } \end{aligned}$
16.5 ide	17. $x y z$	18.RS I	19.DRQ	20. PQ O

II. Fill in the Blanks

1. In the following figure, value of x is \qquad

$\because x=20^{\circ}+70^{\circ}=90^{\circ}$
Sum of interior opposite angles is equal to the exterior angle.
2. Median is also called \qquad in an equilateral triangle

Median is also called attitude in an equilateraltriangle
3. Every triangle fias atmost \qquad obtuse angles.

Every triangle fias atmost one obtuse angles
4. In the adjacent figure, the value of x is \qquad

Since the sum of interior opposite angles is equal to exterior angle

$$
x+50^{\circ}=135^{\circ} \Rightarrow x=135^{\circ}-50^{\circ}=85^{\circ}
$$

5. In the adjacent figure, the diagonals of $\mathcal{A B C D}$ are $\mathcal{A C}=16 \mathrm{~cm}, \mathcal{B D}=30 \mathrm{~cm}$, then perimeter of the rhombus is equal to \qquad -.

In the given figure,
$\mathcal{A C}=16 \mathrm{~cm}, \mathcal{B D}=30 \mathrm{~cm}, \mathcal{D O}=15 \mathrm{~cm}, O \mathcal{B}=15 \mathrm{~cm}$ $\mathcal{A O}=8 \mathrm{~cm}, O C=8 \mathrm{~cm}$
$[\because$ diagonals intersect each other at point O, where O is mid-point of $\mathcal{A C}$ and $\mathcal{B D}]$

In $\triangle \mathcal{D O C}$, by using Pythagoras property of right angled triangle,
$(15)^{2}+(8)^{2}=(D C)^{2} \Rightarrow 225+64=(D C)^{2}$
$\Rightarrow \mathcal{D C}=\sqrt{289} \Longrightarrow \mathcal{D C}=17 \mathrm{~cm}$
$\Rightarrow \mathcal{D C}=\mathcal{A B}[\because$ sides are equal in riombus $) \Rightarrow \mathcal{A B}=17$
Perimeter of rhombus $=\mathfrak{A B}+\mathcal{B C}+\mathcal{C D}+\mathcal{A D}$

$$
=17+17+17+17=68 \mathrm{~cm} .
$$

I. True or False

1. The sum of any two angles of triangle is always greater than the third angle.
2. Sum of the measures of three angles of a triangle is greater than 180 .
3. It is possible to have a right angled equilateral triangle.
4. It is possible to have a triangle in which each angle is less than 60°.
5. The difference between the length of any two sides of a triangle is smaller than the length of third side.
6. In the following figure, the value of $x=60^{\circ}$

7. In the following figure, the value of $x=45^{\circ}$

8. In the following figure, the value of $x=85^{\circ}$

9. In the following figure, the value of y is equal to $=90^{\circ}$

10. In the following figure, the value of x is equal to $=9 \mathrm{~cm}$

Answer (True or False)

1. False, sum of any two angles of a triangle is not always greater than the third angle.

$$
\text { E.g. } 30^{\circ}, 60^{\circ}, 90^{\circ}
$$

Hence, $30^{\circ}+60^{\circ}=90^{\circ}, 90^{\circ}=90^{\circ}$ etc
2. False, the sum of the measures of three angles of a triangle is always equal to 180°

$$
\text { i.e. } \angle A+\angle B+\angle C=180
$$

3. False, in a right angles triangle, one angle is equal to 90° and in equilateral triangle all angles are equal to 60°.
4. False, the sum of all angles, in triangle is equal to 180°. So atleast all three angles can never be less than 60°.
5. True, the difference between the length of any two sides of a triangle is smaller than the length of third side.
6. True, we know that, the sum of interior opposite angles is equal to exterior angle.

$$
x+70^{\circ}=130^{\circ} \Rightarrow x=130^{\circ} \cdot 70^{\circ} \Rightarrow x=60^{\circ}
$$

7. False, we know that, the sum of interior opposite angles is equal to exterior angle.

$$
30^{\circ}+40^{\circ}=70^{\circ}
$$

Since, x and $70^{\circ}=180^{\circ}$

$$
\begin{array}{r}
\Rightarrow x=180^{\circ}-70^{\circ} \\
\Rightarrow x=110^{\circ}
\end{array}
$$

8. True, we know that, the sum of interior opposite angles is equal to exterior angle.

$$
\begin{aligned}
& \therefore 60^{\circ}+\angle \mathcal{B A C}=150^{\circ} \Rightarrow \angle \mathcal{B A C}=150^{\circ}-60^{\circ} \\
& \Rightarrow \angle \mathcal{B A C}=150^{\circ}
\end{aligned}
$$

10. False, $\Delta \mathcal{A B C}$ is a right angled triangle. $\mathcal{B y}$ using Pythagoras property of right angled triangle.

$$
\begin{aligned}
& (A C)^{2}+(A B)^{2}=(B C)^{2} \\
& \Rightarrow(x)^{2}+(5)^{2}+(5)^{2} \\
& \Rightarrow x^{2}=25+49 \\
& \Rightarrow(x)^{2}=74 \\
& \Rightarrow x=\sqrt{74}=8.6 \mathrm{~cm}
\end{aligned}
$$

I. Match the following

I. Very Skort Answer Questions

1. Find the angles of a triangle which are in the ratio 2:3:5

Let the angles be $2 x, 3 x$ and $5 x$
$\therefore 2 x+3 x+5 x=180^{0}$
$\Rightarrow \quad 10 x=180^{\circ}$
$\Rightarrow \quad x=180^{\circ}$
Angles are 36,54, 90.
2. If two angles of a triangles are equal and the third angle measures 110, then find the measure of each angle?

Let the angles be 110, x, x
$\therefore x+x+110^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 x=180^{\circ}-110^{\circ}$
$\Rightarrow \quad 2 x=70^{\circ}$
$\Rightarrow \quad x=35^{\circ}$
3. What is the name of side opposite to the angle 90 in a right angles triangle?

Hypotenuse
4. How many right angles does a right triangle has?

One.

> II Very Sfort Answer Questions

1. What is the difference between median and altitude?

Altitude always make right angle with base while median always bisects the base.
2. If one angle of a triangle is equal to the sum of other two then what is the measure of that angle?

It should be a right angle means its measure should be of 90°.

3. I iya walks 6 km due east and then 8 km due north. How far is she from her starting place?

By Pythagoras Theorem
$A C^{2}=A B^{2}+B C^{2}$
Or $A C^{2}=36+64=100$
$\operatorname{Or} \mathcal{A C}=\sqrt{100}=10 \mathrm{~cm}$
4. If one angle of an isosceles triangle is 90° then what is the measurement of other two angles?

Since it is an isosceles triangle
\therefore Two angles must be equal
So, $x+x+90^{\circ}=180^{\circ}$
of $2 \times 180^{\circ}-90^{\circ}$
Or $x=45^{\circ}$
Hence, both the angle should be of 45°.
5. What is the name of triangle in which two altitudes are two of its side?

Two altitudes are only available in right angle triangle, therefore it must be right angle triangle.
6. In $\Delta \mathcal{P Q} \mathcal{R} \mathcal{D}$ is the mid-point of $Q \mathcal{R}$. $\overline{P M}$ is \qquad .
$\overline{P D}$ is \qquad .

Is $Q \mathcal{M}=\mathcal{M} \mathcal{R} ?$
$\overline{P M}$ is altitude.
$\overline{P D}$ is me dian
$\mathcal{N}(Q, Q \mathcal{M} \neq \mathcal{M R}$ because \mathcal{M} is not the mid point of $Q \mathcal{R}$.
7. The lengths of two sides of a triangle are 12 cm and 15 cm . Between what two measure should the length of the third side fall?

Two sides are of 12 cm and 15 cm
The third side should lie between (15-12) to $(15+12)$ i.e, between 3 and 27.

```
I Short Answer Questions
```

1. In the above figure, find the length of side $\mathcal{A B}$.

Since giventriangle is a right-angled triangle.
Hence, by Pythagoras The orem,

$$
\begin{aligned}
& (A C)^{2}=(A B)^{2}+(B C)^{2} \\
& \Rightarrow(17)^{2}=(A B)^{2}+(15)^{2} \\
& \Rightarrow(A B)^{2}=(17)^{2}-(15)^{2} \\
& =289-225 \\
& \quad(A B)^{2}=64 \\
& \Rightarrow A \mathcal{A}=\sqrt{64}=8 .
\end{aligned}
$$

2. In the following figures, find the value of x.
1)

b)

a) Sum of interior opposite angles $=$ Exterior angle
$\Rightarrow x+90^{\circ}=155^{\circ}$
$\Rightarrow x-155^{\circ}-90^{\circ}=65^{\circ}$
b) Similarly,
$30^{\circ}+90^{\circ}=x$
$x=120^{\circ}$
3. The acute angles of a right angled triangle are in the ratio of 1: 2. Find the values of acute angles.

In this right angled triangle let the acute angles $6 e x$ and $2 x$.
$\mathcal{B y}$ angle sum property
$90^{\circ}+x+2 x=180^{\circ}$
$\Rightarrow 90^{\circ}+3 x=180^{\circ}$
$\Rightarrow 3 x=180^{\circ}-90^{\circ}$
$\Rightarrow 3 x=90$
$\Rightarrow x=\frac{90^{0}}{3}=30^{\circ}$
Hence, acute angles are 30° and 30°
4. If two angles of a triangle are equal and third angle is of 110 . Find the equal angles.

Let the equal angles be x
$\therefore x+x=110^{\circ}=180^{\circ}$ (By angle sum property)
$\Rightarrow 2 x+110^{\circ}=180^{\circ}$
$\Rightarrow 2 x=180^{\circ}-110^{\circ}$
$\Rightarrow 2 x=70^{\circ}$
$\Rightarrow x=\frac{70^{0}}{2}$
$\Rightarrow x=35^{\circ}$
Hence, equal angles are of 35°
5. Is there a triangle whose sides have lengths $10.2 \mathrm{~cm}, 5.8 \mathrm{~cm}$ and 4.5 cm ?

Since sides are:
$10.2 \mathrm{~cm} \quad 5.8 \mathrm{~cm}, 4.5 \mathrm{~cm}$
a) $10.2+5.8=16>4.5$
b) $10.2+4.5=14.7>5.8$
c) $5.8+4.5=10.3>10.2$

Since sum of any two sides is greater than third side.
Hence, there may be a triangle with these sides.

1. Find the value of \boldsymbol{x}

In $\Delta \mathcal{A B D}, \angle \mathcal{D}=90^{\circ}$
(Me dian of isosceles triangle)
$\mathcal{H e n c e}, \triangle \mathcal{A B C}$ is right angled triangle

$\therefore A B^{2}=B D^{2}+A D^{2}$
$\Rightarrow(37)^{2}=(12)^{2}+\left(\frac{x}{2}\right)^{2}$
$\Rightarrow 1369=144+\left(\frac{x}{2}\right)^{2}$
$\Rightarrow \frac{x^{2}}{4}=1369-144=1225$
$\Rightarrow x^{2}=4 x 1225$
$\Rightarrow x=\sqrt{4 \times 1225}$
$x=2 \sqrt{5 \times 5 \times 7 \times 7}$
$=2 \times 5 \times 7=70$

II Sfort Answer Questions

1. Find the value of the unknown interior angle x in the following figures.

(i)

(ii)

i) Exterior angle $=S$ um of interior opposite angles.
$100=x+70$
Or $x=30$
ii) Exterior angle $=$ Sum of interior opposite angles.
$120=x+60^{\circ}$
Or $x=60^{\circ}$
iii) Exterior angle $=S$ um of interior opposite angles
$75=35^{0}+x$
Or $x=40^{\circ}$
2. Is it possible to have a triangle with the following sides?
i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
i) Suppose such a triangle is possible Now the sum of any two sides must be greater than the third side

Is. $2+3>5$?
$\mathcal{N} 0$.
The triangle is not possible.
ii) Similarly

Is $3+6>7$? Yes
Is $6+7>3$? Yes
Is $3+7>6 ? \quad$ Yes
\therefore The triangle is possible
3. $\mathcal{A B C}$ is a triangle, right- angled at \mathcal{C}. If $\mathcal{A B}=25 \mathrm{~cm}$ and $\mathcal{A C}=7 \mathrm{~cm}$, find $\mathcal{B C}$. $\mathcal{A B}=25 \mathrm{~cm}$ and $\mathcal{A C}=7 \mathrm{~cm}$, find $\mathcal{B C}=$?
\mathcal{B} P Pythagoras theorem
$A B^{2}=A C^{2}+B C^{2}$
$\Rightarrow(25)^{2}=(7)^{2}+B C^{2}$
$B C^{2}=625-49$
$B C^{2}=576$
$\mathcal{B C}=\sqrt{576}=24 \mathrm{~cm}$

4. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the Gase of the tree. Find the original height of the tree.

Original height of tree $=\mathcal{A C}+\mathcal{B A}$
\mathcal{B} Y Pythagoras theorem
$A B^{2}=A C^{2}+B C^{2}$
$A B^{2}=(5)^{2}+(12)^{2}$

$$
\begin{aligned}
& =25+144=169 \\
& \mathcal{A B}=\sqrt{169}=13 .
\end{aligned}
$$

5. The diagonals of a rfombus measure 16 cm and 30 cm . Find its perimeter.

Since the diagonals of rhombus bisecteach other at 900
In $\triangle \mathcal{A} O \mathcal{B}$
\mathcal{B} y Pythagoras Theorem
$A B^{2}=A O^{2}+B O^{2}$
$A B^{2}=8^{2}+15^{2}$
$A B^{2}=64+225=289$
$\mathcal{A B}=\sqrt{289}=17 \mathrm{~cm}$
\mathcal{N} ow the perimeter of rhombus $=4 \chi$ side
$=4 \times 17=68 \mathrm{~cm}$
6. In given figure, $\triangle \mathcal{A B C}, \mathcal{D E} \| \mathcal{B C}$. Find the value x, y and z.

In $\triangle \mathcal{A B C}$,
$\because \mathcal{D E} \| \mathcal{B C}$ and $\mathcal{A B}$ is transversal
$\therefore \angle 30^{\circ}$ (Corresponding $\mathcal{A C}$ as transversal

$$
\angle y=40^{\circ}
$$

Now by angle sum property of triangle,
$\angle x+\angle y+\angle z=180^{\circ}$
$\angle z+30+40=180^{\circ}$

$$
\angle Z=110^{\circ}
$$

Long Answer Questions

1. The length of two sides of a triangle are $12 \mathrm{~cm}, 15 \mathrm{~cm}$. Between what two measures should the length of third ball.

In a triangle sum of the lengths of the sides is always greater than the side.
Let the third side be x.
\therefore We can say
$12+15>x$
$\Rightarrow 27>x \Rightarrow x<27$
$\Rightarrow 15+x>12-15$
$\Rightarrow x>12-15$
$\Rightarrow x>-3$

Again,
$x+12>15$
$\Rightarrow x>15-12$
$\Rightarrow x>3$
We know $3>-3$
$\Rightarrow x>3$ and $x<27$
So, the length of third side should fall between 3 cm and 27 cm .
2. In figures (i) and (ii), then find the values of a, b and c.

(i)

(ii)

In figure (i)
$\angle \mathcal{A}+\angle \mathcal{B}+\angle C=180^{\circ}$
[since, sum of all angles of a triangle is 180]
$\Rightarrow 90^{\circ}+a+70^{\circ}=180^{\circ}$
$\Rightarrow a+160^{\circ}=180^{\circ}$
$\Rightarrow a=180^{\circ} \cdot 160^{\circ}=20^{\circ}$
Since, c is an the exterior angle of $\triangle \mathfrak{A B D}$.
$\therefore \angle C=a+30^{\circ}=20^{\circ}+30^{\circ}=50^{\circ}$
[exterior angle $=$ sum of interior angles]
Since, 6 is an the exterior angle of $\triangle A D C$
$\angle 6=60^{\circ}+70^{\circ}=130^{\circ}$
[exterior angles $=$ sum of opposite interior angles]
In figure (ii).
In $\triangle P Q S, \angle Q P S+\angle P Q S+\angle P S Q=180^{\circ}$
[since, sum of all angles of a triangles is 180°]
$\Rightarrow 55^{\circ}+60^{\circ}+a=180^{\circ} \Rightarrow 115^{\circ}+a=180^{\circ}$
$\therefore a=180^{\circ}-115^{\circ}=65^{\circ}$
\mathcal{N} ow, $a+6=180^{\circ}$
[since, line ar pair fias sum of 180]
$\Rightarrow 65^{\circ}+6=180^{\circ}$
$\Rightarrow 6=180^{\circ}-65^{\circ}=115^{\circ}$
In $\triangle P S R, \angle P S R+\angle S P R+\angle P R S=180^{\circ}$
[since sum of all angles of a triangle is 180°]
$\Rightarrow 115^{\circ}+c+40^{\circ}=180^{\circ}$
$\Rightarrow c=180^{\circ}-155^{\circ}=25^{\circ}$
3. In figure, find the measures of $\angle \mathscr{P O} \mathcal{N}$ and $\angle \mathcal{N} P O$

[^0]
$\angle L O \mathcal{M}=\angle P O \mathcal{N}$
[since, vertically opposite angles are equal]
$$
\therefore \angle P O \mathcal{N}=90^{\circ}
$$

In $\angle P O \mathcal{N}$
$\angle P O \mathcal{N}+\angle \mathcal{N} P O+\angle O \mathcal{N} P=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathcal{N} P O+70^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathcal{N} P O=180^{\circ}-160^{\circ}=20^{\circ}$
4. In figure, $Q P \| \mathcal{R T}$. Find the values of x and y.

Given, $Q \mathcal{P} \| \mathcal{R T}$
$\angle x=\angle P R \mathcal{I}$
[since, alternate angles are equal]
$\angle x=70$
In $\triangle \mathcal{P Q} \mathcal{R}$,

$$
x+30+y=180
$$

[since, sum of all angles of a triangle is 180]
$\Rightarrow 70+30+y=180$
$\Rightarrow 100+y=180 \Rightarrow y=180-100=80$.
5. O is any point in the interior of a triangle $\mathcal{P Q} \mathcal{R}$ and $Q O$ produced meets $\mathcal{P R}$ at \mathcal{A} (infig.) Is:
a) $\mathcal{P Q}+\mathcal{P A}>Q \mathcal{A}$?
6) $\mathcal{P Q}+\mathcal{P A}>O Q+O \mathcal{A}$?
c) $\mathcal{P Q}+\mathcal{P A}+\mathcal{A R}>O Q+O \mathcal{A}+\mathcal{A R} ?$
d) $\mathscr{P Q}+\mathscr{P R}>\boldsymbol{O} \boldsymbol{Q}+O \mathcal{R} ?$
e) $\mathcal{P Q}+Q \mathcal{R}+\mathscr{P R}>O P+O Q+O R ?$

a) $\mathcal{P Q}+\mathcal{P A}>Q \mathcal{A}$?

Yes, Gecause sum of two sides of a triangle is always greater than the third side.
b) $\mathcal{P Q}+\mathcal{P A}>O Q+O \mathscr{A}$?

Yes, because : $\mathcal{P Q}+\mathcal{P A}>Q \mathcal{A}$
$\mathcal{P Q}+\mathcal{P A}>Q O+O \mathscr{A}[Q \mathcal{A}=Q O+O \mathscr{A}]$
c) $\mathcal{P Q}+\mathcal{P A}+\mathcal{A R}>O Q+O \mathcal{A}+\mathcal{A R}$

Yes because: $\mathcal{P Q}+\mathcal{P A}>O Q+O \mathcal{A}$
$\mathcal{A d d i n g} \mathcal{A R}$ in 6oth sides, we get
$\mathcal{P Q}+\mathcal{P A}+\mathcal{A R}>O Q+O \mathscr{A}+\mathcal{A R}$
d) $P Q+P R>O Q+O R$

Yes because, $P Q+\mathcal{P A}>Q O+O \mathcal{A}(1)$
$O \mathcal{A}+\mathcal{A R}>O \mathcal{R}$
Adding (1) and (2) we get
$\mathcal{P Q}+\mathcal{P A}+O \mathcal{A}+\mathscr{A R}>Q O+O \mathscr{A}+O \mathcal{R}$
$P Q+P R>O Q+O R$
e) $P Q+Q \mathcal{R}+\mathscr{P} \mathcal{R}>O P+O Q+O R$

Yes, because
$P Q+P R+>O Q+O R \cdots 1$
$\mathcal{P} Q+Q \mathcal{R}+>O P+O \mathcal{R}$ \qquad 2
$\mathscr{P R}+\mathcal{P Q}>O P+O Q$ \qquad 3

Adding (1), (2) and (3) we get
$2(P Q+P R+Q R)>2(O P+O Q+O R)$

1. Find the value of the unknown exterior angle \boldsymbol{x} in the following diagrams:

(i)

(ii)

i) Exterior angle $=S$ um of interior opposite angles
$x=50^{\circ}+70^{\circ} \Rightarrow x=120^{\circ}$
ii) Exterior angle $=S$ um of interior opposite angles
$x=30^{\circ}+40^{\circ} \Rightarrow x=70^{\circ}$
iii) Exterior angle $=S$ um of interior opposite angles
$x=50^{\circ}+50^{\circ} \Rightarrow x=100^{\circ}$
2. Find the value of the unknown \boldsymbol{x} in the following diagrams:

(i)

(ii)

(iii)
i) $\mathcal{B y}$ angle sum property of a triangle

$$
\begin{aligned}
& x=50^{\circ}+60^{\circ}=180^{\circ} \\
& \text { Or } x=70^{\circ}
\end{aligned}
$$

ii)) $\mathcal{B y}$ angle sum property of a triangle

$$
\begin{aligned}
& x+x+x=180^{\circ} \\
& \text { Or } x=60^{\circ}
\end{aligned}
$$

iii) $\mathcal{B y}$ angle sum property

$$
\begin{aligned}
& x+2 x+60^{\circ}=180^{\circ} \\
& \text { Or } 3 x=180^{\circ}-90^{\circ} \text { Or } x=30^{\circ}
\end{aligned}
$$

3. The measure of three angles of a triangle is in the ratio 5:3:1. Find the measures of these angles.

Let the three angles be $5 x, 3 x$ and x
$\mathcal{B} y$ angle sum property of triangle.

$$
\begin{aligned}
& x+3 x+5 x=180^{\circ} \\
& \text { or } 9 x=180^{\circ} \text { or } x=\frac{180^{\circ}}{9}=20^{\circ}
\end{aligned}
$$

\therefore The angles of triangle are $x=20$

$$
\begin{aligned}
& 3 x=3 \times 20^{\circ}=60^{\circ} \\
& 5 x=5 \times 20^{\circ}=100^{\circ}
\end{aligned}
$$

4. In given figure $\triangle \mathcal{P Q} \mathcal{R}, \mathcal{P}=\mathcal{P R}$. Find the measure of $\angle Q$ and $\angle \mathcal{R}$.

In $\triangle P Q \mathcal{R}$
$\because P Q=P R$
$\therefore \angle Q=\angle R=x$
[Equal sides have equal opposite angles]
$\mathcal{B y}$ angle sum property of triangle
$x+x+30^{\circ}=180^{\circ}$
$2 x+30^{\circ}=180^{\circ}$
$2 x=150^{\circ} \quad$ or $x=75^{\circ}$
\therefore The measure of $\angle Q$ and $\angle R=75^{\circ}$

[^0]: In $\triangle \mathcal{L O M}, \angle O \mathcal{L M}=\angle O \mathcal{M L}+\angle \mathcal{L O M}=180$
 $\Rightarrow 70^{\circ}+20^{\circ}+\angle L O \mathcal{M}=180^{\circ}$
 $\Rightarrow 90^{\circ}+\angle \mathcal{L O M}=180^{\circ}$
 $\Rightarrow \angle L O \mathcal{M}=180^{\circ}-90^{\circ}=90^{\circ}$

