Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(: a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A		Column B	
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

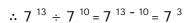
Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7


We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$

ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , $512 = 2x2x2x2x2x2x2x2x2x2 = 2^9$.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\implies \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
Generalian School

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{6}.$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

⇒ 2n = 2 + 2 ⇒ 2n = 4 Seneralion School

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^2\right\}^2\right]^1 \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^1$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-2} - 1 = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-2} - 1 \right)^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{\pi}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
	-, -		.,	-, -	-,	.,	, ,	' / '		, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)								
a. ($\left(\frac{x}{y}\right)^0$ b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$		d.	d. $\left(\frac{x}{y}\right)^9$		
2. $[(-3)^2)^3$	2. $[(-3)^2)^3$] is equal to							
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³		
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to						qual to		
the.								
a) Seco	nd power of	x		b) Third power of x				
c) Fifth power of x				d) Sixth power of x				
4. (10 + 20 +	3°) is equal	to						
a) 0		b) 1		c) 3	d)	6		
5. In standard form, the number 72105.4 is written as 7.21054 x 10 ⁿ where n is equal to								
a) 2		b) 3		c) 4	d)	5		
6. The stan	6. The standard form of the number 12345 is							
a) 1234.5 x 10 ¹ b) 123			5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴		
7. Cube of	$\left(\frac{-1}{4}\right)$ is							
a) $\frac{-1}{12}$ b) $\frac{1}{16}$			c) $\frac{-1}{64}$ d) $\frac{1}{64}$		$\frac{1}{4}$			
8. Which of the following has the largest value?								
a) 0.0001 b) $\frac{1}{10000}$		-	C) $\frac{1}{10^6}$		d) $\frac{1}{10^6}$ + 0.1			
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d	

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following i	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following i	s the s <mark>impl</mark> est form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following i	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following i	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9	$\times 10^3 + 2 \times 10^2$?	
a) 9000	b)9002	c)9200	d)209
8. Which of the following i	s the value of $(-1)^{100}$	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$c) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x a <mark>ny</mark> y, x³ ÷ ;	y³ is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	I number x, <mark>x⁸ ÷ x² is €</mark>	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any t	wo non-zero	integers c a	$nd y, x^3 \div y$	3 (NCERT EX	xemplar)		
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\Rightarrow$$
 2n = 4

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 X^2}$$

$$2^{n-5} \times 4^{2n-4}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2^4}$$

$$\Rightarrow$$
 2(n-5) x 2n-4 x3²ⁿ⁻⁴ = $\frac{1}{2^{4+4+1} X3^4}$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$\left[\because \frac{1}{a^m} = a^{-m}\right]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ =(4 + 5 +6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{3}{5}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B		
a)	$(a^m)^n$	i)	(a) ^{mn}	
b)	a ^m + b ^m	ii	(ab) ^m	
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$	
d)	a ^m x b ^m	iv	1	

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A	Column B		
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16	
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8	
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25	
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304	

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) $1,02,70,00,000 = 1.027000000 \times 10^9$

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div \mathfrak{z}$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) $1,02,70,00,000 = 1.027000000 \times 10^9$

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
	_, -		.,	-, -	-,	.,	-, -	' / '		, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	ial number. F	Product of th	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth por	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	te <mark>n a</mark> s 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The standard form of the number 12345 is							
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	<u>1</u> 64	
8. Which of the following has the largest value?							
a) 0.000	01	b) $\frac{1}{10000}$	-	c) $\frac{1}{10^6}$	d)	$\frac{1}{10^6}$ + 0.1	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :							
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$				
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK						
a) 8,000	b) 9,000	c) -8,000	d) 12,000				
3. Which of the following is the exponential form of '243'?							
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³				
4. Which of the following i	s the s <mark>impl</mark> est form o	$f(-3)^2 \times (-4)^3$?					
a) 576	b)-576	c) -64	d) -36				
5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \times 2^{3}$?							
a) 8	b) -8	c) -32	d) 32				
6. Which of the following i	s the standard form o	of 12700?					
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10				
7. Which of following is the	e simplest form of 9	$\times 10^3 + 2 \times 10^2$?					
a) 9000	b)9002	c)9200	d)209				
8. Which of the following i	s the value of $(-1)^{100}$	÷(-1)-1 ¹⁰⁰ ?					
a) 20000	b)-1	c) 1	d) 2				
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :					
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$c) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$				
10. $(-7)^5$ x $(-7)^3$ is equal to:							
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$				
11. For any two non-zero in	tegers x a <mark>ny</mark> y, x³ ÷ ;	y³ is equal <mark>to</mark> :					
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$				
12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to							
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶				
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn				
14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is:							

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

b) 2

c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

Column A		Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B			
a)	$(a^m)^n$	i)	(a) ^{mn}		
b)	a ^m + b ^m	ii	(ab) ^m		
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$		
d)	a ^m x b ^m	iv	1		

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A		Column B	
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343	
7	49	
7	7	
	1	

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270	
3	135	
3	45	
3	15	
5	5	
	1	

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729	
3	243	
3	81	
3	27	
3	9	
3	3	

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div \mathfrak{z}$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify : $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div \mathfrak{z}$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B		
a)	$(a^m)^n$	i)	(a) ^{mn}	
b)	a ^m + b ^m	ii	(ab) ^m	
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$	
d)	a ^m x b ^m	iv	1	

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A	Column B			
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16		
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8		
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25		
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304		

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

1

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$

$$\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$$

4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.

2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729				
3	243				
3	81				
3	27				
3	97	v C		U +	50
3	13 Cess	l	ener	alion	Ocho
	1				

 \therefore The exponential power of 729 is $\mathbf{3}^6$

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
	_, -		.,	-, -	-,	.,	, ,	' / '		, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)								
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$		d. $\left(\frac{x}{y}\right)^9$		
2. $[(-3)^2)^3$] is equal to					-		
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³		
3. x is a noi	n-zero ration	al number. F	Product of t	the square of	x with the o	cube of x is e	equal to	
the.								
a) Seco	nd power of	x		b) Third power of x				
c) Fifth power of x				d) Sixth po	d) Sixth power of x			
4. (1 ⁰ + 2 ⁰ +	3°) is equal	to						
a) 0		b) 1		c) 3	d)	6		
5. In stand	ard form, th	e number 72	105.4 is wri	tten as 7.210	054 x 10 ⁿ who	ere n is equal	to	
a) 2		b) 3		c) 4	d)	5		
6. The standard form of the number 12345 is								
a) 1234	.5 x 10 ¹	b) 123.4	15 x 10 ²	c) 12.345 x	10^3 d)	1.2345 x 10 ⁴	1	
7. Cube of	$\left(\frac{-1}{4}\right)$ is							
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	<u>1</u> 64		
8. Which of the following has the largest value?								
a) 0.0001 b) $\frac{1}{10000}$			c) $\frac{1}{10^6}$ d) $\frac{1}{10^6}$ + 0.1					
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d	
						•	1	

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 2^{6?}

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

Column A			Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(: a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	-, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 2^{6?}

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A		Column B	
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 \times 7^2 \times 11^8}{21 \times 11^3}$

We know, $21 = 7 \times 3$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$[: a^m \div a^n = a^{m-n}]$$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3 (

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 2^{6?}

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div \mathfrak{z}$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 2^{6?}

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

Column A		Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A		Column B	
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729	
3	243	
3	81	
3	27	
3	9	
3	3	

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729		
3	243		
3	81		
3	27		
3	9		
3	3		

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128	
3	64	
3	32 16 8 4	
3		
3		
3		
2	2	
	1	

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343	
7	49	
7	7	
	1	

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270	
3	135	
3	45	
3	15	
5	5	
	1	

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729		
3	243		
3	81		
3	27		
3	9		
3	3 (

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]

$$x = 144 \times 10^8 = 144 \times 10^{11}$$
 metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?
 Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(: a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A		Column B	
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

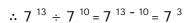
Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7


We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$

ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , $512 = 2x2x2x2x2x2x2x2x2x2 = 2^9$.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\implies \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
Generalian School

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{6}.$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

⇒ 2n = 2 + 2 ⇒ 2n = 4 Seneralion School

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^2\right\}^2\right]^1 \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^1$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-2} - 1 = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-2} - 1 \right)^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{\pi}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
	-, -		.,	-, -	-,	.,	, ,	' / '		, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)								
a. ($\left(\frac{x}{y}\right)^0$ b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$		d.	d. $\left(\frac{x}{y}\right)^9$		
2. $[(-3)^2)^3$	2. $[(-3)^2)^3$] is equal to							
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³		
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to						qual to		
the.								
a) Seco	nd power of	x		b) Third power of x				
c) Fifth power of x				d) Sixth power of x				
4. (10 + 20 +	3°) is equal	to						
a) 0		b) 1		c) 3	d)	6		
5. In standard form, the number 72105.4 is written as 7.21054 x 10 ⁿ where n is equal to								
a) 2		b) 3		c) 4	d)	5		
6. The stan	6. The standard form of the number 12345 is							
a) 1234.5 x 10 ¹ b) 123			5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴		
7. Cube of	$\left(\frac{-1}{4}\right)$ is							
a) $\frac{-1}{12}$ b) $\frac{1}{16}$			c) $\frac{-1}{64}$ d) $\frac{1}{64}$		$\frac{1}{4}$			
8. Which of the following has the largest value?								
a) 0.0001 b) $\frac{1}{10000}$		-	C) $\frac{1}{10^6}$		d) $\frac{1}{10^6}$ + 0.1			
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d	

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following i	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following i	s the s <mark>impl</mark> est form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following i	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following i	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9	$\times 10^3 + 2 \times 10^2$?	
a) 9000	b)9002	c)9200	d)209
8. Which of the following i	s the value of $(-1)^{100}$	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$c) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x a <mark>ny</mark> y, x³ ÷ ;	y³ is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	I number x, <mark>x⁸ ÷ x² is €</mark>	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have =
$$2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 ($\therefore a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\because \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$=a^{2+8}=a^{10}$$

9. Express in standard form :

we have
$$3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$\left(\frac{3}{5}\right)^8$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 5	, .	, -

II. Multiple choice questions

1. For any t	wo non-zero	integers c a	$nd y, x^3 \div y$	3 (NCERT EX	xemplar)		
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 x x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5 X 5^{n} X3 + 5 X5 X5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) 1,02,70,00,000 = 1.027000000 x 10⁹

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\Rightarrow$$
 2n = 4

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 X^2}$$

$$2^{n-5} \times 4^{2n-4}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2^4}$$

$$\Rightarrow$$
 2(n-5) x 2n-4 x3²ⁿ⁻⁴ = $\frac{1}{2^{4+4+1} X3^4}$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$\left[\because \frac{1}{a^m} = a^{-m}\right]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$	d.	$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to							
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A		Column B
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

	Column A		Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) $1,02,70,00,000 = 1.027000000 \times 10^9$

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides

$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Grade VII

Lesson :13 Exponents and Powers

Objective Type Questions

I. Multiple choice questions

a)
$$(X \div Y)^{1}$$

$$b)(X \div Y)^0$$

c)
$$(X \div Y)^5$$

d)
$$(X \div Y)^{10}$$

2. The value of
$$\frac{10^{22} + 10^{20}}{10^{20}}$$
 is

d)
$$10^{22}$$

3.
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{5}{7}\right)^{3}$$
 is equal to

a)
$$\left(\frac{10}{21}\right)^9$$

b)
$$\left(\frac{10}{21}\right)^9$$

c)
$$\left(\frac{10}{21}\right)^3$$

d)
$$\left(\frac{10}{21}\right)^0$$

4. The reciprocal of
$$\left(\frac{-5}{2}\right)^2$$
 is

a)
$$\left(\frac{-5}{2}\right)^2$$

b)
$$\left(\frac{5}{2}\right)^2$$

c)
$$\frac{4}{25}$$

d)
$$\frac{25}{4}$$

5.
$$(-4)^4 \times (-2)^0 \times (-1)^{202}$$
 is equal to

6. If
$$\left(\frac{5}{3}\right)^5 \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{8x}$$
 then the value of x is

b)
$$\frac{1}{2}$$

7.
$$(5^7 \div 5^2)$$
x $(3^6 \div 3^2)$ is equal to

8. If,
$$\frac{p}{q} = \left(\frac{5}{6}\right)^2 \div \left(\frac{5}{6}\right)^0$$
 then the value of $\left(\frac{p}{q}\right)^2$ is (Ncert)

a)
$$\frac{125}{1290}$$

b)
$$\frac{625}{1296}$$

$$C)\frac{164}{125}$$

c)
$$\frac{164}{125}$$
 d) $\frac{169}{144}$

9. If
$$(3^{102} \div 3^{101}) \div 3^{101} = k.3^{100}$$
, then the value of k is

10. If
$$\frac{a}{b} = \left(\frac{625}{81}\right) \div \left(\frac{5^4}{3^4}\right)$$
 then the value of $\left(\frac{a}{b}\right)^5$ is

$$a)\left(\frac{5}{3}\right)^8$$

b)
$$(\frac{3}{5})^{8}$$

$$d)\left(\frac{2}{3}\right)$$

1) c	2) c	3) c	4) d	5) a	6) d	7) d	8) c	9) b	10)c	11) c
, ,	_, -		',	-, -	-,	.,		1, 3	, .	, -

II. Multiple choice questions

1. For any two non-zero integers c and y, $x^3 \div y^3$ (NCERT Exemplar)							
a. ($\left(\frac{x}{y}\right)^{0}$	b. $\left(\frac{x}{y}\right)^3$		$C.\left(\frac{x}{y}\right)^6$ d.		$\left(\frac{x}{y}\right)^9$	
2. $[(-3)^2)^3$] is equal to						
a. (-	3) 8	b. (-3) ⁶		c. (-3) ⁵	d.	(-3) ²³	
3. x is a nor	n-zero ration	al number. F	Product of tl	ne square of	x with the c	ube of x is e	qual to
the.							
a) Seco	nd power of	x		b) Third po	wer of x		
c) Fifth	power of x			d) Sixth po	wer of x		
4. (10 + 20 +	3°) is equal	to					
a) 0		b) 1		c) 3	d)	6	
5. In stand	ard form, th	e number 72	105.4 is writ	ten as 7.210	54 x 10 ⁿ whe	ere n is equal	to
a) 2		b) 3		c) 4	d)	5	
6. The stan	dard form o	f the number	12345 is				
a) 1234	5 x 10 ¹	b) 123.4	5 x 10 ²	c) 12.345 x	10 ³ d)	1.2345 x 10 ⁴	
7. Cube of	$\left(\frac{-1}{4}\right)$ is						
a) $\frac{-1}{12}$		b) $\frac{1}{16}$		$C)\frac{-1}{64}$	d)	$\frac{1}{64}$	
8. Which of	the following	ng has the la	rgest value ?	>			
a) 0.000	D1	b) $\frac{1}{10000}$	5	C) $\frac{1}{10^6}$	d)	$\frac{1}{10^6} + 0.1$	
1. b	2. b	3. c	4. c	5.c	6. d	7. c	8. d

III. Multiple choice questions

1. 72 can be expressed as :			
a) 2 ³ x3 ²	b) 2 ² x3 ²	c) 2 ³ x3 ³	d) $2^2 \times 3^2$
2. Value of $(-2)^3 x(-10)^3$ is :	CYALK		
a) 8,000	b) 9,000	c) -8,000	d) 12,000
3. Which of the following is	s the exponential for	m of '243'?	
a) 3 ²	b)2 ³	c) 3 ⁵	b)5 ³
4. Which of the following is	s th <mark>e simp</mark> lest form o	$f(-3)^2 \times (-4)^3$?	
a) 576	b)-576	c) -64	d) -36
5. Which of the following is	s the simplest form o	$f[(2)^{20} \div (2)^{18}] \times 2^{3}$?	
a) 8	b) -8	c) -32	d) 32
6. Which of the following is	s the standard form o	of 12700?	
a)1.27 x 10 ⁴	b)12.7 x 10 ⁴	c)127 x 10 ²	d)1270 x 10
7. Which of following is the	e simplest form of 9 x	$< 10^3 + 2 \times 10^2?$	
a) 9000	b)9002	c)9200	d)209
8. Which of the following is	s the value of (-1) 100	÷(-1)-1 ¹⁰⁰ ?	
a) 20000	b)-1	c) 1	d) 2
9. Out of the following the	number which is not	equal to $\frac{-8}{24}$ is :	
a) $-(\frac{2}{3})^3$	$b.\left(\frac{-2}{3}\right)^3$	$C) - \left(\frac{-2}{3}\right)^3$	d) $\left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right) X \left(\frac{-2}{3}\right)$
10. $(-7)^5$ x $(-7)^3$ is equal to:			
a) (-7) ⁸	b) (-7) ⁸	c) (-7) ¹⁵	d) $(-7)^2$
11. For any two non-zero in	tegers x an <mark>y</mark> y, $x^3 \div y$	v^3 is equal <mark>to</mark> :	
a) $\frac{x^0}{y}$	b) $\left(\frac{x}{y}\right)^3$	$c)\frac{x^6}{y}$	d) $\frac{x^9}{y}$
12. For a non-zero rational	number $x_1 x^8 \div x^2$ is ϵ	equal to	
a) x ⁴	b)x ⁶	c) x ¹⁰	d)x ¹⁶
13. $a^m \times a^n$ is equal to: a) $(a^2)^{mn}$	b) a m-n ener	c) a ^{m+ n}	d) a mn
14. If 2 ¹⁹⁹⁸ - 2 ¹⁹⁹⁷ - 2 ¹⁹⁹⁶ +	2^{1995} = k.2 1995 , then t	he value of k is :	

d) 4

b) 2

a. 1

c)3

15. Which of the following is equal to 1?

a)
$$2^{0} + 3^{0} + 4^{0}$$

b)
$$2^{0}x3^{0}x4^{0}$$

c)
$$(3^{\circ}-2^{\circ}) \times 4^{\circ}$$

d)(
$$3^{\circ}-2^{\circ}$$
) x ($3^{\circ}+2^{\circ}$)

16 . Square of $\left(\frac{-2}{3}\right)$ is:

a)
$$\left(\frac{-2}{3}\right)$$

b)
$$\frac{2}{3}$$

c)
$$\frac{-4}{9}$$

d)
$$\frac{4}{9}$$

17. Which of the following is not equal to $\left(\frac{-5}{4}\right)^4$?

a)
$$\frac{(-5)^4}{4^4}$$

b)
$$\frac{5^4}{(-4)^4}$$

c)
$$-\frac{5^4}{4^4}$$

$$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$$

18. Which of the following is not equal to 1?

a)
$$\frac{2^2 X 3^2}{4 x 18}$$

b)
$$[(-2)^3X(-2)^4] \div (-2)^7$$

c)
$$\frac{3^0 X 5^3}{5 X 25}$$

$$d)\frac{2^4}{(7^0+3^0)3}$$

19. In standard form, the number 829030000 is written as K x 10^8 where K is equal to:

- a) 82903
- b) 829.03
- c) 82.903
- d) 8.2903

20. In standard form 72 crore is written as:

c)
$$7.2 \times 10^8$$

d)
$$7.2 \times 10^7$$

22. For non-zero numbers a and b $\left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^{m-n}$ where m > n is equal to.

a)
$$\left(\frac{a}{b}\right)^{mn}$$

b)
$$\left(\frac{a}{b}\right)^{m+n}$$

c)
$$\left(\frac{a}{h}\right)^{m-n}$$

d)
$$\left[\left(\frac{a}{b} \right)^{m} \right]^{n}$$

21. Which of the following is not true?

a)
$$3^2 > 2^3$$

b)
$$4^3 = 2^6$$

c)
$$3^3 = 9$$

d)
$$2^5 > 5^2$$

22. Which power of 8 is equal to 26?

a) 3

- b) 2
- c) 1

d) 4

Hints / Solutions

I. Fill in the Blanks

If $a^x = 1$, then the value of X is; where $a \neq 1$

$$a^0 = 1$$

So, $a^x = 1$, then the value of x is 0.

2. $(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = \dots$

Given
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32}$$

$$\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$$
 [: $a^m + a^n = a^{m-n}$]

$$[: a^m + a^n = a^{m-n}]$$

$$(1)^{92} = 1.$$

$$(1)^{92} = 1.$$
 [: (a) even integer = 1]

$$2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$$

$$\therefore$$
 (6)¹x(1)⁹²x2⁴ = 6 x 1 x 16= 96

Hence,
$$(6^4 \div 6^3) \times (1)^{92} \times 2^{36} \div 2^{32} = 96$$
.

3. $\left(\frac{11}{15}\right)^4 x \left(\dots\right)^5 \left(\frac{11}{15}\right)^9 NCERT$

$$a^m + a^n = a^{m+n}$$

$$\left(\frac{11}{15}\right)^4 \times \left(\frac{11}{15}\right)^5 = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$$

4. $\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11}$

$$a^m \times a^n = a^{m+n}$$

$$\therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{11} = \left(\frac{-1}{4}\right)^{11}$$

$$\implies \left(\frac{-1}{4}\right)^{\times} = \left(\frac{-1}{4}\right)^{11}$$

$$\Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{\left(\frac{-1}{4}\right)11}{\left(\frac{-1}{4}\right)3}\right) \Rightarrow \left(\frac{-1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^{x}$$

$$\implies x = 8$$

- 5. $432 = 2^4 \times 3^{--}$
- $432 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

- 6. 88880000000 = x 10 ¹⁰
- $38880000000 = 8.888 \times 10^7 \text{ and } 8888 = 8.888 \times 10^3$
 - So, $888800000000 = 8.888 \times 10^7 \times 10^3 = 8.888 \times 10^{10}$
- 7. $340900000 = 3.409 \times 10^{--}$

$$3409 = 3.409 \times 10^3$$

$$\Rightarrow$$
 3.409 x 10³ x 10⁵ = 3.409 x 10⁸

8. $53700000 = \dots \times 10^7$

$$53700000 = 537 \times 5.37 \times 10^{2}$$

and =
$$5.37 \times 10^2 \times 10^5$$

$$= 5.37 \times 10^7$$

9. $27500000 = 2.75 \times 10^{---}$

$$27500000 = 275 \times 10^{5}$$

$$\therefore$$
 275 = 2.75 x 10²

So,
$$2.75 \times 10^2 \times 10^5 = 2.75 \times 10^7$$

10. Fill in the blanks with <,> or = sign

$$: 3^2 = 3 \times 3 = 9$$

$$So, 3^2 < 15$$

- b) : $2^3 = 2 \times 2 \times 2 = 8$ and
- $3^2 = 3 \times 3 = 9.8 < 9$
- So, $2^3 < 3^2$
- c) :: $7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- and $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- ∴2401 > 625
- So, 74 > 59
- d) $10000=10 \times 10 \times 10 \times 10 = 10^4$
 - $10^4 = 10000, 10^5 = 100000$
 - ·: 10000 < 100000
 - So, 10000<10⁵
- e) :: $6^3 = 6 \times 6 \times 6 = 216$
- and $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- and 216< 256
- So, $6^3 < 4^4$

II. Fill in the Blanks

- 1. $(-2)^{31} \times (-2)^{31} = (-2)$
- 2. (-3) ⁸÷ (-3)⁵=(-2)
- 3. $\left[\left(\frac{7}{11} \right)^3 \right]^{4} = \left(\frac{7}{11} \right)$
- 4. $\left(\frac{6}{13}\right)^{10} \div \left[\left(\frac{6}{13}\right)^{5}\right]^{2} = \left(\frac{6}{13}\right)^{-1}$
- 5. $\left[\left(\frac{-1}{4} \right)^{16} \right]^2 = \left(\frac{-1}{4} \right)$
- 6. $a^6 \times a^5 \times a^0 = a$
- 7. 1 lakh = 10 ———
- 8. 1 million = 10 ———
- 9. 729 = 3

1. 44	2. 3	3. 12	4. 0	5. 32	6. 11	7. 5	8. 6	9. 6

I. True or False

- 1. One million = 10^7
- 2. One hour = 60^{2} seconds
- $3. 1^{0} \times 0^{1} = 1$
- $4. (-3)^4 = -12$
- $5.3^4 > 4^3$

6.
$$\left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$$

- 7. $(10 + 10)^{10} = 10^{10} + 10^{10}$
- 8. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^m + x^m = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^m + y^m = (x \times y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^m \div y^m = (x \div y)^m$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \times x^{n-2} = x^{m+n}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 49 is greater than 163.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- 17. $\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. 5° x 25 $^{\circ}$ x 125 $^{\circ}$ = (5°) 6 600060 = 6 x 105 + 6 x 10
- 21. $876543 = 8 \times 10^{5} + 7 \times 10^{4} + 6 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0}$
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. $4 \times 10^5 + 3 \times 10^4 + 2 \times 10^3 + 1 \times 10^0 = 432010$
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4° + 5 $^{\circ}$ + 6 $^{\circ}$ = (4 + 5 + 6) $^{\circ}$

1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

II. True or False

1.
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

False
$$2^0 \times 3^0 \times 0^1 = 2^{136}$$

$$[\because a^0 = 1]$$

$$1 \times 1 \times 1 \times 0 \times 2^{136} = 0$$

$$[\because a X 0 = 0]$$

Hence $2^0 \times 3^0 \times 0^1 \times 2^{136} \neq 1$

I. Match the columns

	Column A	Column B	
a)	$(a^m)^n$	i)	(a) ^{mn}
b)	a ^m + b ^m	ii	(ab) ^m
c)	a ^o	iii	$\left(\frac{a}{b}\right)^{m}$
d)	a ^m x b ^m	iv	1

a) i	b) iii	c) iv	d) ii

II. Match the columns

Column A			Column B
a)	$2^{0} \times 3^{2} \times 4^{6} \div 4^{2}$	i)	16
b)	$\left(\frac{2}{5}\right)^6 \div \left(\frac{2}{5}\right)^4$	ii	3 8
c)	$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^5 \times \frac{1}{2}$	III	4 25
d)	$(1)^{200} \times (2)^{198} \div (2)^{194}$	iv	2304

a) iv	b) iii	c) ii	d) i

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^0$?

- 2. What is the value of $x^a \times x^b$?
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- 5. Calculate $(2^3)^5$ 2¹⁵

II. Very Short Answer Questions

1. Find the value of 54?.

$$5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$$

2. Express in exponential form

$$a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$$

3. Express 729 using exponential notation.

We have,
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729
3	243
3	81
3	27
3	97
3	3
	1

∴ The exponential power of 729 is 36

4. Identify the greater number 28 or 82

We have,
$$2^8 = 2 \times 2 = 256$$

and
$$8^2 = 8 \times 8 = 64$$

Since,
$$256 > 64$$
 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have
$$= 2 \times 270$$

$$= 2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$$

$$= 2 \times 2 \times 3 \times 3 \times 15$$

$$= 2 \times 2 \times 3 \times 3 \times 5$$

$$540 = 2^2 \times 3^3 \times 5$$
.

6. Simplify: $(-3)^2 \times (-5)^2$.

We have
$$(-3)^{2} (-3) \times (-3) = 9$$

$$(-5)^2 = (-5) \times (-5) = 25$$

$$\therefore (-3)^2 \times (-5)^2 = 9 \times 25 = 225.$$

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have
$$2^5 \times 5^5 = (2 \times 5)^{5} = 10^5$$
 (: $a^m \times b^m = (ab)^m$)

Thus,
$$2^5 \times 5^5 = 10^5$$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$

We have
$$\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\div \frac{a^m}{a^n} = a^{m-n} \right]$$

$$= a^2 \times a^8$$

$$(:a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form:

we have
$$3,18,65,00,000 = 3.1865000000 \times 10^9 = 3.1865 \times 10^9$$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

$$900000 + 200 + 30 = 9,00,230.$$

I. Short Answer Questions

1. Express the number 25730 in standard form.

$$= 2.573 \times 10^4$$

2. Find the greater number in the following : 2^5 and 5^3

Since,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

And
$$5^3 = 5 \times 5 \times 5 = 125$$

$$\Rightarrow 5^3 > 2^5$$

3. Find the value of $\frac{3^7}{3^4 \times 3^3} \times 9$

$$= \frac{3^7}{3^{(3+4)}} \times 9$$

$$=\frac{3^7}{3^7} \times 9 = 9$$

4. Simplify: $[(5^2)^3 \times 5^4] \div 5^7$

$$[5^2]^3 \times 5^4] \div 5^7 = \frac{5^6 \times 5^4}{5^7}$$

$$= \frac{5^{6+4}}{5^7} = \frac{5^{10}}{5^7}$$

$$=5^{10-7}$$

$$=5^{3}$$

II. Short Answer Questions

- 1. Write the following numbers in expanded form:
 - a) 270404
- b) 23006<mark>1</mark>

$$270404 = 2,00,000 + 70,000 + 400 + 4$$

$$= 2 \times 1,00,000, + 7 \times 10,000 + 4 \times 100 \times 4 + 1$$

$$= 2 \times 10^5 + 7 \times 10^4 + 4 \times 10^2 + 4 \times 10^0$$

$$= 2 \times 1.00.000 + 3 \times 10.000 + 6 \times 10 + 1$$

$$= 2 \times 10^5 + 3 \times 10^4 + 6 \times 10^2 + 1 \times 10^0$$

2.
$$[(2 \div 1)^{-2} \div (5 \div 1)^{-1}]^{2} \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^{2} \times \left(\frac{8}{-5}\right)$$

$$= \left(\frac{1}{2} \times 5\right)^{2} \times \left(\frac{2 \times 2 \times 2}{-5}\right)$$

$$= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$$

$$= \frac{2^{3} \times 5^{2}}{2^{2} \times 5}$$

$$= -2^{3-2} \times 5^{2-1}$$

$$= -2 \times 5$$

$$= -10.$$

3. Find the values of n, when:

a)
$$5^{2n} \times 5^3 = 5^9$$
 b) $8 \times 2^{n+2} = 32$

b)
$$8x \ 2^{n+2} = 32$$

a)
$$\Rightarrow$$
 5²ⁿ⁺³ = 5⁹

As base 5 is same on both sides.

$$\therefore 2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9-3

$$\Rightarrow$$
 2n =6

Thus,
$$n = \frac{6}{2} = 3$$
.

b)
$$\Rightarrow$$
 2x 2 x2 x2ⁿ⁺²

$$=2x2x2x2x2$$

$$2^3 \times 2^{n+2} = 2^5$$

$$\Rightarrow 2^{n+2+3}=2^5$$

$$\implies 2^{n+5} = 2^5$$

As base is same on both sides

$$\therefore$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5 = 0

4. Simplify:

$$\frac{10 X 5^{n+1} + 25 X 5^{n}}{3 X 5^{n+2} + 10 X 5^{n+1}}$$

$$= \frac{2X5 X 5^{n} X5 + 5 X 5 X 5^{n}}{3 X 5^{n} X5 X5 + 2 X5 X5 X 5^{n}}$$

$$= \frac{5X5 X 5^{n} X2 + 5 X 5^{n} X2}{5X 5 X 5^{n} X3 + 5 X5 X 5^{n} X 2}$$

$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

eneration School

5. Express:

- a) 729 As A Power Of 3 b) 128 as power of 2
- c) 343 as a power of 7

3	729
3	243
3	81
3	27
3	9
3	3

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times.

c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- ii) (7⁵⁰)²
- i) As we know $a^m \div a^{m-1}a^{m-1}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x2} = 7^{100}$

[As we know $(a^m)^n = a^{mn}$

2. Compare the numbers:

Since 2.7 x
$$10^{12} = \frac{27}{10}$$
 x $10^{12} = 27$ x 10^{12-1}

$$= 27 \times 10^{11}$$

Also 1.5 x 10
$$^{8} = \frac{15}{10}$$
 x 10 $^{8} = 15$ x 10 $^{8-1} = 15$ x 10 7

= 27,00,00,00,00,000

and $15 \times 10^7 = 15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$

= 15 ,00,00, 000

Since 27,00,00,00,00,000 > 15,00,00,000

$$\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$$

3. Express in exponential notation

- i) 3,125
- ii) 512
- i) 5 3125 5 625 5 125 5 25 5 5

We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

We have , 512 = 2x2x2x2x2x2x2x2x2x2 = 29.

tion School

4. Simplify: $\frac{3 X 7^2 X 11^8}{21 \times 11^3}$

We know,
$$21 = 7 \times 3$$

$$= \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3}$$
$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$^{1-1} \times 7^{2-1} \times 11^{8-3}$$
 [: $a^m \div a$

$$=3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$=3^6 \times 7^1 \times 11^5$$

$$= 1 \times 7 \times 11^5$$

$$= 7 \times 11^{5}$$

5. Express the following as a product of prime factors only in exponential form.

i) 270

- ii) 729 x 64
- i) We have, $270 = 2x \ 3 \ x3x3 \ x5 = 2 \ x \ 3^3 \ x \ 5$

2	270
3	135
3	45
3	15
5	5
	1

ii) We have

$$729 = 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

$$64 = 2x2x2x2x2x2x2 = 2^6$$

3	729
3	243
3	81
3	27
3	9
3	3

2	64
2	32
2	16
2	8
2	4
2	2

School

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸

$$= 3.84 \times 10^8$$

∴The distance between Earth and Moon is 3.84 x 108m

ii) $1,02,70,00,000 = 1.027000000 \times 10^9$

$$= 1.027 \times 10^9$$

∴ The population of India was 1.027 x 10⁹ in March 2001.

Long Answer Questions I

1. Find the value of n if:

$$\frac{9^n X 3^2 X 3^n - (27)^n)}{(3^3)^5 x 2^3} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^n X \, 3^2 X 3^n - (3x \, 3x3)^n}{3^{15} x 2^3} = \frac{1}{3x \, 3x \, 3}$$

$$\Longrightarrow \frac{(3^{2})^{n} X 3^{n+2} - (3^{3})^{n}}{3^{15} X 2^{3}} = \frac{1}{3^{3}}$$

$$\Longrightarrow \frac{3^{2n} X 3^{n+2} - 3^{3n}}{3^{15} X 2^3} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2}-3^{3n}}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n}(3^2-1)}{3^{15}X2^3} = 3^{-3}$$

$$\implies \frac{3^{3n-15}(9-1)}{2^3} = 3^{-3}$$

$$\implies 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

 \Rightarrow As base are same on both sides, so

$$3n-15 = -3$$

$$\Rightarrow$$
 3n = -3 + 15

$$\Rightarrow$$
 3n = 12

thus,
$$n = \frac{12}{3} = 4$$
.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$ Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div X = \frac{1}{-5}$$

$$\implies \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Longrightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$^{-15x} \longrightarrow -15 x \times 1 = -5 \times 1$$

$$\Rightarrow$$
 -15x = -5

$$\implies x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\implies x = \frac{1}{3}$$
.

3. Simplify the following:

a)
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

a)
$$(6^{-1} - 8^{-1})^{-1} + (2-1 - 3 - 1)-1$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$=\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}$$

$$=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}$$

b)
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left(\frac{1}{6} + \frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{6}{5}$$

4.
$$a.\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

$$a. \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$$

$3^4 X 2^8 X 3^6 X 2^2$

$\overline{2^3 X 3^3 X 2^6 X 3^3}$

$$= \frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} \times 3^{10-6}$$

$$= 2 \times 3^4 = 2 \times 81 = 162.$$

b.
$$2^3 \times a^3 \times 5a^4$$

$$= 8 \times a^3 \times 5 \times a^4$$

$$= 40 \times a^{3+4}$$

$$= 40 \times a^7$$

$$= 40a^7$$

5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n

$$\Rightarrow$$
 (5²)ⁿ⁻¹ + 100 = 5⁽²ⁿ⁻¹⁾

$$\Rightarrow$$
 5 ²ⁿ⁻² + 100 = 5²ⁿ⁻¹

$$\Rightarrow$$
 5²ⁿ⁻² - 5²ⁿ⁻¹ = -100

$$\Rightarrow$$
 5²ⁿ⁻¹ - 5²ⁿ⁻² = 100

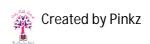
$$\Rightarrow$$
 5 ²ⁿ⁻² x (5-1) =100

$$\Rightarrow$$
 5 ²ⁿ⁻² x 4 =100

$$\implies 5^{2n-2} = \frac{100}{4} = 25$$

Thus,
$$5^{2n-2} = 5^2$$

As base is same on both sides


$$\therefore 2n-2 = 2$$

$$\Rightarrow$$
 2n = 2 + 2

$$\implies$$
 n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

a)
$$\left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right) \times \left(-\frac{4}{3}\right)$$

a)
$$\frac{(-4)X(-4)X(-4)X(-4)X(-4)}{3X3X3X3X3}$$
$$=\frac{(-4)^5}{(3)^5} = \left(\frac{-4}{3}\right)^5$$

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^4 \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^4 \times 2^4 \times 3^4 \times 2}$$

$$\Rightarrow 2^{(n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^9 \times 3^4}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$

$$\implies \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$$

$$\implies \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$$

 $[\because (a \times b)^m = a^m \times b^m]$

$$[\because a^m \times a^n = a^{m+n}]$$

$$[\because \frac{1}{a^m} = a^{-m}]$$

$$[\because a^m \times a^n = a^{m+n}]$$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$

Long Answer Questions II

1. Express $\left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]$ as a rational number

$$\left(\frac{4}{3}\right)^{-1} = \frac{3}{4}$$

and
$$(\frac{1}{4})^{-1} = \frac{4}{1}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \left[\frac{3}{4} - \frac{4}{1} \right]^{-1}$$

$$= \left[\frac{3 - 4 X \overline{4}}{4} \right]^{-1}$$

$$= \left[\frac{3 - 16}{4} \right]^{-1} = \left[\frac{-13}{4} \right]^{-1} = \frac{-4}{13}$$

$$\therefore \left[\left(\frac{4}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right]^{-1} = \frac{-4}{13}$$

2. Simplify:

$$\left\{ \left(\frac{-1}{4} \right)^2 \right\}^{-2} - 1$$

As we know

$$a^{-1} = \frac{1}{a}$$
 and $(\frac{1}{a})^{-1} = a$

$$\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{2}\right]^{1} \qquad \left[\left\{\left(\frac{-1}{4}\right) \times \left(\frac{-1}{4}\right)\right\}^{-2}\right]^{1}$$

$$= \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} = \left(\left\{ \begin{array}{c} \frac{1}{16} \end{array} \right\}^{-1} \right\}^{-1}$$

$$= \left[16 \times 16\right]^{-1} = \left[256\right]^{-1} = \frac{1}{256}$$

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed =
$$\frac{Distance}{Time}$$

$$3x\ 10^8 = \frac{x}{8X60}$$

 $x = 3x \cdot 10^8 \times 48 \times 10$ [By cross multiplication]

 $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.

- ∴ The distance of Sun from Earth is 1.44 x 10 11 m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours? Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes:

1 hour = 60 minutes

6 hours = $60 \times 6 = 360 \text{ minutes}$.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2 18

Hence, In 6 hours, 2¹⁸ bacteria well be there.