Grade IX
Lesson: 4 Linear Equations in Two variables [4.1 to 4.4]

I. Multiple choice questions

1. A line ar equation in two variables is of the form $a \boldsymbol{x}+b y+c=0$, where
a) $a \neq 0, \quad b \neq 0$
6) $a=0, \quad b \neq 0$
c) $a \neq 0, b=0$
d) $a=0, c=0$

$$
\text { a) } a \neq 0, \quad b \neq 0
$$

2. Express $5 \boldsymbol{x}=-8 y$ in the form of $a \boldsymbol{x}+6 y+c=0$

$$
5 x=-8 y
$$

Or

$$
5 x+8 y+0=0
$$

3. Tell whether the equation $\boldsymbol{x}(\boldsymbol{x}+4) \cdot \boldsymbol{x}^{2}+3 y+5=0$ is a liner equation in 2 variables or not.

$$
\begin{aligned}
& x(x+4)-x^{2}+3 y+5=0 \\
& \text { Or } \quad x^{2}+4 x-x^{2}+3 y+5=0 \\
& \text { Or } \quad 4 x+3 y+5=0
\end{aligned}
$$

This equation is in the form $a x+b y+c=0$, where $a=4,6=-3, c=5$. Hence, this is a line ar equation in two variables.
4. Tell whether the equation

$$
\begin{aligned}
& \boldsymbol{x}(\boldsymbol{x}+2) \cdot \boldsymbol{x}^{2}+y(y-3) \cdot \boldsymbol{y}^{2}=0 \text { is an equation of line ar equation in } 2 \text { variables or not. } \\
& \begin{aligned}
& x(x+2)-x^{2}+y(y-3)-y^{2}=0 \\
& \text { Or } \\
& \Rightarrow 2 x-3 y=0 \\
& x^{2}+2 x-x^{2}+y^{2}-3 y-y^{2}=0 \\
& \Rightarrow 2 x-3 y+0=0
\end{aligned}
\end{aligned}
$$

This equation is in the form $a x+b y+c=0$, where $a=2,6=-3, c=0$. Hence this is a linear equation in two variables.
5. Express the following linear equations in the form $a \boldsymbol{x}+6 y+c=0$ and indicate the value of a, b and c in each case :
i) $3 x+4 y=5$
ii) $3 x=\frac{8}{3} y+10$
iii) $5 y=10 x-7$
iv) $2 x+8=11 y$
v) $x=5 y$
vi) $\frac{3}{5} x=2 y$
vii) $\boldsymbol{8 x}=7$
viii) $4 y=\frac{8}{3}$
ix) $5=6 y$
x) $12=\frac{\mathbf{5}}{\mathbf{2}} x$
i) $3 x+4 y=5 \Rightarrow 3 x+4 y-5=0$

This equation is in the form $a x+b y+c=0 \quad \mathcal{N} o w$, on comparing, we have

$$
a=3, b=4, c=5
$$

ii) $3 x=\frac{8}{3} y+10 \Rightarrow 3 x-\frac{8}{3} y-10$

This equation is in the form $a x+6 y+c=0 \mathcal{N}(o w$, on comparing, we have $a=3,6=\frac{-8}{3}, c=-10$
iii) $5 y=10 x-7 \Rightarrow-10 x+5 y+7=0$

This equation is in the form $a x+6 y+c=0 \mathcal{N}(o w$, on comparing, we have $a=-10, b=5, c=7$
iv) $2 x+8=11 y \Longrightarrow 2 x-11 y+8=0$

This equation is in the form $a x+6 y+c=0 \mathcal{N}(N w$, on comparing, we have $a=2,6=-11, c=8$
v) $x=5 y \Longrightarrow x-5 y=0 \Longrightarrow 1 x-5 y+0=0$

This equation is in the form $a x+\sigma y+c=0 \mathcal{N}(o w$, on comparing, we have $a=1, b=-5, c=0$
vi) $\frac{3}{5} x=2 y \Rightarrow \frac{3}{5} x-2 y=0 \Rightarrow \frac{3}{5} x-2 y+0=0$
$\mathcal{T h}$ is equation is in the form $a x+6 y+c=0 \mathcal{N}$ ow, on comparing, we have
$a=\frac{3}{5}, b=-2, c=0$
vii) $8 x=7 \Longrightarrow 8 x-7=0 \Longrightarrow 8 x+0 \cdot y-7=0$

This equation is in the form $a x+b y+c=0 \mathcal{N}$ ow, on comparing, we have
$a=8,6=0, c=-7$
viii) $4 y=\frac{8}{3} \Rightarrow 4 y-\frac{8}{3}=0 \Rightarrow 0 . x+4 y-\frac{8}{3}=0$

This equation is in the form $a x+6 y+c=0 \mathcal{N}$ ow, on comparing, we have
$a=0, b=4, c=-\frac{8}{3}$
ix) $5=6 y \Longrightarrow-6 y+5=0 \Rightarrow 0 \cdot x-6 y+5=0$

This equation is in the form $a x+6 y+c=0 \mathcal{N}$ (ow, on comparing, we have

$$
\begin{aligned}
& a=0, b=-6, c=5 \\
& \text { x) } 12=\frac{5}{2} x \Rightarrow-\frac{5}{2} x+12=0 \quad \Rightarrow-\frac{5}{2} x+0 \cdot y-12=0
\end{aligned}
$$

This equation is in the form $a x+\sigma y+c=0 \mathcal{N}$ (ow, on comparing, we have

$$
\mathcal{A}=-\frac{5}{2}, \mathfrak{b}=0, c=-12
$$

6.A rabbit covers y meters distance by walking 10 metres in slow motion and the remaining by x jumps, each jump contains 2 metres. Express this information in linear equation.

Distance covered by rabbit in x jumps is $2 \chi x$, i.e. $2 x$ metres.

According to question,
$y=10+2 x$

I Sfort answer questions

7. The cost of a pen is three times the cost of a pencil. Write a linear equation in two variables to represent this statement.
$($ Take the cost of a pen to be Rs. \boldsymbol{x} and that of a pencil by Rs. y)
Let the cost of a pen to be Rs. x and that of a pencilby Rs.y.
According to question,

Hence, this is required equations.
8. Age of \boldsymbol{x} is more than the age of y by 10 years. Express this statement in linear equation.

According to question,

$$
\begin{gathered}
x=y+10 \\
\Rightarrow x \cdot y-10=0 \Rightarrow 1 \cdot x-1 \cdot y-10=0
\end{gathered}
$$

This equation is in the form $a x+b y+c=0$ where $a=1, b=-1, c=-10$

Hence this is required line ar equation.
9. Write the linear equation such that each point on its graph fas an ordinate 3 times its abscissa.

Let x be the abscissa and y the ordinate

According to question, $y=3 x \Rightarrow y-3 x=0$

Hence this is required line ar equation.
10. When a number is divided by another number, quotient and remainder obtained are 9 and 1 respectively. Express this information in line ar equation.

Let the dividend be y and the divisor be x

We know that,

Dividend $=$ Divis or χ Quotient + Re mainder
\therefore According to question,

$$
y=9 x+1
$$

11. The sum of a two -digit number and the number obtained by reversing the order of its digits is 88 . Express this information in line ar equation.

Let unit's digit be x and ten's digit be y

Then original number be $(10 y+x)$
after reversing the order of digits new number be $(10 x+y)$

According to question,
$10 y+x+10 x+y=88$
$11 x+11 y=88$
$x+y=8$ (dividing 6oth sides 6y11)
12. In a one-day International Cricket match, placed between India and England in Kanpur, two Indian batsmen, Yuvaraj Singh and $\mathcal{M} . S$. Dhoni scored 200 runs in a partnership including 5 extra runs. Express this information in the form of an equation.

Let x be the number of runs scored by Yuvaraj Singh and y be the number of runs scored by M.S. Dhoni.

According to the questions,

$$
\begin{aligned}
& x+y+5=200 \\
& \text { Or, } x+y+5-200=0 \\
& \text { Or, } x+y-195=0
\end{aligned}
$$

Hence, this is the required equation.
13. Write a linear equation on which the point of the form $(a,-a)$ always lies.
$\mathcal{H e r e} x=a, y=-a$

That means for $x=a$, we get $y=-a$ and vice versa.

Therefore, $x+y=0$ and $-x-y=0$ are equations for which the point of the form $(a,-a)$ always lies.
II. Multiple choice questions

1. The Line ar equation $3 y-5=0$, represented as $a \boldsymbol{x}+6 y+c$, fias
a) a unique solution
6) infinitely many solutions
c) two solutions
d) no solution
7) infinite ly many solutions
2. $\boldsymbol{x}=5, y=-2$ is a solution of the linear equation
a) $2 x+y=9$
b) $2 x-y=12$
c) $x+3 y=1$
d) $x+3 y=0$

Substituting $x=5$ and $y=-2$ in $\mathcal{L H S}$ of $2 x-y=12$ we have

$$
\mathcal{L H S}=2 \times 5 \cdot(-2)=10+2=12=\mathcal{R H S}
$$

\therefore Correct option is (6)
3. Let y varies directly as \boldsymbol{x}. If $y=24$, when $\boldsymbol{x}=8$ then the linear equation is
a) $3 y=x$
b) $y=x$
c) $y=4 x$
d) $y=3 x$
d) $y=3 x$
4. Write one solution of $\boldsymbol{\pi} \boldsymbol{x}+\boldsymbol{y}=\mathbf{5}$.

$$
\pi x+y=5
$$

$$
y=5-\pi x
$$

On putting $x=0$ in(i), we have

$$
\begin{gathered}
Y=5-\pi x 0 \\
\Rightarrow y=5-0 \Rightarrow y=5
\end{gathered}
$$

Hence, $x=0, y=5$ is a solution of $\pi x+y=5$
5. Find a, if line ar equation $3 \boldsymbol{x}$-ay $=6$ fas one solution as $(4,3)$

On putting $x=4$ andy $y=3$ in the equation $3 x-a y=6$, we fave
$3 \times 4-a \times 3=6$
$\Rightarrow 12-3 a=6 \Rightarrow 12-6=3 a \Rightarrow 3 a=6$.
$\Rightarrow \quad a=\frac{6}{3} \Rightarrow a=2$
Hence, $a=2$.
6. Find the value of 6 , if $\boldsymbol{x}=5, y=0$ is a solution of the equation $3 \boldsymbol{x}+5 y=6$

On putting $x=5$ and $y=0$ in the equation $3 x+5 y=6$, we have
$3 \times 5+5 \times 0=6$

$$
15+0=6 \Rightarrow 6=15
$$

Hence, $6=15$.
7. For what value of $\kappa, x=2$ and $y=-1$ is a solution of $x+3 y-k=0$

On putting and $y=-1$ in the equation $x+3 y-k=0$,

$$
\begin{aligned}
& \text { We fave, } \\
& 2+3 x(-1)-k=0 \\
& \Rightarrow \quad 2-3-k=0 \Rightarrow \quad-1-k=0 \\
& \Rightarrow \quad k=-1
\end{aligned}
$$

8. If a line represented by the equation $3 \boldsymbol{x}+a y=8$ passes through $(1,1)$, then find the value of a.
$3 x+a y=8$

On putting $x=1$ and $y=1$ in (i) we have
$3 \chi 1+a \times 1=8 \Rightarrow 3+a=8$
$\Rightarrow a=8-3 \Rightarrow a=5$
9. Find the value of $\boldsymbol{\beta}$, so that $\chi=1$ and $y=1$ is a solution of the equation $5 \beta x+30 \beta y=70$.

Ans: On putting $x=1$ and $y=1$ is equation
$5 \beta x+30 \beta y=70$, we have
$5 \beta \times 1+30 \beta \times 1=70 \Rightarrow 5 \beta+30 \beta=70$
$\Rightarrow \quad 35 \beta=70 \Rightarrow \beta=\frac{70}{35} \Rightarrow \beta=2$
10. How many solution(s) of the line ar equation $2 \boldsymbol{x}-5 y=7$ has?
\mathcal{A} line ar equation in two variables has infinitely many solutions, therefore, the line ar equation $2 x-5 y=7$ fas infinitely many solutions.
11. If $(2,0)$ is a solution of the line ar equation $2 x+3 y=k$, then find the value of k.

On putting $x=2$ and $y=0$ in the equation $2 x+3 y=k$, we have
$2 \times 2+3 \times 0=k$
$4+0=\kappa \Rightarrow k=4$

II Sfort answer questions
12. Find two solutions for the equation $4 \boldsymbol{x}+3 y=24$. How many solutions of this equation are possible?

$$
\begin{aligned}
& 4 x+3 y=24 \\
& \text { On putting } x=0 \text {, we have } \\
& 4 x 0+3 y=24 \Rightarrow 0+3 y=24 \Rightarrow 3 y=24 \\
& \Rightarrow \quad y=\frac{24}{3} \Rightarrow y=8
\end{aligned}
$$

On putting $y=0$, we have
$4 x+3 x 0=24 \Rightarrow 4 x+0=24 \Rightarrow 4 x=24$
$\Rightarrow \quad x=\frac{24}{4} \Rightarrow x=6$
Therefore, two solutions are $(0,8)$ and $(6,0)$.

Given equation is a line ar equation in two variables. Therefore, it has infinitely many solutions.
13. Write $3 \boldsymbol{x}+2 y=18$ in the form of $y=m \boldsymbol{x}+c$. Find the value of m and c. Is $(4,3)$ lie s on this line ar equation?

Give n: $3 x+2 y=18$

$$
\Rightarrow \quad y=\frac{18-3 x}{2}=-\frac{3}{2} x+9 \ldots . . \text { (i) }
$$

On comparing, we get

$$
m=\frac{3}{2} \text { and } c=9
$$

Substitute $x=4$ in (i), we get

$$
y=-\frac{3}{2} \times 4+9=-6+9=3
$$

Hence, point $(4,3)$ lies on $3 x+2 y=18$

III Short answer questions

14. Determine the point on the graph of the linear equation $2 \boldsymbol{x}+5 y=19$, whose ordinate is $1 \frac{1}{2}$ times its abscissa.

Let x be the abscissa and y be the ordinate of the given line $2 x+5 y=19$

According to the questions,

$$
\begin{aligned}
& y \\
&=1 \frac{1}{2} x \\
& \Rightarrow \quad y=\frac{3}{2} x
\end{aligned}
$$

On putting $y=\frac{3}{2} x \operatorname{in} 2 x+5 y=19$, we have

$$
2 x+5 \times \frac{3}{2} x=19 \Rightarrow 4 x+5 x=38
$$

$$
\Rightarrow \quad 19 x=38 \Rightarrow \quad x=\frac{38}{19} \Rightarrow x=2
$$

$$
y=\frac{3}{2} x \Rightarrow y=\frac{3}{2} \times 2 \Rightarrow y=3
$$

Hence, the required point is (2,3)
15. For what value of c, the linear equation $2 \boldsymbol{x}+c y=8$, has equal values of \boldsymbol{x} and y for its solution

Given equation is $2 x+c y=8$.....(i)

It is given the value of x is equal to the value of y,
i.e. $\quad x=y$

On putting $x=y$ in (i), we have

$$
\begin{array}{cc}
& 2 x+c x=8 \Rightarrow c x=8-2 x \\
\Rightarrow & c=\frac{8-2 x}{x}, x \neq 0
\end{array}
$$

This is the required value of c.
16. The angles of a triangle are, $2 \boldsymbol{x}, 3 \boldsymbol{x}$ and $5 \boldsymbol{x}$. Find \boldsymbol{x} and the angles of the triangle.
$\because S$ um of angles of a triangle is 180°
$\therefore 2 x+3 x+5 x=180^{\circ}$

$$
\begin{gathered}
10 x=180^{0} \\
x=18^{0}
\end{gathered}
$$

The angles of the triangle are
$2 x=2 \times 18=36^{0} ; \quad 3 x=3 \times 18=54^{0}$ and $\quad 5 x=5 \times 18=90^{0}$

Hence, angles are $36^{0}, 54^{0}$ and 90°

I Long answer questions

17. For what value of $p ; \boldsymbol{x}=2, y=3$ is a solution of $(p+1) \boldsymbol{x}-(2 p+3) y-1=0$?
i. Write the equation.
ii. How many solutions of this equation are possible?
iii. Is this line passes through the point (-2,3)? Give justification.

Given: $(p+1) x-(2 p+3) y-1=0$
Put $x=2$ and $y=3$ in (i) we get
$\Rightarrow \quad(p+1) 2-(2 p+3) 3-1=0$

$$
\Rightarrow \quad 2 p+2-6 p-9-1=0
$$

$$
\Rightarrow \quad-4 p+2-10=0
$$

$$
\Rightarrow \quad-4 p=8
$$

$$
\Rightarrow \quad p=-2
$$

(i) Substitute the value of p in (i), we get

$$
\begin{array}{ll}
(-2+1) x-[2(-1)+3] y-1=0 \\
\Rightarrow & -x-y-1=0 \\
\Rightarrow & x+y+1=0 \ldots .(i i)
\end{array}
$$

(ii) Since the given equation is a linear equation in two variables. Therefore, it has infinitely many solutions.
(iii) Substitute $x=-2$ and $y=3$ in L.H.S. of (ii) we have
L.H.S. $=-2+3+1=2 \neq$ R.H.S.

Hence, the line $x+y+1=0$ will not pass through the point $(-2,3)$.
18. (i) if the point $(4,3)$ lies on the linear equation $3 x-a y=6$, find whether $(-2,-6)$ also lies on the same line?
(ii) Find the coordinate of the point lies on above line
a. abscissa is zero
6. Ordinate is zero
(i) If point $(4,3)$ lies on $3 x-a y=6$, then

$$
3 \times 4-a \times 3=6
$$

$$
\begin{array}{ll}
\Rightarrow & 12-3 a=6 \\
\Rightarrow & -3 a=6-12=-6 \\
\Rightarrow & 3 a=6
\end{array}
$$

$$
\Rightarrow \quad a=2
$$

So, line ar equation became $3 x-2 y=6 \ldots .(i)$
Substitute $x=-2$ and $y=-6$ and L.H.S., of (i), We get

$$
\begin{aligned}
\text { L.H.S., } & =3 \times(-2)-2 \times(-6) \\
& =-6+12=6 \\
& =\text { R.H.S }
\end{aligned}
$$

Hence $(-2,-6)$ lies on the line $3 x-2 y=6$
(ii) (a) when abscissa is zero, it means $x=0$

From (i) we get
$3 x 0-2 x y=6$
$\begin{array}{ll}\Rightarrow & -2 y=6 \\ \Rightarrow & y=-3\end{array}$
\therefore Required point is $(0,-3)$
(6) When ordinate is zero i.e. $y=0$

From (i) we get
$3 x+-2 \not x 0=6 \Rightarrow x=2$
\therefore Required point is $(2,0)$

I II Multiple crioice questions

1. If point $(3,0)$ lies on the graph of the equation $2 \boldsymbol{x}+3 y=k$, then the value of k is
a) 6
b) 3
c) 2
d) 5

On putting $x=3$ and $y=0$ in the equation $2 x+3 y=\mathcal{K}$, we have

$$
\begin{aligned}
& 2 \times 3+3 \times 0=k \\
& \Rightarrow 6+0=k \Rightarrow k=6
\end{aligned}
$$

\therefore Correct option is (a)
2. The graph of the linear equation $3 \boldsymbol{x}+5 y=15$ cuts the \boldsymbol{x}-axis at the point
a) $(5,0)$
6) $(3,0)$
c) $(0,5)$
d) $(0,3)$

At $x-a x$ is, $y=0$

On putting $y=0$ in $3 x+5 y=15$ we have

$$
\begin{aligned}
& \Rightarrow \quad 3 x+5 \times 0=1 \\
& \Rightarrow 3 x=15 \Rightarrow x=5
\end{aligned}
$$

\therefore Correct option is (a)
3. For one of the solutions of the equation $a \boldsymbol{x}+6 y+c=0$, \boldsymbol{x} is negative and y is positive then surely a portion of line lies in the
a) first quadrant
6) second quadrant c) third quadrant
d) fourth quadrant
6) second quadrant
4. If we multiply or divide both sides of alinear equation with a non-zero number, then the solution of the linear equation:
a) crianges
b) remains the same
c) changes in case of multiplication only
d) changes in case of division only

If we multiply or divide both sides of a line ar equation with a non-zero number, then graph will be same in both cases. Thus, the solution of the line ar equation remains the same.
\therefore Correct option is (6)
5. How many line ar equations in \boldsymbol{x} and y can be satisfied by $\boldsymbol{x}=1$ and $y=2$?
a) Only one
b) \mathcal{T} wo
c) Infinitely many
d) Three

As point (1,2) lies ongraph and through one point infinite lines can pass. So, we get infinitely many line ar equations.
\therefore Correct option is (c)
6. Is the point $(0,3)$ lie on the graph of the linear equation $3 \boldsymbol{x}+\boldsymbol{4} \boldsymbol{y}=12$?

$$
3 x+4 y=12
$$

On putting $x=0$ and $y=3$ in the given line ar equation we have

$$
3 \times 0+4 x^{3}=12
$$

$\Rightarrow 0+12=12$
$\Rightarrow 12=12$, true

So, the point $(0,3)$ lies on the graph of the linear equation $3 x+4 y=12$
7. At what point the graph of the line ar equation $\boldsymbol{x}+y=5$ cuts the \boldsymbol{x}-axis?

At x-axis $\quad y=0$
On putting $y=0$ in $x+y=5$, we have

$$
x+0=5 \Rightarrow x=5
$$

Therefore the graph of the line ar equation $x+y=5$ cuts the x axis at $(5,0)$
8. At what point the graph of the line ar equation $2 \boldsymbol{x}-\boldsymbol{y}=7$ cuts the y-axis.

At y-axis $x=0$
On putting $x=0$ in $2 x-y=7$, we have

$$
\begin{aligned}
& 2 x 0-y=7 \\
& \Rightarrow 0-y=7 \\
& \Rightarrow y=-7
\end{aligned}
$$

Therefore, the graph of the line ar equation $2 x-y=7$ cuts the y-axis at ($0,-7$).
9. Draw the graph using the values of x, y as given in the table

x	0	5
y	5	0

10. Draw the grapf using the values of x, y as given in the table

$$
\mathrm{Y}
$$

e

11. Draw the graph of each of the following linear equations in two variables
i) $x+2 y=4$
ii) $3 x+2 y=6$
iii) $5 x-y=10$
iv) $y=x$
v) $y=-x$
vi) $y=5 x$
vii) $15+3 x+y=0$
i) $x+2 y=4$

x	0	4	2
y	2	0	1

$\mathcal{H e r e}$, points are $(0,2),(4,0)$ and $(2,1)$

ii) $3 x+2 y=6$

x	0	2	-2
y	3	0	6

iii) $5 x-y=10$

x	0	2	1
\mathcal{Y}	-10	0	-5

Here, points are $(0,-10),(2,0)$ and (1,-5).

iv) $y=x$

x	0	5	-5
y	0	5	-5

Here, points are $(0,0),(-1,1)$ and $(4,-4)$

v) $y=-x$

x	0	-1	4
y	0	1	-4

Here, Points are $(0,0)(-1,1)$ and $(4,-4)$

vi) $y=5 x$

x	0	1	-1
y	0	5	-5

Here, Points are $(0,0)(1,5)$ and $(-1,5)$

G
,
vii) $15+3 x+y=0$

x	0	1	-1
y	0	5	-5

$\mathcal{H e r e}$, Points are $(0,0)(1,5)$ and $(-1,-5)$

12. Find the solution of the line ar equation
$\boldsymbol{x}+2 y=8$. Which represents a point on the
i) \boldsymbol{x}-axis
ii) \boldsymbol{y}-axis
(i) For $x-a x i s, y=0$

On putting $y=0$ in $x+2 y=8$, we fiave
$x+2$ x $0=8 \Rightarrow x=8$
(ii) For y-axis, $x=0$

On putting $x=0$ in $x+2 y=8$, we have
$0+2 y=8 \Rightarrow y=4$
Hence, point $(8,0)$ is a point on x-axis and the y-axis.
13. Draw the grapf of the linear equation $3 x+4 y=6$. Atwhat points, the grapf cuts the \boldsymbol{x}-axis and the y-axis.

$$
3 x+4 y=6
$$

x	0	2	-2
\mathcal{Y}	$\frac{3}{2}$	0	3

We notice, the graph cuts the x-axis at $(2,0)$ and the y-axis at $\left(0, \frac{3}{2}\right)$

14. Draw the graph of the linear equation whose solutions are represented by the points having the sum of the coordinates as 10 units.

Given the solutions are represented by the points having the sum of the coordinates as 1o units. Therefore line ar equation is $x+y=10$.

x	0	10	5
y	10	0	5

15. Find the value of a, if the line $5 y=a \boldsymbol{x}+10$, will pass through (i) $(2,3)$, (ii) $(1,1)$ $5 y=a x+10$
(i) On putting $\boldsymbol{x}=2$ and $y=3$ in the given equation, we fave

$$
5 \times 3=a \times 2+10 \Rightarrow 15=2 a+10
$$

$$
\Rightarrow \quad 15-10=2 a
$$

$$
\Rightarrow \quad 2 a=5
$$

$$
\Rightarrow \quad a=\frac{5}{2}
$$

(ii) On putting $x=1$ and $y=1$ in the given equation, we have

$$
5 \times 1=a \times 1+10
$$

$$
\Rightarrow \quad 5=a+10 \Rightarrow a=5-10 \Rightarrow a=-5
$$

16. Find the value of a and 6 , if the line $66 \boldsymbol{x}+a y=24$ passes through $(2,0)$ and $(0,2)$.

$$
\begin{equation*}
66 x+a y=24 \tag{i}
\end{equation*}
$$

On putting $x=2$ and $y=0(i)$, we have
$66 \times 2+a x 0=24$

$$
\begin{gathered}
\Rightarrow \quad 12 b+0=24 \Rightarrow 12 b=24 \\
\Rightarrow \quad b=\frac{24}{12} \Rightarrow b=2
\end{gathered}
$$

On putting $x=0$ and $y=2$ in (i) we have

$$
\begin{aligned}
& 66 \nsim 0+a \nless 2=24 \\
& \Rightarrow \\
& \quad 0 \quad 0+2 a=24 \Rightarrow 2 a=24 \\
& \Rightarrow \quad a=\frac{24}{2} \Rightarrow a=12
\end{aligned}
$$

$\mathcal{H e n c e}$, value of a and 6 are 12 and 2 respectively.

17. Find the value of a and 6 , if the lines $2 a x+36 y=18$ and $5 a \boldsymbol{x}+36 y=15$ pass through (1.1).

On putting $x=1$ and $y=1$ in equations $2 a x+36 y=18$ and $5 a x+36 y=15$, we fave

$$
\begin{align*}
& 2 a+3 b=18 \tag{i}\\
& 5 a+3 b=15 \tag{ii}
\end{align*}
$$

$-3 a=3$ (on subtracting)

$$
\Rightarrow \quad a=\frac{3}{-3} \Rightarrow a=-1
$$

On putting $a=-1$ in (i) we fave

$$
2 x(-1)+36=18
$$

$$
\Rightarrow \quad-2+3 b=18 \Rightarrow 3 b=18+2
$$

$$
\Rightarrow \quad 3 b=20 \quad \Rightarrow b=\frac{20}{3}
$$

Therefore, value of a and 6 are -1 and $\frac{20}{3}$ respectively.

```
V Short Answer Questions
```

18. Find the value of a, if the line $3 y=a \boldsymbol{x}+7$, will pass through:
(i). $(3,4)$
(ii). $(1,2)$
(iii). (2, - 3)
$3 y=a \boldsymbol{x}+7$
(i) Putting $\boldsymbol{x}=3$ and $y=4$ in the given equation of line, we fave

$$
\begin{aligned}
& 3 \times 4=a \times 3+7 \\
\Rightarrow & 12=3 a+7 \Rightarrow 3 a=12-7 \\
\Rightarrow & 3 a=5 \Rightarrow a=\frac{5}{3}
\end{aligned}
$$

(ii). Putting $\boldsymbol{x}=1$ and $y=2$ in the given equation of line, we fave

$$
\begin{aligned}
& 3 \times 2=a \times 1+7 \\
\Rightarrow & \quad 6=a+7 \Rightarrow a=6-7 \Rightarrow a=-1
\end{aligned}
$$

(iii). Putting $x=2$ and $y=-3$ in the given equation of line, we have

$$
\begin{aligned}
& 3 \chi(-3)=a \times 2+7 \\
& \Rightarrow \quad-9=2 a+7 \Rightarrow 2 a=-9-7 \\
& \Rightarrow 2 a=-16 \Rightarrow a=\frac{-16}{2} \Rightarrow a=-8
\end{aligned}
$$

19. Show that the points $\mathcal{A}(1,2), \mathcal{B}(-1,-16)$ and $\mathcal{C}(0,-7)$ lie on the graph of the line ar equation $y=9 x \cdot 7$
$y=9 x-7$
or $9 x-y=7$

On Putting $\boldsymbol{x}=1$ and $y=2$ in (i) we have

$$
\begin{aligned}
& & 9 \times 1-2=7 \Rightarrow 9-2=7 \\
\Rightarrow & 7 & =7 \text { true }
\end{aligned}
$$

Therefore (1,2) is a solution of line ar equation $y=9 \boldsymbol{x} \cdot 7$
On Putting $x=-1$ and $y=-16$ in (i) we have

$$
\begin{aligned}
& 9 x(-1)-(-16)=7 \Rightarrow-9+16=7 \\
& \Rightarrow \quad 7=7 \text { true }
\end{aligned}
$$

Therefore $(-1,-16)$ is a solution of line ar equation $y=9 \boldsymbol{x}-7$
On Putting $\boldsymbol{x}=0$ and $y=7$ in (i) we have

$$
\begin{aligned}
& 9 \times 0-(-7)=7 \Rightarrow 0+7=7 \\
\Rightarrow & 7
\end{aligned}
$$

Therefore $(0,-7)$ is a solution of line ar equation $y=9 x-7$
20. Find the equation of any two lines passing through the point (-1,2). How many such lines can be there?
$\mathcal{H e r e}(-1,2)$ is a solution of infinite number of line ar equations.
$(-1,2)$ is a solution of line ar equation $y=-2 \boldsymbol{x}$
$(-1,2)$ is a solution of line ar equation $3 \boldsymbol{x}+2 \boldsymbol{y}=1$
$(-1,2)$ is a solution of line ar equation $-5 x+3 y=11$
$\mathcal{H e n c e}$, there can be infinite line ar equation of which the point (-1,2) is a solution
21. Write y in terms of \boldsymbol{x} for the equation $\boldsymbol{x}-y+4=0$. Also draw graph of linear equation.

$$
\begin{aligned}
& x-y+4=0 \\
& \Rightarrow y=x+4
\end{aligned}
$$

x	0	-4	-2
y	4	0	2

22. Draw the graph of line ar equation $3 \boldsymbol{x}-7 y=21$. Check whether $(8,1)$ is a solution of the given equation or not.

$$
3 x-7 y=21
$$

x	0	7	$7 / 3$
y	-3	0	-2

On putting $x=\mathcal{S}$ and $y=1$ in (i) we have

$$
\begin{aligned}
3 \times 8-7 \times 1 & =21 \Rightarrow 24-7=21 \\
17 & =21 \text { fatse }(\because 17 \neq 21)
\end{aligned}
$$

Hence, $(8,1)$ is not a solution of the equation $3 x-7 y=21$.
23. Draw the graphof the equation $x-y=3$. If $y=3$, then find the value of x from the graph.

$$
x-y=3
$$

x	0	3	5
y	-3	0	2

From the graph, we can see that the value of x is 6 for $y=3$.
24. Draw the graph of the line ar equation $\boldsymbol{x}+2 y=8$ and find the point on the graph where abscissa is twice the value of ordinate.

$$
x+2 y=8
$$

x	0	8	6
y	4	0	1

Given, $x=2 y$
Putting $x=2 y$ in (i), we have

$$
\begin{aligned}
& 2 y+2 y=8 \quad \Rightarrow 4 y=8 \quad \Rightarrow y=2 \\
& \therefore x=2 \times 2 \quad \Rightarrow x=4
\end{aligned}
$$

Hence, point $(4,2)$ is the required point on the graph.


```
II Long answer Questions
```

25. Which of the following points
$\mathcal{A}\left(0, \frac{17}{3}\right), B(2,6), C(1,5)$ and $D(5,1)$ lie on the linear equation $2(x+1)+3(y-2)=13$.

$$
\begin{aligned}
& 2(x+1)+3(y-2)=13 \\
& \Rightarrow \quad 2 x+2+3 y-6=13 \Rightarrow 2 x+3 y=13+4 \\
& \Rightarrow \quad 2 x+3 y=17
\end{aligned}
$$

On putting $x=0$ and $y=\frac{17}{3}$ in (i) we have

$$
\begin{aligned}
& 2 \times 0+3 \times \frac{17}{3}=17 \\
\Rightarrow & 0+17=17 \Rightarrow 17=17, \text { true }
\end{aligned}
$$

$$
\text { Therefore, }\left(0, \frac{17}{3}\right) \text { lies on the given linear equation } 2(x+1)+3(y-2)=13
$$

On putting $x=2$ and $y=6$ in (i), we have

$$
\begin{aligned}
& 2 \times 2+3 \times 6=17 \\
& \Rightarrow \quad 4+18=17 \Rightarrow 22=17, \text { false }
\end{aligned}
$$

Therefore $(2,6)$ does not lie on the given line ar equation $2(x+1)+3(y-2)=13$.

On putting $x=1$ and $y=5$ in (i) we have

$$
2 \times 1+3 \times 5=17
$$

$$
\Rightarrow \quad 2+15=17 \Rightarrow 17=17 \text { true }
$$

Therefore $(1,5)$ lies on the given line ar equation

$$
2(x+1)+3(y-2)=13
$$

On putting $x=5$ and $y=1$, in (i) we have
$2 \times 5+3 \times 1=17 \Rightarrow 10+3=17$

$$
\Rightarrow \quad 13=17 \text { false }
$$

Therefore, $(5,1)$ does not lie on the given line ar equation $2(x+1)+3(y-2)=13$.
26. The points $\mathcal{A}(a, 6)$ and $\mathcal{B}(6,0)$ lie on the linear equation $y=8 \boldsymbol{x}+3$
(i) Find the value of a and b
(ii) Is $(2,0)$ a solution of $y=8 \boldsymbol{x}+3$?
(iii) Find two solution of $y=8 \boldsymbol{x}+3$.

Given

$$
\begin{equation*}
y=8 x+3 \tag{i}
\end{equation*}
$$

(i) On putting $x=a$ and $y=6$ in (i) we have

$$
\begin{equation*}
6=8 a+3 \tag{ii}
\end{equation*}
$$

On putting $x=6$ and $y=0$ in (i) we have

$$
0=86+3 \Rightarrow \quad b=\frac{-3}{8}
$$

$\mathcal{B y}$ putting $b=\frac{-3}{8}$ in (ii), we have
$\frac{-3}{8}=8 a+3$
$\Rightarrow \frac{-3}{8}-3=8 a \Rightarrow \frac{-27}{8}=8 a \Rightarrow a=\frac{-27}{64}$
(ii) On putting $x=2$ and $y=0$ in (i), we have

$$
\begin{aligned}
& 0=8 \times 2+3 \\
\Rightarrow \quad & 0=16+3 \Rightarrow 0=19, \text { false }
\end{aligned}
$$

Hence, $(2,0)$ is not a solution of the line ar equation $y=8 x+3$
(iii) $y=8 x+3$

Let $x=0$, then $y=8 \times 0+3 \Longrightarrow y=3$
Hence, $(0,3)$ is a solution of the line ar equation $y=8 x+3$

Let $y=0$, then $0=8 x+3$
$\Rightarrow \quad-3=8 x \Rightarrow x=\frac{-3}{8}$
Hence, $\left(\frac{-3}{8}, 0\right)$ is a solution of the line ar equation $y=8 x+3$.

27. In a class, number of girls is \boldsymbol{x} and that of boys is y. Also, the number of girls is 10 more than the number of boys. Write the given data in the form of a linear equation in two variables. Also, represent it graphically. Find graphically the number of girls, if the number of boys is 20.

Given number of girls and boys are x and y respectively

According to the question,
$x-y=10$

x	0	10	5	15	25
y	-10	0	-5	5	15

Hence, from the graph, if the number of boys is 20, then number of girls is 30.

28. The difference between two numbers is 3. Write the given data in form of a line ar equation in two variables. Also, represent it graphically, if smaller number is 8 , then find graphically the value of the larger number.

Let x be the larger number and y be the smaller number

According to the question $x-y=3$

x	0	3	8
y	-3	0	5

From graph, we notice, if smaller number is \mathcal{B}, then value of the larger number is 11.

29. The following observed values of \boldsymbol{x} and y are thought to satisfy a linear equation. Write the line ar equation.

x	6	-6
y	-2	10

Draw the graph using the values of x, y as given in the above table. At what points the graph of the linear equation (i) cuts the x axis (ii) cuts the y axis

The line ar equation in two variables is of the form

$$
\begin{equation*}
a x+b y=c \tag{i}
\end{equation*}
$$

Since, point (6,-2) satisfy the line ar equation,

So $\quad 6 a-26=c$

Since point $(-6,10)$ satisfy the line ar equation

So $\quad-6 a-106=c$

On adding (ii) and (iii) we get

$$
86=2 c \Rightarrow b=\frac{c}{4}
$$

\mathcal{N} ow on multiply (ii) $6 y 5$ and adding (iii), we get We get

\mathcal{N} ow putting the values of a and b in eq. (i) we get
$\frac{c}{4} x+\frac{c}{4} y=c \Rightarrow x+y=4$
From the grapf, we notice, (i) graph cuts the x-axis at point $(4,0)$ and (ii) grapf cuts the y-axis at (0,4)
30. The force exerted to pull a cart is directly proportional to the acceleration produced in the body. Express the statement as a linear equation of two variables and draw the graph of the same by taking the constant mass equal to 6 kg . Read from the graph, the force required when the acceleration produced is (i) $\mathbf{5 m} / \boldsymbol{s e c}^{\mathbf{2}}$, (ii). $\mathbf{6 m} / \boldsymbol{s e c}^{\mathbf{2}}$,

Let \mathcal{F} be the force and a be the acceleration.

According to the question, $\mathcal{F} \propto a$
$\Rightarrow \quad F=m a$
Where $m=$ arbitrary constant
Give n,

$$
m=6
$$

$\therefore \quad F=6 a$
Consider 'F as y and 'a'as $x \Rightarrow y=6 x$

a or x	0	4	8
\mathcal{F} or y	0	24	48

Therefore from the graph,
(i) When acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}, \mathcal{F}=30 \mathfrak{N}$

(ii) When acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}, \mathcal{F}=36 \mathfrak{N}$

\mathcal{V} Sfort $\mathcal{A n s w e r}$ Questions

1. The graph of $\boldsymbol{x}= \pm \boldsymbol{a}$ is a straight line parallel to the
a) \boldsymbol{x}-a孔is
6) y-axis
c) Cine $y=x$
d) Cine $x+y=0$

For whatever be the value of y, x remains equal to a. So the graph of $x= \pm a$ is straigft line parallel to the y-axis

$$
\therefore \text { Correct option is }(6)
$$

2. Represent the following equations on the number line:
(i) $\boldsymbol{x}=5$
(ii) $y=2$
(iii) $x=-3$
(iv) $y=7$
(v) $y=-4$
(vi) $\boldsymbol{x}-5=2$
(vii) $y=2 y-4 \quad$ (viii) $1+x=2(x+5)$
(ix) $2 y-1=11$
(x) $2\left(y-\frac{1}{2}\right)=1$
(i) $x=5$

(ii) $y=2$

(iii) $x=-3$

(iv) $y=7$

(v) $y=-4$

(vi) $x-5=2 \Longrightarrow x=7$

(vii) $y=2 y-4 \Rightarrow 2 y-y=4 \Rightarrow y=4$

(viii) $1+x=2(x+5) \Longrightarrow 1+x=2 x+10 \Rightarrow x=-9$

(ix) $2 y-1=11 \Rightarrow 2 y=12 \Rightarrow y=6$

(x) $2\left(y-\frac{1}{2}\right)=1 \Rightarrow 2 y-1=1 \Rightarrow y=\frac{2}{2} \Rightarrow y=1$

3. Give the geometric representations of the following equation in one variable

$$
\begin{aligned}
& \text { (i) } 3(2 x+5)=5 \\
& \text { (ii) } \frac{2}{3}(3 x-5)=2(2 x+1)-11
\end{aligned}
$$

(i) $3(2 x+5)=5$
$\Rightarrow \quad 6 x+15=5$
$\Rightarrow \quad 6 x=-10 \Rightarrow 3 x=-5$
$\Rightarrow \quad x=\frac{-5}{3}$
Geometrical representation of $x=\frac{-5}{3}$ in one variable is given by the number line.

$$
\begin{aligned}
& \text { (ii) } \frac{2}{3}(3 x-5)=2(2 x+1)-11 \\
& \Rightarrow \quad 2(3 x-5)=3[2(2 x+1)-11] \\
& \Rightarrow \quad 6 x-10=6(2 x+1)-33] \\
& \Rightarrow \quad 6 x-10=12 x+6-33 \\
& \Rightarrow \quad-10-6+33=6 x
\end{aligned}
$$

$$
\Rightarrow \quad 17=6 x \Rightarrow x=\frac{17}{6}
$$

4. Represent the following equations on the Cartesian plane.
(i) $\boldsymbol{x}=3$
(ii) $\boldsymbol{x}=-5$
(iii) $y=7$
(iv) $y=-2$
(v) $\boldsymbol{x}+5=10$
(vi) $x+15=7$
(vii) $y+7=-2 \quad$ (viii) $\frac{\mathbf{1}}{\mathbf{2}}(\boldsymbol{y}-\mathbf{3})=\frac{\mathbf{1}}{\mathbf{3}}(\mathbf{1}-\boldsymbol{y})$
(ix) $2[(2 x+1)-3]=\frac{(5-x)}{3}$
$(x)(2+2 x)-\frac{1}{2}=3(2 x+7)-5$
(i) $x=3$

(ii) $x=-5$

(iii) $y=7$

(iv) $y=-2$

(v) $x+5=10 \Rightarrow x=5$

(vi) $x+15=7 \Rightarrow x=-8$

(vii) $y+7=-2 \Rightarrow y=-9$

(viii) $\frac{1}{2}(y-3)=\frac{1}{3}(1-y) \Rightarrow 3(y-3)=2(1-y)$

$$
\Rightarrow 3 y-9=2-2 y \Rightarrow 5 y=11 \Rightarrow y=\frac{11}{5}
$$

(ix) $2[(2 x+1)-3]=\frac{1}{3}(5-x)$
$\Rightarrow 6[2 x+1-3]=5-x \Rightarrow 6[2 x-2]=5-x$
$\Rightarrow 12 x-12=5-x \Rightarrow 13 x=17 \Rightarrow x=\frac{17}{13}$

$$
\begin{aligned}
& \text { (x) }(2+2 x)-\frac{1}{2}=3(2 x+7)-5 \\
& \Rightarrow 4+4 x-1=6(2 x+7)-10 \Rightarrow 3+4 x=12 x+42-10 \\
& \Rightarrow 3=8 x+32 \Rightarrow 8 x=-29 \\
& \Rightarrow x=\frac{-29}{8}
\end{aligned}
$$

5. Give the geometric representation of the following equation in two variables.
(i) $2(3 x-1)+7=\frac{1}{3}[2(x+7)-1]+6$
(ii) $\frac{1}{2}[y-(2 y+2)]=5[y+1]$

$$
\begin{array}{ll}
\text { (i) } & 2(3 x-1)+7=\frac{1}{3}[(2 x+14)-1]+6 \\
\Rightarrow & 6(3 x-1)+21=2 x+13+18 \\
\Rightarrow & 18 x-6+21=2 x+31 \\
\Rightarrow & 16 x=31-15 \Rightarrow x=\frac{16}{16}=1
\end{array}
$$

$$
\begin{array}{ll}
\text { (ii) } & \frac{1}{2}[y-(2 y-2)]=5(\mathrm{y}+1) \\
\Rightarrow & y-(2 y+2)=10(y+1) \\
\Rightarrow & y-2 y-2=10 y+10 \\
\Rightarrow & -y-2=10 y+10 \\
\Rightarrow & 11 y=-12 \\
\Rightarrow & y=\frac{-12}{11}
\end{array}
$$

$\mathcal{V I I}$ Short Answer Questions
6. Give the geometric representations of $y=8$ as an equation
(i) in one variable
(ii) in two variable
$y=8$
(i) Geometrical representation of $y=8$ in one variable is given by the number line.

(ii) Geometrical representation of $y=8$ in two variable is given by the Carte sian plane.

This is a line ar equation in two variables, i.e. x and y

From (i) we notice, the value of y will remain fixed by variation in the value of x because 0 . x will be zero everytime. As a result of which, we get a line $\mathcal{A B}$ parallelto x-axis, separated by y $=8$ everywhere from the x-axis.
7. Give the geometric representations of $6 \boldsymbol{x}+24=0$ as an equation
(i)in one variable
(ii) in two variable
$6 x+24=0 \Rightarrow 6 x=-24 \Rightarrow x=-4$
(i) Geometric representations of $x=-4$ in one variable is given by the number line.

(ii) $\quad 6 x+24=0 \Rightarrow 6 x=-24 \Rightarrow x=-4$
$\Rightarrow \quad 5 x+0 . y=-4$

This is a line ar equation in two variable, i.e. in x and y.

Geometrical representation of $6 x+24=0$ in two variables is given by the Cartesian plane.

From (i), we notice, the value of x will remain fixed by variation in the value of y because 0 . y will be zero everytime. As a result of which, we get a line $\mathcal{A B}$ parallelto $y=a x i s$, separated $6 y$ $x=-4$ everywhere from y-axis.
8. Solve the equation $2 \boldsymbol{x}+1=2\left(\frac{1}{2} \boldsymbol{x}-\mathbf{1}\right)$ and represent the solution(s) on
(i) the number line
(ii) the Cartesian plane
(i) $2 x+1=2\left(\frac{1}{2} x-1\right) \Rightarrow 2 x+1=x-2 \Rightarrow x=-3$

$$
x=-3
$$

(ii)

9. Solve the equation $\frac{3}{2}(y-1)=y+5$, and represent the solution(s) on
(i) the number line
(ii) the Cartesian plane

$$
\frac{3}{2}(y-1)=y+5 \Rightarrow 3 y-3=2 y+10 \Rightarrow y=13
$$

(ii)

10. Draw the graph of the equation represented by a straight line which is parallel to the \boldsymbol{x}-axis and at a distance 3 unit below it.

Any straight line parallel to x-axis is given by

$$
y= \pm a(\text { i.e. } y=a \text { or } y=-a)
$$

$y=a$ for above the x-axis and $y=-a$ below the x-axis.
Hence, $a=3$ units, belowx-axis
$\therefore y=-3$
$\mathcal{H e n c e}, y=-3$ is a straight line equation which is parallel to x-axis and at a distance of 3 units below it.

11. Express the linear equation $5 \boldsymbol{x}=20$ in the form $a x+6 y+c=0$ and find the values of a, b and c, also draw the graph of this equation in two variables.

$$
5 x=20
$$

$\Rightarrow \quad 5 x-20=0$
$\Rightarrow \quad 5 x+0 . y-20=0$
On comparing with $a x+6 y+c=0$, we have

$$
\begin{aligned}
& a=5,6=0 \cdot C=-20 \\
& 5 x=20 \Rightarrow x=4
\end{aligned}
$$

Again, we have
$\mathcal{H e n c e}$, graph of $x=4$ is a straight line parallel to

$$
y=a \chi \text { is }
$$

12. How many solution(s) of the equation $2 \boldsymbol{x}+1=\boldsymbol{x}-3$ are there on the
(i) \mathcal{N} umber line
(ii) Cartesian plane
(i)

$$
2 x+1=x-3 \Rightarrow 2 x-x=-3-1 \Rightarrow x=-4
$$

On the number line, $x=-4$ is the only solution of the equation $2 x+1=x-3$
(ii) $x=-4$

There are infinite solutions of the equation $2 x+1=x-3$ on the Carte sian plane.

Points $(-4,1),(-4,2),(-4,3),(-4,4), \ldots$ satisfy the given equation. Hence, there are infinite solutions.

13. Draw the grapf of the equation $\frac{\mathbf{1}}{\mathbf{2}}(\boldsymbol{y}-\mathbf{5})+\mathbf{6}=\frac{\mathbf{3}}{\mathbf{5}}(\boldsymbol{y}+\mathbf{5})+\mathbf{2}$ on the cartesain plane. Explain the number of solutions(s) and also, determine the position of the point where grapf cuts the y-axis

$$
\begin{array}{cc}
& \frac{1}{2}(y-5)+6=\frac{3}{5}(y+5)+2 \\
& \Rightarrow \quad \frac{y-5+12}{2}=\frac{3(y+5)+10}{5} \\
\Rightarrow & \frac{y+7}{2}=\frac{3 y+15+10}{5} \\
\Rightarrow & \frac{y+7}{2}=\frac{3 y+25}{5} \\
\Rightarrow & 5[y+7]=2[3 y+25] \\
\Rightarrow & 5 y+35=6 y+50 \\
\Rightarrow & 6 y-5 y=35-50 \\
\Rightarrow & y=-15
\end{array}
$$

From the graph, we notice, the line $\mathcal{A B}$ can have infinite solutions. From the graph, we fave $(0,-15),(1,-15),(2,-15), \ldots \ldots .$. upto ∞ points. Hence, there are infinite solutions. Graph cuts the y-axis at ($0,-15$)

14. Resfima, a student of class IX of a school, contributed Rs. 100 per month to an $\mathcal{N G G O}$ to help the blind children.

Taking total contribution as Rs. Y for 6 montifs.
(i) Form a linear equation of the above information.
(ii) Draw it on the number line and also, on the Cartesian plane.
(i) According to question.

$$
y=6 x 100 \Rightarrow y=600
$$

(ii)

15. The following observed values of \boldsymbol{x} and y are given by the table.

x	-5	-5	-5	-5	-5	-5	-5	-5	-5
\mathcal{y}	0	-1	-2	-3	-4	1	2	3	4

(i) Draw the graph of this information
(ii) $D e t e r m i n e ~ t h e ~ d i s t a n c e ~ o f ~ s e p a r a t i o n ~ b e t w e e n ~ t h e ~ l i n e ~ f o r m e d ~ a n d ~ t h e ~ y-a x i s . ~$
(i) Given points are $(-5,0),(-5,-1),(-5,-2),(-5,-3),(-5,-4),(-5,1),(-5,2),(-5,3)$, and $(-5,4)$

(ii) To find the distance of separation of the line $\mathcal{A B}$ from y-axis, count the unit distances from-5 to 0 .

$\begin{array}{lc}1 & 1 \\ 1+1+1+1+1=5\end{array}$
Hence, the distance of separation between the line $\mathcal{A B}$ and the y-axis is 5 units

