Grade VII
Lesson: 10 Practical Geometry

Objective Type Questions
I. Multiple choice questions

1. Which of the following cannot be the side of a triangle?
a) $8 \mathrm{~cm}, 5 \mathrm{~cm}, 4 \mathrm{~cm}$
b) $10 \mathrm{~cm}, 10 \mathrm{~cm}, 4 \mathrm{~cm}$
c) $10 \mathrm{~cm}, 6 \mathrm{~cm}, 4 \mathrm{~cm}$
d) $9 \mathrm{~cm}, 8 \mathrm{~cm}, 7 \mathrm{~cm}$.
2. Which of the following is the measures of a right angled triangle?
a) $7 \mathrm{~cm}, 3 \mathrm{~cm}, 9 \mathrm{~cm}$
b) $4.5 \mathrm{~cm}, 6 \mathrm{~cm}, 5 \mathrm{~cm}$
c) $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$
d) $4 \mathrm{~cm}, 3.5 \mathrm{~cm} 4 \mathrm{~cm}$.
3. The value of x is :

a) 40°
b) 50°
c) 60°
d) 40°

1) c	2) c	3) b

II. Multiple choice questions

1. \mathcal{A} triangle can be constructed by taking its sides as:($\mathcal{N C E R T})$
a) $1.8 \mathrm{~cm}, 2.6 \mathrm{~cm}, 4.4 \mathrm{~cm}$
b) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
c) $2.4 \mathrm{~cm}, 2.4 \mathrm{~cm}, 6.4 \mathrm{~cm}$
d) $3.2 \mathrm{~cm}, 2.3 \mathrm{~cm}, 5.5 \mathrm{~cm}$.
2. A triangle can be constructed by taking two of its angles as:($\mathcal{N} C E R \mathcal{E}$)
a) $110^{\circ}, 40^{\circ}$
b) $70^{\circ}, 115^{\circ}$
c) $135^{\circ}, 45^{\circ}$
d) $90^{\circ}, 90^{\circ}$
3. Which of the following sets of triangles could be the lengths of the sides of a right angled triangle.
a) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 6 \mathrm{~cm}$
b) $9 \mathrm{~cm}, 16 \mathrm{~cm}, 26 \mathrm{~cm}$
c) $1.5 \mathrm{~cm}, 3.6 \mathrm{~cm}, 3.9 \mathrm{~cm}$
d) $7 \mathrm{~cm}, 24 \mathrm{~cm} 26 \mathrm{~cm}$.
4. In which of the following cases, a unique triangles can be drawn.
a) $\mathcal{A B}=4 \mathrm{~cm}, \mathcal{B C}=8 \mathrm{~cm}$ and $\mathrm{CA}=2 \mathrm{~cm}$
6) $\mathcal{B C}=5.2 \mathrm{~cm}, \angle \mathcal{B}=90^{\circ}$ and $\angle C=110^{\circ}$
c) $X Y=5 \mathrm{~cm}, \angle X=45^{\circ}$ and $\angle Y=60^{\circ}$
d) $\mathcal{A n}$ isosceles triangle with the length of each equal side 6.2 cm .
5. IN $\triangle X Y Z$, Side $\mathcal{B C}$ has been produced to E. If $\angle Y X Z=45^{\circ}$ and $\angle X Y Z=55^{\circ}$ then $\angle X Z E=$?

b) 110°
c) 100°
d) 120°
6. Construction of a triangle is not possible when
a) two sides and an included angle are given
6) three sides are given
c) three angles are given
d) two angles and any side are given
7. In $\triangle P Q R$, if $\angle P=65^{\circ}$ and $\angle R=85^{\circ}$, then $\angle Q=$?
a) 35°
b) 30°
c) 40°
d) 45°
8. The sum of the angles of a triangle is:
a) at least 180°
6) exactly 180°
c) at most 180°
d) Less than 180°
9. Which of the following triangles cannot be constructed?
a) $\mathcal{A B}=6 \mathrm{~cm}, \mathcal{B C}=5 \mathrm{~cm}, \mathcal{C A}=4 \mathrm{~cm}$
6) $\mathcal{A C}=5.2 \mathrm{~cm}, \mathcal{A B}=4 \mathrm{~cm}, \angle C=60^{\circ}$
c) $\angle A=80^{\circ} \angle B=100^{\circ}, \mathcal{B C}=4 \mathrm{~cm}$
d) $\angle B=90^{\circ}, \mathcal{A B}=3 \mathrm{~cm}, \mathcal{B C}=4 \mathrm{~cm}$
10. Construction of $\triangle \mathcal{A B C}$ with $\mathcal{A B}=9 \mathrm{~cm}$ and $\mathcal{B C}=6 \mathrm{~cm}$ is possible when $\mathcal{C A}$ is equal to
a) 2 cm
b) 3 cm
c) 12 cm
d) 16 cm
11. If two legs of aright triangle are 6 cm and 8 cm , then its hypotenuse is.
a) 14 cm
b) 12 cm
c) 10 cm
d) 9 cm

| 1.6 | $2 . a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. In the given constructed figure, the value of $\angle B A C$ is
a) 45°
b) 35°
c) 30°
d) 55°
2. In which of the following cases, a triangle can be drawn?

a) $\mathfrak{A B}=4 \mathrm{~cm}, \mathcal{B C}=8 \mathrm{~cm}, \mathrm{CA}=2 \mathrm{~cm}(\mathcal{N C E R I})$
b) $\mathcal{B C}=5.2 \mathrm{~cm}, \angle B=90^{\circ}, \angle C=110^{\circ}$
c) $X Y=5 \mathrm{~cm}, \angle X=45^{\circ}, \angle Y=60^{\circ}$
d) $A \operatorname{An}$ isosceles triangle with the length of each equal side 6.2 cm
3. In the given figure, the value of $\angle P Q R$ is
a) 35°
b) 45°
c) 55°
d) 30°

4. In the given figure, $\mathcal{A B}=\mathcal{A C}=\mathcal{B C}$, then the value of each angle is equal to
a) 40°
b) 70°
c) 90°
d) 60°

5. In the given constructed figure, the length of segment $\mathcal{A C}$ is equal to
a) 7 cm
b) 14 cm
c) 1 cm
d) 5 cm

6. The bisector of a line segment, divide the line segment in two equal parts.
7. The angle bisector of an angle divide the angle in two equal angles.
8. The construction of an equilateral triangle cane done, if the value of the given angles should be equal to 60°.
9. A triangle can be constructed only if the sum of its any two sides is greater than the third side.
10. In a construction of a right angle d triangle, one of the exterior angle is 120°. Then, we take the value of adjacent angle of exterior angle for construction of the right angled triangle is equal to 60°.
11. We can construct a right angled triangle, if the value of One of the angle is given.
12. If $\mathcal{A B}=6 \mathrm{~cm}$ and $\mathcal{B C}=6 \mathrm{~cm}$ are given, then this type of triangle is called isosceles triangle. 8. The angle made by perpendicular bisector of line is equal to 90^{0}
13. If a line segment $\mathfrak{A B}=6 \mathrm{~cm}$. Then, the line bisector divide it in two parts, me asure $\frac{6}{2}=3 \mathrm{~cm}$ 10. In the following constructed figure, the sum of $\angle A$ and $\angle B$ should be equal to 60°

I. True or False
14. We can draw exactly one triangle whose angles are $70^{\circ}, 30^{\circ}$ and 80° ($\mathcal{N}(\mathcal{E R}$)

False given angles are $70^{\circ}, 30^{\circ}$ and 80°
\because The sum of all three angles in a triangle is equal to 180°

$$
\therefore 70^{\circ}+30^{\circ}+80^{\circ}=100^{\circ}+80^{\circ}=180^{\circ}
$$

So, triangle of different types can be constructed.
2. The distance between the two parallellines is the same everywhere ($\mathcal{N C E R T}$)

True, the angle between two parallel lines is always equal, so the distance between the two parallellines is also same everywhere.
3. The angle made by angle bisector is always falf of the angle. (NCERT)

True angle bisector divides the angle equally.
4. In a right angled triangle, the square of hypotenuse is greater than the sum of square of base and perpendicular length.

False in the right angled triangle, by using Pythagoras theorem, we fave
$(\mathcal{H y p o t e n u s e})^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
5. In the following constructed figure.

If $\mathcal{A B}=3 \mathrm{~cm}$ and $\mathcal{B C}=5 \mathrm{~cm}$ then side $\mathcal{A C}$ is equal to 4.5 cm
False in the given right angled triangle,

$(\mathcal{B C})^{2}=(\mathcal{A C})^{2}+(\mathcal{A B})^{2}(\mathcal{B y}$ Pythagoras theorem of right angled triangle)
$=(5)^{2}=(\mathcal{A C})^{2}+(3)^{2}$
$=(25)=(\mathcal{A C})^{2}+9=(\mathcal{A C})^{2}=25-9$
$=(\mathcal{A C})^{2}=16=\mathcal{A C}=\sqrt{16}=\mathcal{A C}=4 \mathrm{~cm}$.
6. A right angled triangle can be constructed, if the given angles are $90^{\circ}, 60^{\circ}$ and 70° False, we know that, the sum of all three angles in a triangle is equal to 180°

Here $90^{\circ}+60^{\circ}+70^{\circ}=90^{\circ}+130^{\circ}=220^{\circ}>180^{\circ}$
So triangle cannot be constructed with angles $90^{\circ}, 60^{\circ}$ and 70°.
I. Match the following

Column A

$$
\text { (i) } \quad \begin{aligned}
& \angle A=90^{\circ} \\
& \angle B=45^{\circ} \\
& A B=4 \mathrm{~cm}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \angle A=60^{\circ} \\
& \angle B=60^{\circ} \\
& A B=4 \mathrm{~cm}
\end{aligned}
$$

(iii) $\angle A=60^{\circ}$,
$\angle B=75^{\circ}$,
$A B=4 \mathrm{~cm}$
(iv) $\angle A=45^{\circ}$,

$$
\angle B=45^{\circ}
$$

$$
A B=4 \mathrm{~cm}
$$

Column B

(a)

(b)

(C)

(d)

i) a	ii) c	iii) d	iv) b

1. Can we draw a triangle having two right angles?
$\mathcal{N} o$.
2. What is the each angle of an equilateral triangle? 60°
3. Can $45^{\circ}, 60^{\circ}$ and 40° be the angles of an acute angled triangle? \mathcal{N}
4. Can we draw a triangle having sides 2,3 and 5?
\mathcal{N} o, sum of two sides must be greater than the third side.
5. Write the angle measures of an isosceles right angled triangle.
$40^{0,}, 45^{\circ}, 90^{\circ}$.

II Very Sfort Answer Questions

1. Can a triangle be constructed of sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 11 cm ?
$\mathcal{N}(0$, because sum of two side is equal to third side. i.e, $5+6=11$
2. How many triangles can you draw of faving angles $70^{\circ}, 30^{\circ}$, and 80°

Infinite number of triangles can be drawn.
I Sfort Answer Questions

1. Draw a line \mathcal{C}. Draw a perpendicular to \mathcal{l} at any point on ℓ. On this perpendicular $\mathcal{A B}$ take any point $X, 3 c m$ away from l. Though X, draw a line m parallel to l.
a) Draw a line l and mark a point \mathcal{A} on it.
b) Construct an angle of 90° at \mathcal{A} to draw $\mathcal{A B}$ perpendicular at l.
c) Mark a point X on $\mathcal{A B}$ such that $\mathcal{A X}=3 \mathrm{~cm}$.
d) At X, construct an angle of 90° to draw perpendicular to $\mathcal{A B}$.
 ||
Thus, 'm'is the required line through X such that
c. \mid

> II Sfort Answer Questions

1. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=4.5 \mathrm{~cm}, \angle \boldsymbol{B}=60^{\circ}$ and $\angle \boldsymbol{C}=45^{\circ}$
a) Draw a line segment $\mathcal{B C}=4.5 \mathrm{~cm}$
6) Construct $\angle C B X=60^{\circ}$ at \mathcal{B}.
c) Construct $\angle B C Y=45^{\circ}$ at C
d) Let the ray $\overrightarrow{\mathcal{B X}}$ and $\overrightarrow{\mathcal{C Y}}$ intersect at \mathcal{A}.

Thus, $\triangle \mathcal{A B C}$ is required triangle.

2. Construct a $\Delta P Q R$ where $P Q=5 \mathrm{~cm}, \angle \boldsymbol{P}=45^{\circ}$ and $\angle \boldsymbol{Q}=75^{\circ}$
a) Draw a line segment $\mathcal{P Q}=5 \mathrm{~cm}$
6) $\mathcal{A} t \mathcal{P}$, construct $\angle Q P X=45^{\circ}$
c) $\mathcal{A t} Q$, construct $\angle P Q Y=75^{\circ}$
d) Let the ray $\mathcal{P X}$ and $Q \mathcal{Y}$ intersect at \mathcal{R}.

Thus, $\triangle \mathcal{P Q} \mathcal{R}$ is required triangle.

3. Construct a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=5.4 \mathrm{~cm}, \angle \boldsymbol{B}=120^{\circ}$ and $\mathcal{A B}=4.5 \mathrm{~cm}$. $\mathcal{A l s o}$ draw $\mathcal{A D}$ perpendicular to $\mathcal{B C}$.

Part 1: Construction of $\triangle \mathcal{A B C}$:
a) $\operatorname{Draw} \mathcal{B C}=5.4 \mathrm{~cm}$
b) Construct $\angle C B X=120^{\circ}$
c) From $\mathcal{B C}$ cut off $\mathcal{B A}=4.5 \mathrm{~cm}$
d) I $\operatorname{oin} \mathcal{A}$ and C.
\mathfrak{N} ow $\triangle \mathcal{A B C}$ is the required triangle.

Part II : Construction of $\mathcal{A D} \perp \mathcal{B C}$:
a) Produce $\mathcal{C B}$ through \mathcal{B} to \mathscr{Y}.
6) With centre \mathcal{A} and a sufficient radius, draw an arc intersecting $\mathcal{B Y}$ and $\mathcal{B C}$ at \mathcal{U} and \mathcal{M} respectively.
c) With \cup as centre and a radius more than half of $U M$, draw an arc opposite to side \mathcal{A}
d) With the same radius and centre \mathcal{M}, drawanother arc, cutting the previous arc at \mathcal{T}.

4. Construct a right angled triangle, in which length of hypotenuse is 5.6 cm and one of its acute angle is 30°

We know that the sum of angles of triangle be 180°. Let us consider a right $\triangle \mathcal{A B C}$ in which $\angle A=90^{\circ}$, fypotenuse $\mathcal{B C}=5.6 \mathrm{~cm}$ and $\angle B=30^{\circ}$

We know that the sum of angles of a triangle is 180°
$\angle A+\angle B+\angle C=180^{\circ}$
$90^{\circ}+30^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-120^{\circ}=60^{\circ}$
Steps of Construction:
a) Draw a line segment $\mathcal{B C}=5.6 \mathrm{~cm}$
6) Construct $\angle C B X=30^{\circ}$ and $\angle B C Y=60^{\circ}$

c) $\operatorname{Le} t \mathcal{B X}$ and $\mathcal{C Y}$ interest at point \mathcal{A}

Then, $\Delta \mathfrak{A B C}$ is the required triangle.
5. Construct a $\boldsymbol{\Delta} \mathcal{A B C}$ such that $\mathcal{B C}=8.5 \mathrm{~cm} \angle \boldsymbol{B}=90^{\circ}$ and $\mathcal{A C}=9.5 \mathrm{~cm}$. Draw perpendicular bisectors of $\mathcal{A C}$ and $\mathcal{B C}$. Do they meet at $\mathcal{A C}$?

Part $1: \mathcal{T o}$ construct the $\Delta \mathcal{A B C}$
a) $\mathcal{D r a w} \mathcal{B C}=8.5 \mathrm{~cm}$
b) Construct $\angle C B X=90^{\circ}$
c) With centre \mathcal{C} and radius equal to 9.5 cm , draw an arc to cut at \mathcal{A}.
d) I oin \mathcal{A} and C. The $\triangle \mathcal{A B C}$ is the required triangle.

Part II Perpendicular bisectors of $\mathcal{A B}$ and $\mathcal{B C}$.
a) With centre at \mathcal{A} and radius more than half of $\mathcal{A B}$, draw two arcs on both sides of $\mathcal{A B}$.
6) With centre at \mathcal{B} and the same radius as in ste p (i) draw two arcs intersecting the arcs drawn in step at R and S.
c) Ioin \mathcal{R} and S and extend it on both sides to \mathcal{P} and Q. Now $\mathcal{P Q}$ is the perpendicular bisector of $\mathfrak{A B}$.
d) $\operatorname{Similarly}$, draw $\mathcal{N} \mathcal{M}$ perpendicular bisector of $\mathcal{B C}$. We note that $\mathcal{P Q}$ and $\mathcal{N} \mathcal{M}$ meet at a point $\mathcal{D}, W_{\text {Wich }}$ is at $\mathcal{A C}$.

6. Construct an isosceles right triangle such that its fypotenuse is 5.5 cm . Steps of construction:
a) $\operatorname{Draw} \mathcal{A C}=5.5 \mathrm{~cm}$
6) $\mathcal{A} t \mathcal{A}$ construct $\angle C A X=45^{\circ}$
c) $\mathcal{A} t$ C construct $\angle A C Y=45^{\circ}$, such that $\mathcal{C Y}$ meets $\mathcal{A X}$ at \mathcal{B}.

Then $\mathcal{A B C}$ is the required isosceles triangle, in which $\mathcal{A B}=C \mathcal{B}$ and $\angle B=90^{\circ}$

7. Draw a triangle $\mathcal{A B C}$ with $\angle C$ as right angle, $\mathcal{A B}=6.2 \mathrm{~cm}$ and $\mathcal{B C}=4.5 \mathrm{CM}$.

To construct the $\Delta \mathfrak{A B C}$, we follow the following ste ps:
a) Draw a line segment $\mathcal{B C}$ if length 4.5 cm .

b) $\angle B C X$ of measure 90°
c) With centre \mathcal{B} and radius $\mathcal{A B}=6.2 \mathrm{~cm}$, draw an arc of the circle to intersect ray $\mathcal{C X}$ at \mathcal{A}.
d) I oint $\mathcal{B A}$ to obtain the desired triangle $\mathcal{A B C}$.
8. Draw a right angle triangle faving hypotenuse of length 5.4 cm and one of the acute angles of measure 60°.

Let $\triangle \mathcal{A B C}$ be a right triangle, right angled at C, such that fypotenuse $\mathcal{A B}=5.4$ cm. Further, let $\angle A=60^{\circ}$.

Then by the angle sum property of $\triangle \mathcal{A B C}$, we have
$\angle A+\angle B+\angle C=180^{\circ}$.
$\Rightarrow 60^{\circ}+\angle B+90^{\circ}=180^{\circ}$.
$\Rightarrow 150^{\circ}+\angle B+=180^{\circ}$.
$\Rightarrow \angle B=180^{\circ} \cdot 150^{\circ}=30^{\circ}$

To draw $\Delta \mathcal{A B C}$, we follow the following steps :
a) Draw a line segment $\mathcal{A B}=5.4 \mathrm{~cm}$
6) $\operatorname{Draw} \angle B A X$ of measure 60°
c) $\operatorname{Draw} \angle A B Y$ of measure 30° with \mathcal{Y} on the same side of $\mathcal{A B}$ as X.

Let $\mathcal{A X}$ and $\mathcal{B} \mathcal{Y}$ intersect at \mathcal{C}.
Then, $\triangle \mathcal{A B C}$ is the required triangle.
9. Draw $\Delta \mathcal{A B C}$ in which $\mathcal{B C}=6 \mathrm{~cm} \angle \boldsymbol{B}=35^{\circ}$ and $\angle \boldsymbol{C}=100^{\circ}$. Me asure $\angle \boldsymbol{A}$

To draw the $\Delta \mathcal{A B C}$ we follow the following steps:
Steps of construction:
a) Draw a line segment $\mathcal{B C}=6 \mathrm{~cm}$

b) Draw $\angle C B X$, such that $\angle C B X=35^{\circ}$
c) Dr aw $\angle B C Y$ with \mathcal{Y} on the same side of $\mathcal{B C}$ as X, such that $\angle B C Y=100^{\circ}$
d) Let $\mathcal{B X}$ and $\mathcal{C Y}$ intersect at \mathcal{A}. Then $\triangle \mathcal{A B C}$ is the required triangle.
$\mathcal{B} y$ measurement we find that $\angle A=35^{\circ}$
10. Draw a triangle $\mathcal{A B C}$ in which $\mathcal{B C}=5.2 \mathrm{~cm}, \angle \boldsymbol{B}=60^{\circ}$ and $\angle \boldsymbol{A}=100^{\circ}$
$\mathcal{H e r e}$, we are given the side $\mathcal{B C}, \angle B$ and $\angle A$. But to draw the triangle, we required $\angle C$.
We know that
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 100^{\circ}+60^{\circ}+\angle C=180^{\circ}$
$\Rightarrow 160^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ} \cdot 160^{\circ}=20^{\circ}$
Thus, we have, $\mathcal{B C}=5.2 \mathrm{~cm}, \angle B=60^{\circ}$ and $\angle C=20^{\circ}$.
\mathcal{N} ow, to draw the $\triangle \mathfrak{A B C}$, we follow the following ste ps:
a) Draw a line segment $\mathcal{B C}=5.2 \mathrm{~cm}$.
6) Draw $\angle C B X$, such that $\angle C B X=60^{\circ}$

c) $\operatorname{Draw} B C Y$ with \mathcal{Y} on the same side of $\mathcal{B C}$ as X, such that $\angle B C Y=20^{\circ}$

Let $\mathcal{B X}$ and $\mathcal{C Y}$ intersect at \mathcal{A}.
Then $\Delta \mathscr{A B C}$ is the required triangle.
11. Construct $\Delta \mathcal{A B C}$ in which $\angle \boldsymbol{B}=\mathbf{6} 0^{\circ} ; \mathcal{A B}=5 \mathrm{~cm}$ and $\mathcal{B C}=6 \mathrm{~cm}$.

In order to construct the $\triangle \mathcal{A B C}$ we follow the following steps:
a) $\operatorname{Draw} \angle X B Y=60^{\circ}$
6) From ray $\mathcal{B} X$, cut off line segment $\mathcal{B C}$ of length 6 cm .

c) From ray $\mathcal{B} \mathcal{S}$, cut off line segment $\mathcal{B A}$ of length 5 cm .
d) I oin $\mathcal{A C}$ to obtain the required triangle $\mathcal{A B C}$, where $\angle B=60^{\circ}, \mathcal{A B}=5 \mathrm{~cm}$ and $\mathcal{B C}=6 \mathrm{~cm}$
12. Draw a triangle $\mathcal{A B C}$ with $\mathcal{B C}=3.2 \mathrm{~cm} \mathcal{A B}=3.6 \mathrm{~cm}$ and $\angle \boldsymbol{B}=120^{\circ}$. Also draw perpendicular from \mathcal{A} on $\mathcal{B C}$.

We follow the following steps to construct the required triangle.
Steps of construction.
a) Draw $\angle X B Y$ of measure 120°
6) From ray $\mathcal{B X}$, cut off line segment $\mathcal{B C}$ of length 3.2 cm .
c) From ray \mathcal{B}, cut off line segment $\mathcal{B A}$ of length 3.6 cm
d) I $\operatorname{oin} C \mathcal{A}$ to obtain the required triangle
e) $\mathcal{D r a w}$ ray $\mathcal{B Z}$.
f) Witf centre \mathcal{A}, draw an arc intersecting rays $\mathcal{B X}$ and $\mathcal{B Z}$ at \mathcal{P} and Q repectively.

g) With centre \mathcal{P} and radius more than $\frac{1}{2}(\mathcal{P Q})$ cut an arc on the opposite of \mathcal{A}.
6) With centre Q and the same radius as in step VII cur on arc which intersect the arc drawn in step VII at \mathcal{R}.
i) $\operatorname{Ioin} \mathcal{A T}$. If it meets $\mathcal{B Z}$ at \mathcal{L}, then $\mathcal{A L}$ is the required perpendicular from \mathcal{A} on $\mathcal{B C}$.
13. Construct a triangle $\mathcal{A B C}$ if the lengths of its sides are given $6 y \mathcal{A B}=6 \mathrm{~cm}, \mathcal{B C}=7 \mathrm{~cm}$ and $\mathcal{A C}=5 \mathrm{~cm}$

To construct the $\triangle \mathcal{A B C}$ we follow the following steps.
a) Draw a line segment $\mathcal{B C}=7 \mathrm{~cm}$
6) With centre \mathcal{B} and radius $\mathcal{A B}=6 \mathrm{~cm}$, draw an arc of the circle.
c) With centre \mathcal{C} and radius $\mathcal{A C}=5 \mathrm{~cm}$ draw another arc intersecting the arc drawn in step

$$
\text { (iii) at } \mathcal{A}
$$

d) I oin $\mathcal{A B}$ and $\mathcal{A C}$ to obtain the desire triangle.

14. $\operatorname{Draw} \boldsymbol{\Delta} \mathcal{A B C}$ in which $\mathcal{A B}=4.5 \mathrm{~cm}, \mathcal{B C}=5 \mathrm{~cm}$ and $\mathcal{C A}=7 \mathrm{~cm}$. Also draw the perpendicular bisector of $\mathcal{B C}$.
In order to draw the $\triangle \mathcal{A B C}$ and the perpendicular bisector of $\mathcal{B C}$, we follow the following steps:
a) Draw a line segment $\mathcal{B C}=5 \mathrm{~cm}$
6) With centre $\mathcal{C B}$ and radius $\mathcal{A B}=4.5 \mathrm{~cm}$ draw an arc of the circle.

c) With centre \mathcal{C} and radius $\mathcal{A C}=7 c m$, draw an arc intersecting the previously drawn arc at \mathcal{A}.
d) I oin $\mathcal{A B}$ and $\mathcal{A C}$ to obtain the desired triangle.
e) W ith centre \mathcal{B} and radius more than $\frac{1}{2}(\mathcal{B C})$, draw two arcs on both sides of $\mathcal{B C}$.
f) With centre C and the same radius as in step (v) draw two arcs intersecting the arcs drawn in step (v) at \mathcal{D} and \mathcal{E}.
g) Ioin $\mathcal{D E}$ to obtain the required perpendicular bisector of $\mathcal{B C}$.
15. Construct a right angled isosceles triangle with one side (other than fypotenuse) of length 4.5 cm
Step 1: Firstly we draw a rough sketch of triangle with given measures marked on it.

Step I: Draw a line segment $\mathcal{A B}$ of length 4.5 cm .
Step II : Draw an angle of 90° on point \mathcal{B} and produce it to \mathcal{Y}.
Step III: With \mathcal{B} as centre, drawan arc of 4.5 cm which intersects ray $\mathcal{B} \mathcal{Y}$ to \mathcal{C}.
Step IV: Join

Thus, $\triangle \mathcal{A B C}$ is the required right angled isosceles triangle.
16. Draw an isosceles triangle with each of equal sides of length 3 cm and the angle between them as 45°.

Step 1: Firstly, we draw a rough sketch of triangle with given measures marked on it.

Step II: Draw a line segment $\mathcal{A B}$ of length 3 cm .
S tep II I: Draw an angle of 45° on point \mathcal{B} and produce it to ray \mathcal{Y}.
Step IV : With \mathcal{B} as centre, drawan arc of 3 cm which intersects ray $\mathcal{B} \mathcal{V}$ at \mathcal{C}.
Step $\mathcal{V}: \operatorname{Ioin} \mathcal{A C}$.

Thus $\Delta \mathfrak{A B C}$ is the required is osceles triangle.

1. Construct a triangle $P Q \mathcal{R}$ such that $P Q=6 \mathrm{~cm}, Q \mathcal{R}=7 \mathrm{~cm}$ and $P \mathcal{R}=4.5 \mathrm{~cm}$ ($\mathcal{N}(\mathcal{E R T})$ i). Draw a line segment $P Q$ of length 6 cm .
ii) \mathcal{W} ith P as centre, draw an arc of radius 4.5 cm
iii) With Q as centre, drawan arc of radius 7 cm which intersects the previous arc at \mathcal{R}.
iv) I oin $\mathcal{P R}$ and $Q \mathcal{R}$. Then $\Delta \mathcal{P Q} \mathcal{R}$ is the required triangle.

2. Given a line land point \mathcal{M} on it draw a perpendicular $\mathcal{M P}$ to 〔where $\mathcal{M P}=5.2 \mathrm{~cm}$ and a line q parallel to lfrough P.
i) Draw a line 1 .
ii) Take a point \mathcal{M} on it.
iii) Dr aw an angle of 90° at \mathcal{M} with \mathbb{C} which is perpendicular to lat \mathcal{M}.
iv) With \mathcal{M} as centre and radius 5.2 cm draw an arc which intersects the above perpendicular at point $\mathcal{P} . \mathfrak{M} \mathbb{P}$ is the required perpendicular.
v) at \mathcal{P}, draw an angle of 90° with $P \mathcal{M}$ and produce to make a line q. Line q.

Line q is the required line parallel to line l.

3. Construct an equilateral triangle $\mathcal{A B C}$ of side 6 cm .

First, we draw a rough sketch with given measure. It will help us in deciding fow to proceed.

Step 1: Draw a line segment $\mathcal{B C}$ of length 6 cm .
Step 2: From \mathcal{B} draw an arc of radius 6 cm .
Step : $3 \mathcal{N}$ ow from \mathcal{C}; point \mathcal{A} is at a distance of $6 c m$ So, with \mathcal{C} as centre, draw an arc of radius 6 cm which will cut the previous arc at the distance of 6 cm .
$\mathcal{H e n c e}, \triangle \mathcal{A B C}$ is the required triangle.

4. Construct a rigft-angled triangle whose fypotenuse is 6 cm long and one of the legs is 4 cm long.

First, draw a rough sketch with the given measurement.
S tep:1 Draw a line segment $\mathfrak{M N}$ of length 4 cm
Step-2: At \mathcal{M} draw $\mathcal{M X} \perp \mathcal{M} \mathcal{N}$.
Step-3: Wit $\{\mathcal{N}$ as centre, draw an arc of radius 6 cm

Step-4: L must be the meeting point of length drawn in step 2 and step 3.
Hence, $\triangle \mathcal{L M N}$ is the required triangle.

II Long Answer Questions

1. Draw two parallel line at a distance of 2.8 cm apart.
2. Take a line 'T'and a point 'A'outside 'T'.
3. Take any point \mathcal{B} on $\{$ and j oin \mathcal{B} to \mathcal{A}.
4. Taking \mathcal{B} as centre and with a convenient radius, draw an arc cutting \int at \mathcal{C} and $\mathcal{B A}$ at \mathcal{D}.
5. Now by taking \mathcal{A} as centre and the same radius as in step 3, draw an arc $\mathcal{E F}$ cutting $\mathcal{A B}$ at \mathcal{G}.
6. Place the pointed tip of the compasses at \mathcal{C} and adjust the opening so that the pencil tip is at \mathcal{D},

7. $\mathcal{B y}$ taking same radius as in step 5 and with \mathcal{G} as centre, draw an arc cutting the arc $\mathcal{E F}$ at \mathcal{H}.
8. $\mathfrak{N o w j o i n ~} \mathcal{A} \mathcal{H}$ to draw a line ' m '.
\mathcal{N} ote that $\angle \mathcal{A B C}$ and $\angle \mathcal{B A H}$ are alternate interior angles. Therefore $m \| \mathcal{L}$.
9. Draw an isosceles triangle with each of equal sides of length 3 cm and the angle between them as 60°.

First, we draw a rough sketch with given measured. (It helps us to determine the procedure in construction.)

Step 1: Draw a line segment $Q \mathcal{R}$ of length 3 cm

Step 2: At point Q draw an angle of 45° with $Q \mathcal{R}$.

Step 3 : With Q as centre, draw an arc of radius $3 c m$ which cuts $Q X$ at point P.

Step 4: Ioin PR. $\triangle \mathcal{P Q} \mathcal{R}$ is now ob tained.

3. Construct $\triangle \mathcal{P Q R}$ if $\mathcal{P Q}=5 \mathrm{~cm}, m \angle \boldsymbol{P Q R}=105^{\circ}$ and $m \angle Q \mathcal{R} P=40^{\circ}$ (Hint: Recall angle-sum property of a triangle)

In this question, angle P can be found out as $\angle P=$ $180^{\circ} \cdot \angle Q \cdot \angle R$.
($\mathcal{B} \mathcal{Y}$ Angle S um property of \mathcal{T} riangle)
$\angle \mathcal{P}=180-105 \cdot 40^{\circ}$

$\angle P=35^{\circ}$
Draw a rough figure with measurements.
Step-1.: Draw a line segment of length 5 cm .
Step-2: By taking Q as centre draw an angle of 105° Step-3: By taking P as centre draw an angle of 35°
 which will cut at point R.

Step-4.: PQR is the required triangle.

