Name: \qquad
Grade : VIII
Subject: Mathematics

Chapter: 16. Playing with numbers

Objective $\mathcal{T} y p e$ Questions

1 Marks

I. Multiple choice questions

1. Generalised form a four-digit number abdc is
[NCERI Exemplar]
a. $1000 a+100 b+10 c+d$
2. $1000 a+100 c+10 b+d$
c. $1000 a+100 b+10 d+c$
d. $a \times b \times c \times d$
3. Generalised form of a two - digit number $x y$ is
[NCERT Exemplar]
a. $x+y$
4. $10 x+y$
c. $10 x-y$
d. $10 y+x$
5. The usual form of $1000 a+10 b+c$ is:
[NCERT Exemplar]
a. abc
6. abco
c. aobc
d. aboc
7. Let abc be a three-digit number. Then abc-cba is not divisible by.
[NCERI Exemplar]
a. 9
8. 11
c. 18
d. 33
9. The sum of all the number formed by the digits x, y and z of the number xyz is divisible by
[$\mathcal{N C E R I}$ Exe mplar]
a. 11
10. 33
c. 37
d. 74
11. A four digit number aabb is divisible 6y 55. Then possible value of 6 is / are.
[NCERI Exemplar]
a. 0 and 2
12. 2 and 5
c. 0 and 5
d. 7
13. Let abc be a three digit number. Then $a b c+6 c a+c a b$ is not divisible by [$\mathcal{N C E E R T}$ Exemplar]
a. $a+b+c$
6.3
c. 37
d. 9
14. A four-digit number 4 ab 5 is divisible by 55. Then the value of $6-a$ is: [$\mathcal{N C E R T}$ Exemplar]
a. 0
15. 1
c. 4
d. 5
16. If $a b c$ is a three digit number, then the number $a b c-a-b-c$ is divisble $b y$
[NCERI Exemplar]
a. 9
6.90
c. 10
d. 11
17. A six-digit number is formed by repeating a three digit number. For example 256256,

678678 , etc. Any number of this form is divisible by.
[N CEERI Exemplar]
a. 7 only
6. 11 only
c. 13 only
d. 1001
11. If the sum of digits of a number is divisible by three, then the number is always divisible by
[N CEERT Exemplar]
a. 2
6.3
c. 6
d. 9
12. If $x+y+z=6$ and z is an odd digit, then the three-digit number xyz is [NCERT Exemplar]
a. an odd multiple of 3
6. odd multiple of 6
c. even multiple of 3
d. even multiple of 9
13. If $5 \mathcal{A}+\mathcal{B} 3=65$, then the value of \mathcal{A} and \mathcal{B} is
[$\mathcal{N C E R T}$ Exe mplar]
a. $\mathcal{A}=2, \mathcal{B}=3$
6. $\mathcal{A}=3, \mathcal{B}=2$
c. $\mathcal{A}=2, \mathcal{B}=1$
d. $\mathcal{A}=1, \mathcal{B}=2$
14. If $\mathcal{A} 3+8 \mathcal{B}=150$, then the value of $\mathcal{A}+\mathcal{B}$ is:
[N (CERI Exemplar]
a. 13
6. 12
c. 17
d. 15
15. If $5 \mathcal{A} \times \mathcal{A}=399$, then the value of \mathcal{A} is
[N CERT Exemplar]
a. 3
6.6
c. 7
d. 9
16. If $6 \mathcal{A} \times \mathcal{B}=\mathcal{A} \mathcal{B} \mathcal{B}$, then the value of $\mathcal{A} \cdot \mathcal{B}$ is

[N CEERI Exe mplar]

a. -2
6. 2
c. -3
17. Which of the following numbers is divisible by 99
[NCERI Exemplar]
a. 913462
6. 114345
c. 135792
d. 3572406

$1 . c$	2.6	$3 . c$	$4 . c$	$5 . c$	$6 . c$	$7 . d$	8.6	$9 . a$
$10 . d$	11.6	$12 . a$	$13 . c$	$14 . a$	$15 . c$	$16 . a$	17.6	

II. Multiple choice questions

1. Generalised form of a three-digit number xyx is
[N (CERI Exemplar]
a. $x+y+z$
$6.100 x+10 y+z$
c. $100 z+10 y+x$
d. $100 y+10 z+z$
2. If $5 \mathcal{A}+25$ is equal to $\mathcal{B 2}$, then the value of $\mathcal{A}+\mathcal{B}$ is
a. 15
3. 10
c. 8
d. 7
4. The sum of all the numbers formed by the digit x, y and z of the number xyz is divisible by
a. 11
5. 33
c. 37
d. 75
6. If $x+y+z=6$ and z is an odd digit, then the three-digit number $x y z$ is
a. an odd multiple of 3
7. odd multiple of 6
c. even multiple of 3
d. even multiple of 9
8. Which of the following numbers is divisible by 99?
a. $9,13,462$
9. $1,14,345$
c. $1,35,792$
d. $35,72,406$
10. If the division $\mathcal{N} \div 2$ leaves no remainder and $\mathcal{N} \div 5$ leaves remainder 4 , then the units digit of \mathfrak{N} is
a. 4 or 9
11. 4
c. 9
d. number other than 4
12. The number 99,73,820 is divisible by
a. 4,5 and 6
13. 4, 5, and 10
c. 3, 4 and 5
d. 3, 4 and 9

1.6	$2 . a$	$3 . c$	$4 . a$	5.6	6.6	7.6

I. Fill in the blanks.

1. The sum of a two-digit number and the number obtained by reversing the divisible by
\qquad $-$.
[N (CERT Exemplar]
2. The difference of a two-digit number and the number obtained by reversing its digits is atways divisible by \qquad .
[N CEERT Exemplar]
$2 \mathcal{B}$
3. If $\frac{\operatorname{A} \mathcal{A} \mathcal{B} t h e n ~}{\mathcal{A}}=$ \qquad . \quad NNCERT Exemplar]
$\mathcal{A} \mathcal{B}$
4. If $\underset{\mathcal{B} \text { then } \mathcal{A}=}{ }$ \qquad and $\mathcal{B}=$ \qquad - [$N(C E R T$ Exe mplar]

5. If $\boldsymbol{x} \operatorname{B}$ then $\mathcal{B}=$ \qquad -.
[N CERT Exe mplar]

1.11	2.9	$3 . \mathcal{A}=6, \mathcal{B}=3$	$4 \cdot \mathcal{A}=2, \mathcal{B}=4$	$5 . \mathcal{B}=7$

1. A two-digit number ab is always divisible $6 y 2$ if 6 is an even number.
2. A three-digit number abc is divisible by 5 if c is aneven number.
3. A four-digit number abced is divisible by 4 if ab is divisible by 4.
[N (CERI Exemplar]
[$\mathcal{N C E R T}$ Exemplar]
[N CERT Exemplar]
4. A three digit number abc is divisble byb if c is an even number and $a+b+c$ a multiple of 3 .
5. $\mathfrak{N u m b e r}$ of the form $3 \mathfrak{N}+2$ will leave remainder 2 when divided by 3 . [$\mathcal{N C E R T}$ Exe mplar]

1. True	2.False	3. False	4. True	5. True

I. Very sfort answers type questions.

1. If the division $\mathcal{N} \div 5$ le aves a remainder of 3 , what might be the one's digit of \mathcal{N} ?
[N (CERT Exemplar]
The one's digit, when divided by 5, must le ave a remainder of $3 . S$, the one's digit must Ge either 3 or 8.
2. If the division $\mathcal{N} \div 5$ leaves a remainder o 1 what might be the one's digit of \mathcal{N} ?
[$\mathcal{N C E R T}$ Exemplar]
If remainder = 1, then the one's digit of ' \mathcal{N} ' must be either 1 or 6.
3. If the division $\mathcal{N} \div 5$ leaves a remainder of 4 , what might be one's digit of \mathcal{N} ? \mathcal{S} uppose that the division $\mathcal{N} \div 5$ leaves a remainder of 4 and the division $\mathcal{N} \div 2$ leaves a remainder of 1 . What must be the one's digit of \mathcal{N} ?
[N (CERT Exemplar]
If remainder $=4$, then the one's digit of ' \mathcal{N} ' must be either 4 or 9.
For $N \div 5$, remainder $=4$
\therefore One's digit cnabe 4 or 9.
Again, for $N \div 2$, remainder $=1$
\therefore N must be an odd number.
So, one's digit of \mathfrak{N} must be 1, 3, 5, 7 or 9(ii)
From (i) and (ii) the one's digit of \mathcal{N} must be 9.
4. If the division $\mathbf{N} \div \mathbf{2}$ leaves a remainder of 1 , what might be the one's digit of \mathfrak{N} ?
[N CEERI Exe mplar]
N is odd; so its one's digit is odd. Therefore, the one's digit must 6e 1, 3, 5, 7 or 9.
5. Suppose that the division $\boldsymbol{x} \div \mathbf{5}$ leaves a remainder 4 and the division $\boldsymbol{x} \div \mathbf{2}$ leaves a remainder 1. Find the ones digit of \boldsymbol{x}.

Since, $x \div 5$ leaves a remainder 4 , so ones digit of x can be 4 or 9. Also, since $x \div 2$ Le aves a remainder 1, so one digit must be 9 only.
6. Check the divisibility of the following numbers by 9.
a. 108
6. 616
a. 108
$\therefore 1+0+8=9$
and 9 is divisible by 9
$\therefore 108$ is divisible by 9 .
6. 616

We fave, $6+1+6=13$
and 13 is not divisible by 9
$\therefore 616$ is also not divisible by 9 .
II. Very sfort answers type questions.

1. If a two digit number ab is always divisible by 2 then what kind of number 6 is?

Sol. We know that if a number is divisible by 2 then its ones place digit should be even. Hence, 6 must be aneven number.
2. What is the usual form of $1000 a+106+c$?
[N (CERT Exemplar]
Since fundred place is not given then 0 will come in fundreds place. Hence, the usual form will be a0bc.
3. What type of numbers are divisigle 6y 33?
$\mathcal{A l l}$ the numbers which are divisible by 3 as well as 11 will be divisible by 33.
4. What is the number by which the sum of any two digit number and its reverse is always divisible?

The number will be 11. Any two digit number is in the form $10 x a+6$. Its reverse is $10 x$ $6+a \cdot S u m=10 a+6+10 b+a=11 a+11 b=11(a+b)$

5. What do you mean by Cryptarithms?

Sol. Cryptarithms are puzzles, on various operations on numbers, in which letters take the place of digits and one has to find out which letter represents which digit. (Or) Cryptarithms is a maths puzzle in which the digits are replaced by letters of the alphabet or other symbols.
6. Insert ' + -, χ or + ' in each box to make the statement true.
(i) $(50 \square 9) \square 3=150$
(ii) 160
8)
$\square 17=4$
(i) $(50 \times 9) \div 3=450 \div 3=150$
(ii) $(60+8) \div 17=68 \div 17=4$
$\therefore(50 \boxed{x} 9) \div 9=150$
$\therefore(60 \square 8) \div 17=4$

Sol.
I. Sfort answers type questions.

1. A three-digit number $42 \boldsymbol{x}$ is divisible by 9. Find the value of \boldsymbol{x}.
[NCERT Exemplar] Since, $42 x$ is divisible by 9, the sum of its digits, i.e. $4_{2} 2+x$ must be divisible by 9.
i.e., $6+x$ is divisible by 9 .
i.e., $6+x=9$ or $18, \ldots \ldots \ldots$.........

Since, x is a digit, therefore $6+x=9$ or $x=3$.

2. Find the value of \mathcal{A} and \mathcal{B} if +\begin{tabular}{lll}
4 \& 1 \& \mathcal{A}

\mathcal{B} \& \& 4

\hline | 5 | 1 | 2 |
| :--- | :--- | :--- |

\end{tabular}

[NCERT Exemplar]

From ones column $\mathcal{A}+4$ gives a number whose ones digit is $2 . S o, \mathcal{A}=68$. The value of \mathcal{B} can be obtained by solving $2+\mathcal{B}$ is a number whose ones digit is $1 . \operatorname{So}, \mathcal{B}=9$.

$$
\begin{array}{r}
418 \\
+\quad 94 \\
\hline 512
\end{array}
$$

3. Find the value of the letters of the following questions. \& 5

Sol. $\therefore 5+\mathcal{A}=13$ or 23 or 33 etc.
$\therefore \quad \mathcal{A}=13-5=8$
or $\mathcal{A}=23 \cdot 518$ is not possible

$$
\therefore \quad \mathscr{A}=8
$$

4. If $1 \quad \mathcal{P}$ where $Q, \mathcal{P}=3$, then find the values of
$\frac{\frac{x \quad P}{Q^{6}}}{P \text { and } Q}$

Sol. $\quad \therefore$
If $\begin{array}{r}P \times P= \\ 16 \Rightarrow P=4 \\ 4\end{array}$
Then,

Hence,

So,

$$
P=4 \text { is not possible }
$$

\mathcal{N} ow take

$$
P \times P=36 \Rightarrow P=6
$$

Then,

Thus,

1	6
x	6
9	6

$$
P=6 \text { and } Q=9
$$

5. If $1 \mathcal{A B}=\mathcal{C C A}=697$ and there is no carry-over in addition, find the value of $\mathcal{A}+\mathcal{B}+\mathcal{C}$.

Sol. $\quad 1 \mathcal{A B}+\mathcal{C C A}=697$
Hence,

$$
\begin{aligned}
& \mathcal{B}+\mathcal{A}=7 \\
& \mathcal{A}+\mathcal{C}=9
\end{aligned}
$$

\square

$$
\Rightarrow \quad \begin{aligned}
& 1+C=6 \\
& C=6 \cdot 1=5
\end{aligned}
$$

$$
\begin{array}{rr}
\therefore & \mathcal{A}+\mathcal{C}=9 \\
\Rightarrow & \mathcal{A}+5=9 \\
\Rightarrow & \mathcal{A}=4
\end{array}
$$

$$
\begin{aligned}
& \mathcal{B}+\mathcal{A} & =7 \\
\Rightarrow & \mathcal{B}+4 & =7 \\
\Rightarrow & \mathcal{B} & =3
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathcal{A}+\mathcal{B}+\mathcal{C} & =4+3+5 \\
& =12
\end{aligned}
$$

6. In a two digit number the units digit is four times the tens digit and the sum of the digits is 10 . Find the number.

Sol. Let the tens digit $=x$
Then the units digit $=4 x$
According to condition,

$$
x+4 x=10
$$

or

$$
\begin{aligned}
& 5 x=10 \\
& x=\frac{10}{5}=2
\end{aligned}
$$

Thus tens digit $=2$
and units digit $=4 \times 2=8$
Hence, required number $=28$
7. $756 \boldsymbol{x}$ is a multiple of 11, find the value of \boldsymbol{x}.

Sol. Since, 756x is a multiple of 11.

$$
\begin{aligned}
\text { Then, } & 7+6 & =5+x \\
\Rightarrow & 13 & =5+x \\
\Rightarrow & x & =13-5 \\
\Rightarrow & x & =8
\end{aligned}
$$

8. Find all possible values of y for which the 4 digit number $51 \boldsymbol{y}^{\mathbf{3}}$ is divisible 6y 9. Also, find each such number.
[$\mathcal{N C E R T}$ Exe mplar]
Sol. Since, $\quad \mathcal{N}$ umber $=51 y^{3}$

$$
\begin{aligned}
\text { Then sum of digits } & =(5+1+y+3) \\
& =(9+y),
\end{aligned}
$$

Which must divisible by 9
When

$$
y=0 \text { or } y=9
$$

\therefore Required numbers are 5103 and 5193.
II. Sfort answers type questions.

1. Without actual division find the remainder when $3,79,843$ is divided $6 y 3$.

We can find the remainder by dividing the sum of all the digits of the given number

$$
\text { Sum of digits }=3+7+9+8+4+3=34
$$

When 34 divided by 3, we get 1 as remainder.
Hence, division of $3,79,843$ by 3 leaves remainder 1 .
2. If $2 \mathcal{A} 7+\mathcal{A}=33$, then find the value of \mathcal{A}.
[NCERI Exemplar]

$$
\begin{aligned}
\operatorname{Sol} \frac{2 A 7}{A}=33 & \Rightarrow 2 \mathcal{A} 7=33 \mathcal{A} \\
& \Rightarrow 2 \times 100+\mathcal{A} \times 10+7 \times 1=33 \mathcal{A} \\
& \Rightarrow 200+7+10 \mathcal{A}=33 \mathcal{A} \\
& \Rightarrow 207=33 \mathcal{A} \cdot 10 \mathcal{A} \Rightarrow 207=23 \mathcal{A} \\
& \Rightarrow \mathcal{A}=\frac{207}{23}=23
\end{aligned}
$$

Hence, the value of $\mathcal{A}=9$.
3. $1 y 3 y 6$ is divisible by 11. Find the value of y.

As per the divisibility rule of 11,
Sum of even place number $=y+y=2 y$
and sum of odd place number $=1+3+6=10$
\mathcal{N} ow difference $=10 \cdot 2 y$
If the difference equalises 0 , then

$$
\begin{aligned}
& 10-2 y=0 \\
& 2 y=10 \Rightarrow y=5
\end{aligned}
$$

4. Fill in the blank squares of the magic square so that the sum of the numbers in each column, row and both the diagonals is 0 .

Let the squares be filled as shown below. Sum of the numbers along one diagonal
is $-11+0+c=0$
$\Rightarrow c=11$
Sum of the numbers along 2 nd column $=14+0+6=0$
$\Rightarrow 6=-14$
Sum of the numbers along first row $=a+b+c=0$
$\Rightarrow a \cdot 14+11=0 \quad \Rightarrow \quad a=3$
Sum of the numbers along first column $=a+d \cdot 11=0$

	0	
-11	14	

a	b	c
d	0	e
-11	14	f

$$
\Rightarrow 3+d \cdot 11=0 \quad \Rightarrow \quad d=8
$$

Sum of the numbers along second row $=d+0+e=0$

$$
\Rightarrow 8+0+e=0 \quad \Rightarrow \quad e=-8
$$

Sum of the numbers along third row $=-11+14+f=0$
$\Rightarrow f=-3$
\therefore We have

3	-14	11
8	0	-8
-11	14	-3

5. Solve:

	\mathcal{C}	\mathcal{A}
+	\mathcal{A}	\mathcal{B}
\mathcal{D}	\mathcal{D}	\mathcal{A}

Sol. $\mathcal{A}+\mathcal{B}=\mathcal{A}$ is possible when $\mathcal{B}=0, \mathcal{D}$ must be 1 and $\mathcal{B}=0$,

\mathcal{N} (ow sum of digits \mathcal{C} and \mathcal{A} is 11, without a carry digit.
So, these may be $8+3$ or $3+8$, or $4+7$ or $7+4$, or $6+5$ or $5+6$ or $2+9$ or $9+2$.
Thus, we may fiave many answers to the se problems like

\mathcal{N} ote that generally a Cryptarithmetic has only one solution. So, we cannot put the above example in this category.
I. Long answer type questions.

1. A three digit number 2 a 3 is added to the number 326 to give a three digit number 56 9 which is divisible by 9. Find the value of $6 \cdot a$.

Sol. Given,
$\left.+\begin{array}{lll}2 & a & 3 \\ + & 3 & 2\end{array}\right) 6$

Since, 569 divisible by 9.
So, $(5+6+9)$ is divisible $6 y 9$.
So, clearly

$$
6=4
$$

and

$$
a=2
$$

Thus,

$$
b-a=4 \cdot 2
$$

$$
=2
$$

2. If from a two-digit number, we subtract the number formed by reversing its digit then the result so obtained is a perfect cube. How many such numbers are possible? Write all of them.
[N (CERT Exemplar]
Sol. Let two digit number be $10 a+6$
\mathcal{N} umber after reversing the digit $=106+a$
According to condition, $(10 a+6) \cdot(10 b+a)$
$=9 a \cdot 9 b$
$=9(a-6)$ is a perfect cube
Then surely
$a \cdot 6=3$
So, if
So
If
So,
If

So,
If
number $=74$

So,
If

$$
a=5 \text { then } b=2
$$

So,
number $=52$

$$
a=4 \text { then } b=1
$$

So,
number $=41$

$$
a=3 \text { then } b=0
$$

So,
number $=30$
3. Let $\mathcal{E}=3, \mathcal{B}=7$ and $\mathcal{A}=4$. Find other digit in the

$\mathcal{S u m +}$| | \mathcal{B} | \mathcal{A} | \mathcal{S} | \mathcal{E} |
| :---: | :---: | :---: | :---: | :---: |
| | \mathcal{B} | \mathcal{A} | \mathcal{L} | \mathcal{L} |
| \mathcal{G} | \mathcal{A} | \mathcal{M} | \mathcal{E} | \mathcal{S} |

Sol. Putting the value of \mathcal{E}, \mathcal{B} and \mathcal{B} in the sum

4. Work out the following multiplication

$$
12345679
$$

Ulse the result to answer the following question.
a. What will be 12345679 x 45 ?
6. What will be 12345679 x 63?
c. $\mathcal{B y}$ what number should 12345679 be multiplied to get 888888888?
d. By what number should 12345679 be multiplied to get 999999999? [NCERT Exemplar]

$$
\begin{aligned}
& \text { Sol. } 12345678 \\
& \text { a. } \\
&=(123456679 \times 9) \times 5 \\
&=(111111111) \times 5
\end{aligned}
$$

$=555555555$
6. $12345679 \times 63=(12345679 \times 9) \times 7$
$=(111111111) \times 7$
$=777777777$
c. $\quad \therefore \quad 12345679 \times 9=111111111$

To get 888888888 , we should multiply
$6 y$
$9 x 8=72$
5. If $51 \boldsymbol{x} 3$ is a multiple of 9, where \boldsymbol{x} is a digit, then what is the value of \boldsymbol{x} ?
[NCERT Exemplar]
Sol. We have, the sum of the digits of $51 \times 3=5+1+x+3=9+x$
Since, 51×3 is divisigle by 9 .
$\therefore(9+x)$ must be divisible by 9 .
$\therefore(9+x)$ must be equal to 0 or 9 or 18 or 27 or ...
But x is a digit, then

$$
\begin{aligned}
& 9+x=9 \Rightarrow x=0 \\
& 9+x=18 \Rightarrow x=9,
\end{aligned}
$$

$x=27 \Rightarrow x=18$ which is not possible.
\therefore The required value of $x=0$ or 9 .
II. Long answer type questions.

1. Let $\mathcal{D}=3, \mathcal{L}=7$ and $\mathcal{A}=8$. Find the other digits in the sum.
[NCERI Exemplar]
$\mathcal{M} \mathcal{A} \mathcal{D}$
$+\mathcal{A} S$
\qquad
$\mathcal{B} \mathcal{U} \mathcal{L} \mathcal{L}$
Sol. By putting values we get

Considering the sum of ones place we get

$$
\begin{aligned}
& 3+S+8=17 \\
& S=17-11=6
\end{aligned}
$$

Tens place will come 7 easily
\mathcal{N} ow the sum of Hundreds place； 1 will come as carry over and $\mathcal{M}+1$ is resulting of 2 digits，i．e．， \mathcal{B} and \mathcal{U} ，so， \mathcal{M} must be 9.

Hence，the final value be
983
86

1077
$\mathcal{H e n c e}, \mathcal{M}=9, \mathcal{S}=6, \mathcal{B}=1, \mathcal{U}=0$ ．
2．Fill in the boxes with the correct digits．

Sol．Give number to each row．Since all blanks are given for multiplication by 1 in 371 ．
\therefore We will look for 7 ．
The units digit is given as 2 （see IVRow）
We know， $7 \times 6=42$
Unit digit for number in I Row is 6
\mathcal{N} Now，multiply 7 by 4，to complete IV Row and I Row．
Thus we have，

リロロ $006 \square$
（I Row）

\mathcal{N} (ow, the whole multiplication can easily be completed as we have got both the numbe to be multiplied with.

3046
$x 371$
3046
$21322 x$
$9138 x x$

```
1130066
```

3. Without performing actual computation, write the quotient when sum of all possibly

3-digit numbers formed by three digits $4,6,7$ is divided by:
(i) 222 .
(ii) 17 .

Sol. (i) We know that when the sum of all possible 3-digit numbers formed by given three digits is divided by 222 gives quotient the sum of the digits. So, the sum of all possible 3-digit numbers formed by three digits 4, 6, 7 when divided by 222 gives quotient $17(4+6+7)$
(ii) We know that when the sum of all possible 3-digit numbers formed by given t hive digits is divided by sum of the digits gives quotient 222. So, the sum of all possible 3-digit numbers formed by three digits $4,6,7$ when divided by $17(4+6+7)$ gives quotient 222.
4. Find the value of $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}$ and \mathcal{H} to complete the procedure of division.

Sol. In the puzzle, first number of quotient is 5 .
So, $9 \times 5=\mathcal{D E} \Rightarrow 45=\mathcal{D E} \Rightarrow \mathcal{D}=4$ and $\mathcal{E}=5$
$\mathcal{N o w}, 48-45=3$. Therefore, $\mathcal{A}=\mathcal{8}$
$\mathfrak{A l s o}$, to make the number $3 \mathcal{F}$ divisible $6 y 9$ we must have $\mathcal{F}=6$ and

$\begin{array}{r}-36 \\ \hline\end{array}$
0
I. High order Thinking Skills [HOTS] Questions.

1. a. Find the values of $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}$ and \mathcal{G} in the following.
$A B) \overline{4 C D E(1 F G}$

$\frac{-28}{15 D}$
$\frac{-140}{16 E}$
$\frac{-16 E}{\times}$

6. Write a 3 digit number abc as

$$
\begin{aligned}
100 a+10 b+c & =99 a+11 b+(a-b+c) \\
& =11(9 a+b)+(a-b+c)
\end{aligned}
$$

If the number is divisible by 11, then what can you say about $(a-b+c)$? Is it necessary that $(a+c-6)$

Should be divisible by 11?
Sol. a. Clearly $\mathcal{A}=2,6=8$

Also,
$\Rightarrow \circlearrowleft \mathcal{G}=6$ and $\mathcal{E}=\mathcal{S}$

Hence, $\mathcal{A}=2, \mathcal{B}=8, \mathcal{C}=3, \mathcal{D}=6, \mathcal{E}=\mathcal{S}, \mathcal{F}=5$ and $\mathcal{G}=6$
6. Yes! it is necessary that $(a-6+c)$ sfould be divisible by 11.
2. a. Without performing actual division, find the remainder when 28735429 is divisible by 11.
6. Can 231 be written is an even digit number, then $28735429=$ a multiple of $11+$ sum of its digits in even places sum of its digits in odd places.
$=$ a multiple of $11+(8+4+3+9) \cdot(2+7+5+2)$
= a multiple of $11+24 \cdot 16$
= a mult iple of $11+8$
Hence, required number $=8$
6. Yes, 231 can be written in the form of $\mathbf{1 0 b}+\boldsymbol{a}$
i.e., since (231-1) is divisible by 10, then

$$
231-1=230
$$

$\Rightarrow \quad 231-1=10 \times 23$
$\Rightarrow \quad 231-1=10 \times 23+1$
$\Rightarrow \quad 231=106=a$
Where $a=1$ and $6=23$
II. High order Thinking Skills [HOTS] Questions.

1. Given that the number $\overline{\mathbf{1 4 8 1 0 1 a 0 9 5}}$ is divisible by 11 , where a is some digit, what are possible value of a ?

Sol. If $\overline{148101 a 095}$ is divisible by 11, then $(1+8+0+a+9) \cdot(4+1+1+0+5)$ must be a multiple of 11 .
$\Rightarrow(a+18)-11$ is a multiple of $11 \Rightarrow a+7$ should be multiple of 11
It meanseitfer $\quad a+7=0 \quad$ or $\quad a+7=11$
or $\quad a+7=22$ and so on
$\mathcal{B u t} a$ is a digit which can vary from 0 to 9
From (1) $\quad a+7=11 \Rightarrow a=11-7=4$
Hence, possible value of $a=4$.
2. A number trick is given below
"Think of a 3-digit number; add 7 to it; then double it; subtract 4 and then divide it $6 y 2$.
\mathcal{N} ow subtract the original number from this. You will be left with 5 !"
Explain how this trick works.
Sol. Let that number be 345
$\mathcal{A d d} 7$
Double it
Subtract $4 \quad \rightarrow \quad 704 \cdot 4=700$
Divide 6y $2 \rightarrow \quad \rightarrow \quad \frac{700}{2}=350$
Subtract or iginal number $\rightarrow 350-345=5$
It is required number.
Explanation: Let the three digit number be abc. Then abc $=100 a+10 b+c$
$\begin{array}{lll}\text { Adding 7 gives } & \rightarrow & 100 a+10 b+c+7 \\ \text { Double it } & \rightarrow & 2(100 a+10 b+c+7) \\ \text { Subtract } 4 & \rightarrow & 200 a+206+2 c+14-4 \\ \text { Divide 6y } 2 & \rightarrow & \frac{200 a}{2}+\frac{20 b}{2}+\frac{2 c}{2}+\frac{10}{2}=100 a+10 b+c+5=a b c+5\end{array}$
Subtracting the original number gives $\rightarrow a b c+5-a b c=5$
I. Value based questions.

1. a. In a 3-digit number, the fundreds digit is twice the tens digit while the units digit is thrice the tens digit. Also, the sum of its digits is 19.
2. Write a 4-digit number abcd as

$$
\begin{aligned}
1000 a+100 b+10 c+d & =(1001 a+99 b+11 c) \cdot(a \cdot b+c-d) \\
& =11(91 a+9 b+c)+[(b=d) \cdot(a+c)]
\end{aligned}
$$

If the number abcd is divisible by 11, then what
can you say about $[(b+d) \cdot(a+c)]$?

Sol.
a. Let the tens digit $=x$

Then fundreds digit

$$
=2 x
$$

and the units digit

$$
=3 x
$$

According to condition,

$$
\begin{array}{lr}
\\
\Rightarrow & 6 x=18 \\
\Rightarrow & x=3
\end{array}
$$

$$
\Rightarrow \quad x=3
$$

Therefore, fundreds digit $=2 \times 3=6$

$$
\text { tens digit }=3
$$

units digit $=9$
Hence, required number $=(100 \times 6+10 \times 3+9$
$=639$
6. $[(b=d)-(a+c)]$ is divisible by 11.

