Name: \qquad
Grade : VI
Subject : Mathematics

Chapter 4: Basic Geometrical Ideas

I. Multiple Choice Questions

1. How many points are marked in the following figure?

a. 1
b. 2
c. 3
d. 4
2. Number of lines passing through five points such that no three of them are collinear, is
a. 10
b. 15
c. 20
d. 8
3. The number of circles that can be drawn with a given centre is
a. 2
b. 3
C. 4
d. Infinite
4. Which of the following has two end points?
a. Ray
b. Line
c. Line segment
d. None of the above
5. In the given figure, $\angle X Y Z$ cannot be written as

a. $\angle Y$
b. $\angle Z X Y$
c. $\angle Z Y X$
d. $\angle X Y P$
6. Which of these is an example for a pair of these parallel lines?
a. Corner of a room
b. Railway track
c. Sides of a triangle
d. Surface of a ball.
7. Which of the following are the diagonals of the given polygon?
a. $A D$ and $B E$
b. AF and FE
c. $B C$ and ED
d. $A B$ and $E D$

8. The least number of line segment required to make a polygon is
a. 1
b. 2
b. 3
d. 5
9. The number of triangles in the given figure are.

a. 10
b. 12
C. 13
d. 14
10. Which of the following is not a polygon?
a. Triangle
b. Rectangle
c. Pentagon
d. Circle
11. The number of angles in the given figure are

a. 3
b. 4
c. 5
d. 6

1. d	2.a	3.d	4. c	5.b	6.b
7.a	8.c	9. b	10.d	11.d	

II. Multiple Choice Questions

1. The number of diagonals in a heptagon is:
a. 21
b. 42
c. 7
d. 14
2. In fig. if point A is shifted to point B along the ray $P X$ such that $P B=2 P A$, then the measure of $\angle B P Y$ is:
a. greater than 45°
b. 45°
c. less than 45°
d. 90°
3. A polygon has prime number of sides. Its number of sides is equal to sum of the two least consecutive primes. The number of diagonals of the polygon is:
a. 4
b. 5
c. 7
d. 10
4. How many lines can pass through two given points?
a. 1
b. 2
c. 3
d. Infinite
5. How many vertices are there in a hexagon?
a. 5
b. 6
c. 7
d. 8
6. How many diagonals are there in a pentagon?
a. 2
b. 3
c. 4
d. 5
7. What is the length of the diameter of a circle of radius 8 cm ?
a. 4 cm
b. 8 cm
c. 16 cm
d. 2 cm
8. An angle divides the plane in to how many regions?
a. 2
b. 3
c. 4
d. 5
9. An angle of measure 360° is called:
a. a Zero angle
b. a straight angle
c. a reflex angle
d. a complete angle
10. Two parallel lines intersect
a. in a line
b. in appoint
c. in two points
d. no where
11. Which of the following is not a polygon?
a. trapezium
b. circle
c. triangle
d. Quadrilateral
12. How many angles are there in the given figure?

a. 4
b. 8
c. 12
d. 16
13. A point where there or more lines meet is called:
a. non-collinear point
b. point of concurrence
c. meeting point
d. collinear point

1. d	2. b	3. b	4. a	5. b	6. d	7.c
$8 . c$	$9 . d$	10. d	11. b	12. c	13. b	

III. Multiple Choice Questions

1. How many points are enough to fix a line?
a. 1
b. 2
c. 3
d. 4
2. Two intersecting lines intersect in
a. 1 point
b. 2 points
c. 3 points
d. 4 points
3. How many lines can pass through one given point?
a. 1
b. 2
c. 4
d. Countless
4. How many vertices are there in the following figure?
a. 5
b. 3
c. 2
d. 4

5. How many sides are there in the following figure?
a. 5
b. 2
c. 2
d. 3
6. How many diagonals are there in the following figure?
a. 4
b. 5
c. 2
d. 3

7. How many vertices are there in a triangle?
a. 1
b. 2
c. 3
d. 4
8. How many sides are there in a triangle?
a. 1
b. 2
c. 3
d. 4
9. How many angles are there in a triangle?
a. 1
b. 2
c. 3
d. 4
10. How many vertices are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
11. How many sides are there in a quadrilateral?
a. 1
b 2
c. 3
d. 4
12. How many angles are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
13. How many pairs of adjacent sides are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
14. How many pairs of opposite angles are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
15. How many pairs of opposite sides are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
16. How many pairs of adjacent angles are there in a quadrilateral?
a. 1
b. 2
c. 3
d. 4
17. Which of the following statements is false?
a. Two diameters of a circle will necessarily intersect.
b. The centre of a circle is always in its interior.
c. Every diameter of a circle is also a chord.
d. Every chord of a circle is also a diameter.

1. b	2.a	3.d	4.a	5.a	6.b
7. c	$8 . c$	$9 . c$	$10 . d$	$11 . d$	12.d
13. d	$14 . b$	$15 . b$	$16 . d$	$17 . d$	

IV. Multiple Choice Questions

1. There or more lines passing through the same points are called
a. Parallel lines
b. bisectors
c. concurrent lines
d. perpendicular lines
2. If the arms of an angle on the paper are decreased, the angle
a. Will always decrease
b. will always increase
c. will remain same
d. may increase or decrease
3. In $\triangle A B C$, sides opposite to $\angle A$ and $\angle C$ are respectively
a. $B C$ and $A B$
b. $A B$ and $C B$
c. $A C$ and $B C$
d. $B C$ and $C A$
4. The minimum number of points of intersection of four lines on a surface is
a. 0
b. 1
c. 2
d. 4
5. If a point P lies in the exterior of a circle with centre 0 and radius 3 cm , then
a. $O P=3 \mathrm{~cm}$
b. $O P<3 \mathrm{~cm}$
c. $O P>3 \mathrm{~cm}$
d. $O P \geq 3 \mathrm{~cm}$

I. Fill in the Blanks

1. In the given figure, points lying in the interior of the $\triangle P Q R$ are \qquad that in the exterior are \qquad and that on the triangle itself are \qquad .

2. The radius of a circle is \qquad of its diameter.
3. Diameter of a circle is \qquad chord.
4. The number of common points in the two angles marked in the given figure is
\qquad .

5. All the radii of a circle are \qquad .
6. \qquad Number of diameter can be drawn in a circle.
7. The common part between the two angles $B A C$ and $D A B$ in figure is \qquad .

8. Two lines intersect at \qquad point.
9. A quadrilateral has \qquad sides.
10. A triangle has \qquad vertices.
11. The number of common points in the two angles marked in the given figure is
\qquad -.

1. P, Q, R, M	2. Twice	3. Longest	4. P and Q Common points	5. Equal	6. Infinite
$7 . A B$	8. One	9. Four	10. Three	11. Four	

II. Fill in the Blanks

1. The number of diagonals in a hexagon is \qquad .
2. In Fig. points lying in the interior of the triangle $P Q R$ are \qquad that in the exterior are \qquad and that on the triangle itself are \qquad .

3. In Fig. points A, B, C, D and E are collinear such that $A B=B C=C D=D E$. Then
a) $A D=A B+$
b) $A D=A C+$
\qquad
c) Midpoint of $A E$ is \qquad -
d) Midpoint of $C E$ is \qquad
e) $A E=$ \qquad $A B$.

4. The number of common points in the two angles marked in Fig. is \qquad .

5. The number of common points in the two angles marked in Fig. is \qquad .

6. The number of common points in the two angles marked in Fig \qquad .

7. The common part between the two angles $B A C$ and $D A B$ in Fig. is \qquad .

8. The number of common points in the two angles marked in Fig. is \qquad .

9. \qquad is the point, where there medians of a triangle meet.
10. All \qquad of a circle are equal.
11. A figure which beings and ends at the same point is called a \qquad .
12. A median of a triangle is the \qquad that joins a vertex to the ___ of opposite sides.
13. A \qquad has no end points.

1. 9	 N, M, P, Q, R	3. a) BD b) CD c) C d) D e) 4	4. Two	5. One	6. Three	7. Ray $A B$,
8. Four	9. Centroid	10. Radii/diameters	11. Closed curve	12. Line segment, mid-point	13. Line	

I. Match the following

| a) The line segment joining points A and B |
| :--- | :--- |
| is denoted by |\quad i) Circumference \quad| b) The distance around the circle is the | ii) $\overline{A B}$ |
| :--- | :--- |
| c) The diameter of a circle divides it into | iii) segment |
| d) A region in the interior of the circle
 enclosed by an arc and a chord | iv) Two-semi circle |

a) ii
b) i
c. iv
d. iii

II. Match the following

1. Longest chord of a circle	a. Altitude
2. Point of concurrence of medians	b. Median
3. Geometrical figure having fixed length	c. Diameter
4. Line segment drawn perpendicular to opposite sides	d. Centroid
5. Geometrical figure having no definite length	e) Ray
6. Line segment joining mid-point of a side of triangle to opposite vertex	f) Line

1.c	2.d	3.f	4. a	5.e	6.b

I. True or False

1. Two non-parallel line segments will intersect.
2. Two parallel lines meet such other at same point.
3. Many lines can pass through two given points.
4. Two angles have exactly one common arm.
5. A circle has only one centre.
6. In any triangle, numbers of line segments are three.
7. A line has end point.
8. A simple curve is one that does not cross itself.
9. A curve is said to be closed, if its end are not joined.
10. An angle is made up of two rays starting from a common end point.
11. In the given figure, $\perp A B$ and $P O=O Q$. Is $P Q$ the perpendicular bisector of line segment $A B$?

1. False	2. False	3. False	4. True	5. True	6. True
7. False	8. True	9. False	10. True	11. True	

II. True or False

1. If line $P Q \|$ line m, then line segment $P Q \| m$.
2. Measures of $\angle A B C$ and $\angle C B A$ in Fig are the same
3. Two lines segments may intersect at two points.
4. Many lines can pass through two given points.
5. Only one line can pass through a given point.
6. Two angles can have exactly five points in common.
7. Point has a size because we can see it as thick dot on paper
8. Two lines in a plane always intersect at a point.
9. All radii of a circle are equal.
10. Diameter is a chord of a circle.
11. The distance between parallel lines is same throughout.
12. Four points are collinear if any three of them lie on the same line.

1. True	2. True	3. False	4. False	5. False	6. False
7. False	8. False	9. True	10. True	11. True	12. False

I. Very Short Answer Type Questions

1. Use the following figure to name:

a) All the points
b) two line segments.
a) The points are $O, A b$ and C.
b) Two line segments are $\overline{O A}$ and $\overline{O C}$.
2. Name the line segments in given below

All the line segments are $\overline{P Q}, \overline{P R}, \overline{P S}, \overline{Q R}, \overline{Q S}$ and $\overline{R S}$.
3. Name the line segments shown in given figure.

The line segments are $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}$ and $\overline{A E}$.
4. Consider the following figure and write the name of:
a) a ray, which contains point A.
b) a ray, which contains point B.
a) Ray, which contains point A is $\overrightarrow{P A}$.
b) Ray, which contains point $B \overrightarrow{Q B}$.
5. Draw tow curves that are opened

The open curves are

6. Draw two curves that are closed.

The closed curves are

and

7. Name the vertices in given figure The vertices in the above figure are $A, B C$ and D.

8. Write down three angles involved in $\triangle A B C$ of the given figure.

The three angles in the above figure are $<B A C,<A B C$, and $<A C B$.

9. In $\triangle P Q R$, write its interior and exterior point.

The interior of $\triangle P Q R$ is A and exterior is B.

10. Write the opposite sides of the given quadrilateral.

The opposite sides are $\overline{A B}$ and $\overline{C D}, \overline{B C}$ and $\overline{D A}$.

11. Give the name of all chords in the given figure.

The chords of the below circle are BE and CD.

12. Write all exterior and interior points of the given figure.

Here, interior are H, I and exterior is M.

13. Write all vertex of the given figure.

Vertex of a circle cannot be possible i.e. circle has no vertex.

14. Write vertex of opposite side of $A B$ and $B C$ of the given figure. Vertex of opposite side of $A B$ is C and of $B C$ is A.

15. Write all vertices of the given figure.

In the given picture, vertices are A, B, C, D and E

II. Very Short Answer Type Questions

1. Name all the line segments in Fig.

The line segments are $A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$.
2. Name the line segments shown in Fig.

The line segments are $A B, B C, C D, D E, E A$.
3. State the mid points of all the sides of Fig.

It is clear from the figure that mid points of all the sides of a triangle are X, Y and Z.
4. Look at Fig Mark a point

a) A which is in the interior of both $\angle 1$ and $\angle 2$.
b) B which is in the interior only $\angle 1$.
c) Point C in the interior of $\angle 1$. Now, state whether points B and C lie in the interior of $\angle 2$ also.

Yes, it is clear from the given figure, that the points B and C lie in the interior of $\angle 2$ also.
5. Will the lengths of line segment $A B$ and line segment $B C$ make the length of line segment $A C$ in Fig.

It is clear from the figure that line segment $A B$ and in segment $B C$ make, the line segment AC. Hence, answer is yes.
6. What is the radius of a circle whose diameter is 4.5 cm ?
2.25 cm , as radius $=\frac{\text { diameter }}{2}$
7. How many diameters can a circle have?

Infinite
8. Name the angle, its vertex and arms from figure.

$\angle A O B$, vertex O, arms $O A, O B$
9. Name the angles in the following figure.

$\angle A, \angle B, \angle C, \angle D, \angle E$, and $\angle F$.
10. Find the circumference of a circle whose diameter is 2 cm .

$$
\begin{aligned}
\text { Circumference } & =\pi d \\
& =3.14 \times 2 \\
& =6.28 \mathrm{~cm}
\end{aligned}
$$

III. Very Short Answer Type Questions

1. How many lines can pass through
i) One given points?
ii) two given points
i) Countless
ii) Only one line
2. Is it ever possible for exactly one line to pass through three points?

Yes, it's possible for one line to pass through three points only when these points are collinear.
3. Lines P, q are coplanar. So are the lines p, r. Can we conclude that the lines p, q, r are complanar?

Yes, lines p, q, r are coplanar.
4. Draw any polygon and shade its interior.

5. Will the measure of $\angle A B C$ and $\angle C B D$ make measure of $\angle A B D$ in Fig. 4.8?

Yes because $\angle A B C+\angle C B D=A B D$.

6. What is common in Fig. 4.9 i) and ii)?

Both figures have 3 line segments.
I. Short Answer Type Questions

1. Write down six angles involved in the given figure.

Six angles involved in the above figure are
$\angle A B C, \angle B C A, \angle C A B, \angle A E C, \angle A B D$ and $\angle D B C$.
2. In the following figure, name the angles using three letters.

a) $\angle 1$
b) $\angle 2$
c) $\angle 3$

Here, we can write the name of angles with the help of given figure;
a) $\angle 1=\angle A O B$
b) $\angle 2 \angle B O C$
c) $\angle 3 \angle C O D$
3. Is PQRS a figure of polygon? If yes, what is the special name for it? Yes, it is a polygon, because it is a simple closed curve. Figure made up of line segments only. It is a quadrilateral.

4. In the given figure, list the points which
i) are in the interior of $\angle A O B$.
ii) are in exterior of $\angle A O B$.
iii) lie on $\angle A O B$

i) The interior points of $\angle A O B$ are S and Q.
ii) the exterior points of $\angle A O B$ are P and R.
iii) The points, which lie on $\angle A O B$ are A, O, B, T and N.
5. Identify parallel line segments in each of the figure given below.
(i)

(ii)

(iv)

Parallel lines in the above figures are
i) $S t$ and $Q R$.
ii) $P Q$ and $S R, S P$ and $Q R$
iii) $P Q$ and $S R$, and $S P$.
iv) $P Q$ and $T S, Q R$ and $T N, S R$ and $N P$.
6. How many lines can pass through
a) One given points?
b) Two given points?
c) Three non-collinear points?
a) Through one given point, infinite number of lines can be drawn.
b) Through two given points, only one line can be drawn.
c) Through three non-collinear points, three lines can be drawn.
7. In the given figure, write

a) name of the vertex of $\angle 3$.
b) name of the common arm of $\angle 1$ and $\angle 2$
c) name the vertex of $\angle 4$.
a) The vertex of $\angle 3$ is B.
b) Common arm of $\angle 1$ and $\angle 2$ is $A C$.
c) The vertex of $\angle 4$ is C.
8. In the given figure, name the points, which are

a) in its exterior
b) in its interior
c) on the circle.
a) the points, which are in the exterior are F,G and H.
b) Interior points are A, O and C.
c) The points, while lie on the circle are B, D and E.
9. In the given figure, write the name of

i) chords of the circle.
ii) radii of the circle
iii) sector of the circle.
i) Chords are $C D, A B$ and $E F$.
ii) Radii are $O E, O A, O b$ and $O C$.
iii) Sectors are $A O E, A O C$, and COE.
10. How many radii can be drawn on a circle?
i) parallel lines.
ii) point of intersection of the line / and n.
iii) point of intersection of the line q and r.
iv) point of intersection of the line m and r
v) point of intersection of the line p and m.

There are infinite number of radii can be drawn on a circle.
II. Short Answer Type Questions

1. Draw all the diagonals of a pentagon $A B C D E$ and name them.

Diagonals are $A C, C D, B E, B D$ and $C E$.
2. In which of the following figure (i -iii)
a) Perpendicular bisector is shown?
b) bisector is shown?
c) only bisector is shown?
d) only perpendicular is shown?

(iii)
a) ii
b) ii and iii)
c) iii)
d) i)
III. Short Answer Type Questions

1. Which point in Fig. appears to be mid-points of the line segments? When you locate a mid-point. Name the two equal line segments formed by it.

(i)

i) There are no mid-points for the line segments in the given Fig.i)
ii) O is the mid-point of line segment $A B$.
iii) D is the mid-point of line segment $B C$. Two equal line segments are $B D$ and $D C$.
2. In Fig. O is the centre of the circle.
a) Name all chords of the circle
b) Name all radii of the circle.
c) Name a chord, which is not the diameter of the circle.
d) Shade sectors OAC and OPB.
e) Shade the smaller segments of the circle formed by $C P$.

a) All Chords of the circle are $C P$ and $A B$
b) All radii of the circle are $O A, O B, O C$ and $O P$
c) The chord which is not the diameter of the circle is $C P$.
d)

3. Write the name of:
a) Vertices
b) edges and
c) faces of the prism shown in Fig.

a) Vertices: A, B, C, D, E and F
b) Edges: $A B, A C, B C, B D, D F, F C, E D$ and $A E$
c) Faces: $A B C, D E F, A E F C, A E D B$ and $B D F C$.
4. From fig. name
i) all points of parallel lines.
ii) all pairs of intersecting lines.
iii) Lines of whose points of intersection is P.
iv) lines whose point of intersection is C.
v) Lines whose point of intersection is R.
vi) Collinear points.

i) Clearly, following are pairs of parallel lines: / and m; m and n; / and n.
ii) Following are pairs of intersecting lines:
$l, p ; m, p ; n, p ; I, q ; m, q n, q ; p, q$
iii) P is the point of intersection of lines / and p.
5. From Fig. write
i) Lines intersecting at A
ii) Lines intersecting at B.
iii) Concurrent lines and their point of concurrence.

i) Clearly, lines I, q and r intersect at A.
ii) Lines m, p and r intersect at B.
iii) Lines I, q and r are concurrent with A as the point of concurrence. Also lines m, p and r are concurrent at B.

III. Short Answer Type Questions

1. In Fig. 4.12 how many line segments are there? Name them.

Fig. 4.12
10 line segments are there.
Line segments I the figure are
$\overline{A B}, \overline{A D}, \overline{A E}, \overline{A C}, \overline{B D}, \overline{B E}, \overline{B C}, \overline{D E}, \overline{D C}, \overline{E C}$
2. Name the vertices and the line segments in Fig. 4.13

Vertices: $A, B, C D$ and E.
Line segments: $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}, \overline{B C}, \overline{C D}, \overline{D E}$
3. Draw rough diagrams to illustrate the following:
i) Open curve
ii) Closed curve
i) Open curve
ii) Closed curve

4. Fill in the blanks:
i) In Fig. 4.16, points lying in the interior of the triangle $P Q R$ are
\qquad that in the exterior are \qquad and that on the triangle itself are \qquad -

Fig. 4.16
ii) The number of triangles in Fig. 4.17 is \qquad . Their names are
\qquad _.

iii) The number of straight angles in Fig. 4.17 is \qquad .
i) O and S, T and N, P, Q and R
ii) $5, \triangle A O B, \triangle A O C, \triangle A C D, \triangle C O D, \triangle A B C$
iii) four
5. Which points in Fig. 4.18 appear to be mid-points of the line segments? When you locate a mid-point, name the two equal line segments formed by it.

(i)

(ii)
Fig. 4.18

(iii)
i) Mid point is C

Line segments are, $\overline{C A}$ and $\overline{C B}$
ii) Mid point is O.

Line segments are $\overline{O B}$ and $\overline{O A}$.
ii) Mid point is D.

Line segments are $\overline{D B}$ and $\overline{D C}$.
6. In Fig. 4.19,
$i)$ is $A C+C B=A B$?
ii) is $A B+A C=C B$?
iii) is $A B+B C=C A$?

Fig. 4.19
i) Yes
ii) No
iii) No
7. In Fig. 4.20, do the segments $A B$ and $C D$ intersect? Are they parallel? Give reasons for your answer.

No, line segments $A B$ and $C D$ do not intersect.
No, there line segments are not parallel as lines would intersect each other when produced in one direction.
8. Illustrate, if possible, each one of the following with a rough diagram:
i) A closed curve that is not a polygon.
ii) An open curve made up entirely of line segments.
iii) A polygon with two sides.
(i)

(ii)

iii) Not possible as polygon have at least 3 sides.
9. Name the angles in the given Fig. 4.23.

$\angle A$ or $\angle D A B$
$\angle B$ or $\angle A B C$
$\angle C$ or $\angle B C D$
$\angle D$ or $\angle C D A$
10. In the given diagram, name the point(s):
$i)$ in the interior of $<D O E$
ii) in the exterior of $<$ EOF
iii) on < EOF

i) point A
ii) point C, A, D
iii) points B, E, O, F.
11. In Fig. 4.25, write another name for:
i) $\angle 1$

ii) $\angle 2$

Fig. 4.25
iii) $\angle 3$
i) $\angle E P B$ or $\angle B P E$
ii) $\angle C Q P$ or $\angle P Q C$
iii) $\angle D Q F$ or $\angle F Q D$

I. Long Answer Type Questions

1. Name the points and then the line segments in each of the following figures.

(i)

(iii)

(ii)

(iv)
i) The points are A, B, C and line segments are $\overline{A B}, \overline{A C}, \overline{B C}$.
ii) The points are A, B, C, D and line segments are $\overline{A B}, \overline{B C}, \overline{C D}, \overline{A D}$.
iii) The points are A, B, C, D, E and line segments are $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{A E}$.
iv) The points are A, B, C, D, E, F and the line segments are $\overline{A B}, \overline{C D}, \overline{E F}$.
2. In the given figure, write

i) parallel lines.
ii) point of intersection of the line / and n
iii) point of intersection of the line q and r
iv) point of intersection of the line m and r.
v) point of intersection of the line p and m.
i) The lines / and m are parallel lines
ii) point of intersection of the lines q and r is A.
iii) point of intersection of the line q and r is B.
iv) point of intersection of the line m and r is D.
v) point of intersection of the line p and m is D.
3. Look at following figure and answer the following questions.

i) Name the four sides of quadrilateral PQRS.
ii) Name the four pairs of adjacent sides.
iii) Name two pairs of opposite sides.
iv) Name a pair of diagonal.
i) Four sides of quadrilateral $P Q R S$ are $\overline{P Q}, \overline{R S}, \overline{P S}$ and $\overline{Q R}$.
ii) Four pairs of adjacent sides are $P Q$ and $Q R, Q R$ and $R S, R S$ and $S P, S P$ and $P Q$.
iii) Two pairs of opposite sides are $Q R$ and $P S, P Q$ and $S R$.
iv) Pair of diagonal is PR and QS.
4. In the given figure, O is the centre of the circle.

a) Name all chords of the circle.
b) Name all radii of the circle.
c) Name a chord, while is not the diameter of the circle.
d) Shade the sectors OAC and OPB.
e) Shade the smaller segment of the circle formed by CP.
a) Chords of the circle are $C P$ and $A B$.
b) Radii of the circle are $O A, O B<O C$ and $O P$.
c) The chord CP is not a diameter of the circle.
d) Shaded sectors of OAC and OPB are given below.
e) Shaded smaller segment formed by CP is given below:
5. Sohan wants to show gratitude toward his teacher by giving a card made by him. He has three pieces of paper pasted one above the other as shown in the figure. These pieces are arranged in a way that AB HC GD FE. He wants to decorate the card by putting up a colored take on non-parallel sides of the card.

a) Write the non-parallel sides of the card.
b) Which value is depicted by the Sohan?
a) Non-parallel sides are $A F$ and $B E$.
b) Respect to teacher, happiness, beauty and knowledge.
6. Look at figure and mark a point
a) A, which is in the interior of both $\angle 2$.
b) B, which is in the interior of only <1.
c) C in the interior of $\angle 1$.

Now, state whether points B and C lie in the interior of <2 also.

Yes, it is clear from given figure, that the point B and C lie in the interior of <2 also.

II. Long Answer Type Questions

1. In the given figure.

a)
i) Name the diameter.
ii) Name any radius.
iii) Name the arc.
b)
i) Is the figure half of a circle?
a)
i) $A B$
ii) $O A$ or $O B$
iii) $\operatorname{arc} A B$ or $A B$
b) yes, it is a semicircle (half of a circle).
2. i) Name all the triangles formed in given figure:
ii) Which two points lie on side $B C$ and $A B$ respectively?
iii) Name any two line segments inside the triangle $A B C$.

i) There are 5 triangles
$\triangle A B C$,
$\triangle C P A$,
$\triangle A P Q$,
$\triangle Q P B$,
And $\triangle P B A$
ii) P lies on $B C$.
Q lies on $A B$.
iii) $A P$ and $Q P$ are two line segments inside the $\triangle A B C$.
III. Long Answer Type Questions

1. Use Fig. 4.26 to name:
i) Five points
ii) A line
iii) Four rays
iv) Five line segments
i) Five points are O, E, D, B, C.
ii) $\overleftrightarrow{H F}$
iii) Many answers are possible, some of them are $\overrightarrow{D H}, \overrightarrow{O G}, \overrightarrow{O F}, \overrightarrow{O C}$, etc.
iv) Many answers are possible, some of them are, $\overline{D E}, \overline{D O}, \overline{E O}, \overline{O B}, \overline{E B}$, etc.
2. Use Fig. 4.27 to name:
i) Line containing point E.
ii) Line passing through A.
iii) Line on which O lies
iv) Two pairs of intersecting lines.

Fig. 4.27
i) Many answers are possible, one answer is $\overrightarrow{A E}$
ii) $\overrightarrow{A E}$
iii) $\overrightarrow{C O}$ or $\overrightarrow{O C}$.
iv) Possible answers are $\overrightarrow{C O}, \overrightarrow{A E}$, and $\overrightarrow{A E}, \overrightarrow{A F}$.
3. In Fig. 4.29
i) What is $A E+E C$?
ii) What is $A C-E C$?
iii) What is $B D-B E$?
iv) What is $B D$ - $D E$?

i) $A E+E C=A C$
ii) $A C-E C=A E$
iii) $B D-B E=E D$
iv) $B D-D E=B E$

4. In Fig. 4.30, classify the following curves as i) Open or ii) Closed.

(i)

(ii)

(iii)

(iv)

(v)

Fig. 4.30
i) Open
ii) Closed
iii) Closed
iv) Closed
v) Closed.
5. Name the following angles of Fig. 4.31 using three letters:
i) <1
ii) $\angle 2$
iii) $\angle 3$
iv) $\angle 1+\angle 2$
v) $\angle 2+\angle 3$
vi) $\angle 1+\angle 2+\angle 3$
vii) $\angle C B A-\angle 1$
i) $\angle C B D$
ii) $\angle D B E$
iii) $\angle E B A$
iv) $\angle C B E$
v) $\angle D B A$
vi) $\angle C B A$
vi) $\angle D B A$

6.
i) Identify three triangles in Fig. 4.32.
ii) Write the names of seven angles
iii) Write the names of six line segments.
iv) Which two triangles have $\angle B$ as common?

Fig. 4.32
i) Three triangles in figure are $\triangle A B C, \triangle A B D, \triangle A D C$
ii) Angles are $\angle B, \angle C, \angle B A C, \angle B A D, \angle C A D, \angle A D B, \angle A D C$.
iii) Line segments are $, \overline{A B}, \overline{B C}, \overline{A C}, \overline{A B}, \overline{B D}, \overline{D C}$.
iv) $\triangle A B C, \triangle A B D$
7. Draw a rough sketch of a quadrilateral KLMN state,
i) two pairs of opposite sides,
ii) two pairs of opposite angles,
iii) two pairs of adjacent sides.
iv) two pairs of adjacent angles.

We have quadrilateral KLMN (Fig. 4.33)
Now,
i) Two pairs of opposite sides are $\overline{K L}, \overline{M N}$ and $\overline{K N}, \overline{M L}$
ii) Two pairs of angles are $\angle K, \angle M$ and $\angle N$ and $\angle L$.
iii) Two pairs of adjacent sides are $\overline{K L}, \overline{L M}$, and $\overline{N M}, \overline{N K}$
iv) Two pairs of adjacent angles are $\angle K, \angle L$ and $\angle M$ and $\angle N$.

8. From Fig. 4.34, identify:
i) the centre of circle
iii) a diameter
v) two points in the interior
vii) a sector
ii) three radii
iv) a chord
vi) a point in the exterior viii) a segment
i) 0
©
ii) $\overline{O A}, \overline{O B}, \overline{O C}$
iii) $\overline{A C}$
iv) $\overline{E D}$
v) O, P
vii) $O A B$
vi) Q
viii) segment ED

I. High Order Thinking Skills Questions

1. i) Name all the sides, adjacent sides, adjacent vertices of the following figure ABCDE.

ii) Draw a $\triangle P Q R$ Draw its altitude PM and median QS.
i) Sides: $A B, B C, C D$ and $E A$

Adjacent sides: $(A B, B C),(B C, C D),(C D, D E),(D E, E A),(E A, A B)$
Adjacent vertices : $(A, B),(B, C),(C, D),(D, E),(E, A)$
ii) In $\triangle P Q R, P M \perp Q R$

So, $P M$ is altitude
Also, S is midpoint of $P R$
So, QS is median.

II. High Order Thinking Skills Questions

1. Draw any $\angle A B C$ and a ray $D B$ so that $\angle D B C$ is formed. Now, mark a point
i) P which is in the interior of both $\angle A B C$ and $\angle D B C$.
ii) Q which is not in the interior of $\angle D B C$.
iii) R in the interior of $\angle A B C$

Now, state whether points Q and R lie in the interior of $<A B C$ and $<D B C$ respectively.
(i)

(ii)

(iii)

2. From the given Fig. 4.41, find:

Fig. 4.41
i) All pairs of parallel lines,
ii) All pairs of intersecting lines,
iii) Collinear points,
iv) Concurrent lines,
v) Point of concurrence,
vi) Pair of lines whose point of intersection is F.
i) l parallel to m, l is parallel to n, m is parallel to n :
ii) $(1, p)$; $(m, p) ;(n, p) ;(r, I) ;(r, m) ;(q, I) ;(q, m) ;(q, n) ;(s, m) ;(s, n)$;
iii) $A, C, B ; B, E, G ; H, F, G ; A, D, F ; C, D, H$;
iv) $s, r, q, m ; s, p, n$;
v) $D ; G$;
vi) r and n intersect at F.
3. In Fig. 4.42 name all rays with initial points as A, B and C respectively.

Fig. 4.42
i) Is ray $\overrightarrow{A B}$ different from ray $\overrightarrow{A C}$?
ii) Is ray $\overrightarrow{B A}$ different from ray $\overrightarrow{C A}$?
iii) Is ray $\overrightarrow{C P}$ different from ray $\overrightarrow{C Q}$?
$\overrightarrow{A P^{\prime}}(\overrightarrow{A B}$ or $\overrightarrow{A C}$ or $\overrightarrow{A Q}),(\underset{B P}{(}$ or $\overrightarrow{B A}),(\underset{B C}{ }$ or $\overrightarrow{B Q}),(\underset{C P}{ }$ or $\overrightarrow{C A}$ or $\overrightarrow{C B}), \overrightarrow{C Q}$
i) No
ii) No
iii) Yes
4. From Fig. 4.43, write concurrent lines and their points of concurrence.

Fig. 4.43
In Figure there are two points of concurrence: point A and point B.
Concurrent lines passing through point A are n, q and I.
Concurrent lines passing through point B are q, m and p.

I. Value Based Questions

1. i) Draw a polygon $A B C D E F G H$ and name all the sides, adjacent sides and vertices as well as the diagonals of the polygon
ii) Define circle

i)

Sides: $A B, B C, C D, D E, E F, F G, G H, H A$
Adjacent sides: $(A B, B C), B C, C D),(C D, D E),(D E, E F),(E F, F G),(F G, G H),(G H, H A)$, ($H A, A B$)

Vertices: A, B, C, D, E, F, G, H
Diagonals: $A C, A D, A E, A F, A G, B D, B E, B F, B G, C H, B H, C E, C G, D F, D H, E G, E H, F H, D C$
ii) Circle is the path of a point moving at the same distance from a fixed point, the fixed point is the centre 0 .

