Name: \qquad
Grade : VIII
Subject: Mathematics
Chapter: 2. Linear Equations in One Variable

Objective Type Questions
I. Multiple choice questions

1. $\frac{-4}{3} y=-\frac{3}{4}$, then $y=$
a. $-\left(\frac{3}{4}\right)^{2}$
2. $-\left(\frac{4}{3}\right)^{2}$
c. $\left(\frac{3}{4}\right)^{2}$
d. $\left(\frac{4}{3}\right)^{2}$
3. Line ar equation in one variable fas
a. only one variable with any power
4. only one term with a vairable
c. only one variable with power 1
d. only constant term
5. Which of the following is a linear expression:
[NCERT Exemplar]
a. $x^{2}+1$
6. $y+y^{2}$
c. 4
d. $1+z$

a. Transposition
7. Distributivity
c. Commutativity
d. Associativity
8. If $x \%$ of 50 is 10 , then the value of ' x ' is:
a. 30
b. 15
c. 10
d. 20
9. Two numbers are in the ratio 3:5. If the ir sum is 64, thenthe numbers are:
a. 24 and 40
b. 15 and 24
c. 10 and 24
d. 20 and 24
10. Arpita's present age is thrice of Shilpa. If Shilpa's age three years ago was x. Tfen Arpita's present age is
a. $3(x-3)$
11. $3 x+3$
c. $3 x-9$
d. $3(x+3)$
12. The sum of three consecutive multiples of '5' is 45. Which is the smallest of the three multiples.
a. 10
13. 15
c. 20
d. 25
9.Sum of two numbers is 95. If one exceeds the other by 15, then the number are:
a. 25 and 40
14. 50 and 65
c. 30 and 45
d. 40 and 55
15. Solution of the equation $7 y=14$ is:
a. $y=\frac{3}{4}$
b. $y=\frac{7}{2}$
c. $y=\frac{4}{3}$
d. $y=2$
16. What value of ywill satisfy the given equation? $\frac{y}{2 y-15}=\frac{7}{9}$
a. $y=21$
17. $y=23$
c. $y=25$
d. $y=27$
18. Solving $1.3=\frac{y}{1.2}$, we get:
a. $y=1.56$
19. $y=1.66$
c. $y=2.56$
d. $y=2.66$
20. The digit in the tens place of a two digit number is more then the digit in the units place.

Let the digit at units place be b. Then the number is
$a .11 b+30$
6. $10 b+30$
c. $11 b+3$
14. If $8 x-3=25+17 x$, then x is:
[N CEERT Exemplar]
d. $10 b+3$
a. a fraction
6. an integer
c. a rational number d. cannot be solved
15. If $\frac{5 x}{3}-4=\frac{2 x}{5}$, then the numerical value of $2 x-7$ is
[N CERT Exemplar]
a. $\frac{19}{13}$
6. $-\frac{13}{19}$
c. 0 d. $\frac{13}{19}$
16. The sum of three consecutive multiples of 7 is 357 . Find the smallest multiple.
[N (CERT Exemplar]
a. 112
6. 126
c. 119
d. 116
17. If $\frac{3}{x-4}<0$, then what is range of x ?
a. $x<4$
6. $x<5$
c. $x<3$
d. $x<2$
18. The value of x which satisfy the equation $\frac{2}{3 x-2}=\frac{3}{x-6}$ is
a. $\frac{6}{7}$
6. $\frac{7}{6}$
c. $\frac{-7}{6}$
d. 0

$1 . c$	$2 . c$	$3 . d$	$4 . a$	$5 . d$	$6 . a$	$7 . d$	$8 . a$	$9 . d$
$10 . d$	$11 . a$	$12 . a$	$13 . a$	$14 . c$	15.6	$16 . a$	$17 \cdot a$	$18 . c$

II. Multiple choice questions

1. If $x=a$, then which of the following is not always true for an integer k
a) $k x=a k$
6) $\frac{x}{k}=\frac{a}{k}$
c) $x-k=a-k$
d) $x+h=a+k$
2.The value of x for which the expression $3 x-4$ and $2 x+1$ become equal is
a) -3
b) 0
c) 5
d) 1
3. If $\frac{5 x}{3}-4=\frac{2 x}{5}$ then the numerical value
a) $\frac{19}{13}$
6) $-\frac{13}{19}$
c) 0
d) $\frac{13}{19}$
4.0.25(4f-3) $=0.05(10 f-9)$, then $f=$
a) 0.5
7) 0.1
c) 0.3
d) 0.6
5. If $\frac{3 y+4}{2-6 y}=\frac{-2}{5}, y$, is equal to
a) 4
b) -8
c) 8
d) 2

1) 6	$2) c$	3) 6	4) d	5) 6

III. Multiple choice questions

1. The solution of the Equation $a \chi+6=0$ is
a) $x=\frac{a}{b}$
6) $x=-6$
c) $x=\frac{-b}{a}$
d) $x=\frac{b}{a}$
2. If $8 x-13=25+16 x$, then x is
a) a fraction
6) an Integer
c) a rational number d) Cannot be solved
3. The value of x for which the expressions $(3 x-4)$ and $(2 x+1)$ become equal is
a) -3
b) 0
c) 5
d) 1
4. If a and be are positive integers, then solution of the equation $a x=6$ fis to be always
a) Positive
6) negative
c) One
d) zero
5. Which of the following is a line ar expression?
a) $x^{2}+2+y$
b) $y+y^{2}+3$
c) 4
d) $1+z$
6. A line ar equation in one variable fas
a) only one solution
b) no solution
c) two solutions
d) more than two solutions

$1 . c$	$2 . c$	$3 . c$	$4 . a$	$5 . d$	$6 . a$

I. Fill in the blanks

1. If $x=\frac{1}{2}$, then $\frac{5}{4}-\frac{x}{2}=$ \qquad -.
2. $\left(\frac{1}{2}+\frac{1}{4}\right) \times \frac{1}{4}=$ \qquad
3.9 is subtracted from the product of p and 4 , the result is 11 . The value p is \qquad _.
3. If $\frac{2}{5} x-2=5-\frac{3}{5} x$, then $x=$

1.1	$2 . \frac{3}{16}$	3.5	4.7

1. In a line ar equation \qquad power of the variable appearing in the equation is one.
2. Any value of the variable, which makes both sides of an equation equal is known as a \qquad of the equation.
3. A term of an equation can be transposed to the other side by changing its \qquad
4. If one dividing a number by 18. The result is -144 thenthe number is \qquad
5. 19 is subtracted from the product of \mathcal{P} and 14 the result is 21 . The value of \mathcal{P} is \qquad
6. After 18 yrs. Saurabf will be 4 times as old as he is now. His parents age is \qquad
\qquad
7. The sum of two consecutive multiples of 10 is 210 the smaller multiple is \qquad
8. If $4 t-3-(3 t+1)=5 t-4$ thenthe root of t is \qquad

Ans wers

1. In a line ar equation, figfuest power of the variable appearing in the equation is one

$$
\text { e.g. In } 3 x+2 \text { the power of } x \text { is } 1
$$

2. Solution
3. Sign
4. $-2592 \because \frac{2592}{18}=-144$
5. $\because(\mathcal{P} x$ 14) $-19=21=14 \mathcal{P}-19=21$

$$
\Rightarrow 14 P=40 \quad \Rightarrow p=\frac{40}{14} \quad \frac{20}{7}=2 \frac{6}{7}
$$

6. $\because x+18=4 x \Rightarrow 4 x-x=18$

$$
\because 3 x=18 \Rightarrow x=6 \text { year. }
$$

7. Let two consecutives multiples of 10 be x and $(x+1)$
$\therefore 10 \times x+10 x(x+1)=210 \Longrightarrow$
$10 x+10 x+10=210$
$\Rightarrow 20 x=210-10=200 \Longrightarrow x=200 \div 20=10$
So the smaller $4 t-3-(3 t+1)=$ multiple is 10
8. $\because 4 t-3-(3 t+1)=5 t-4$
$\Rightarrow 4 t-3-3 t=5 t-4 \Rightarrow t \cdot 4=5 t-4$
$\Rightarrow t-5 t=-4+4 \Rightarrow-4 t=0 \Rightarrow$
$t=0$
9. $\left(5-3 x^{2}\right)$ is a binomial.
10. -8 is not a monomial.
11. When $x=2$ and $y=1$, the value of $-\frac{8}{7} x^{3} y^{4}$ is $\frac{-64}{7}$.
12. $\frac{x}{4}+\frac{x}{6}-\frac{x}{2}=\frac{3}{4} \Longrightarrow x=10$.
13. If x is an even numbe, then the next even number is $2(x+1)$.

[N (CERT Exemplar]

1. True	2. False	3. True	4. False	5. False

II. True or False

1. In the equation $13 x-4=9$. Transporting -4 to $\mathcal{R H S}$, we get $13 x=5$
2. In The equation $2 x=4-x$, transposing $-x$ to $\mathcal{L H S}$, we get $3 x=4$.
3. If $16 x=80$, then $18 x=90$
4. If x is an even number, then the next even number is $2(x+1)$
5. Two numbers differ by 40, when each number is increased by 8 the bigger becomes thrice the lesser number. If one number is x, then the other number is (40-x)
6. In a two-digit number, the unit's place digit is x. If the sum of digits be 9, then the other number is (10x-9).
7. The number of boys and girls in a class in the ratio 5:4 If the number of boys
is 9 more than the number of girls, then the number of boys is 9.
8. Two different equations can never have the same answer.

Ans.

1. False since: $13 x-4=9 \Rightarrow 13 x=9+4 \Rightarrow 13 x=13$
2. True, since $2 x=4-x$
$\Rightarrow 2 x+x=4 \quad \Rightarrow 3 x=4$
3. True, since $16 x=80 \Rightarrow x=80 \times \frac{1}{16}=5$
$18 x=18 \times 5=90$
4. False, If x is an even number then the next even number is $(\chi+2)$
5. False, since two numbers differ by 40 i.e. one number is x and the other is $(40+x)$
6. False,. Since the unit's place digit is x. Then ten's place digit is $(9-x)$
$\mathcal{N u m b e r}=10 \times(9-x)+x$

$$
\begin{aligned}
& =90-10 x+x \\
& =90-9 x \\
& =9(10-x)
\end{aligned}
$$

7. False, suppose the number of gifts is X
$\therefore \mathcal{N}$ umber of boys $=(x+9)$
From the given condition $\frac{x+9}{5}=\frac{5}{4} \Rightarrow 4 x+36=5 x$
$\Rightarrow 4 x-5 x=-36 \Rightarrow x=36 \times \frac{-1}{1}=36$
$\therefore \mathcal{N u m b e r}$ of boys $=36+9=45$ and number of gir $l s=36$
So, the given information is false
8. False, two different equations can have the same answer
i.e. $3 x+5=23$ and $4 x+6=30$

Both have the same answer as $x=6$.
I. Match the following

I. Cotumn \mathcal{A}	$\operatorname{Column} \mathcal{B}$
a) 7	$\frac{x}{5}=\frac{x-1}{6}$
b) -5	$\frac{0.2 x+5}{35 x-3}=\frac{2}{5}$
c) $\frac{31}{6}$	$8 x-7-3 x=6 x-2 x 3$
d) 4	$5(x-1)-2(x+8)=0$

$a . i v$	$6 . i$	c.ii	d. iii

II. Match the following

$\operatorname{Cotumn} \mathcal{A}$	$\operatorname{Cotumn} \mathcal{B}$
a) $\frac{3 x-8}{2 x}=1$	8
b) $\frac{5 x}{2 x-1}=2$	$\frac{8}{3}$
c) $\frac{2 x-3}{4 x+5}=\frac{1}{3}$	7
d) $\frac{8}{x}=\frac{5}{x-1}$	

$a . i$	$6 . i i i$	c.iv	d. $i i i$

I. Very Sfort Answer Question

1. $\frac{3 x-8}{2 x}=1$

Sol.

$$
\begin{aligned}
& \frac{3 x-8}{2 x}=1 \\
& 3 x-8=2 x \\
& 3 x-2 x=8 \\
& x=8
\end{aligned}
$$

2. $\frac{x}{5}=\frac{x-1}{6}$

$$
\begin{array}{r}
\text { Sol. } \quad \begin{array}{r}
\frac{x}{5}=\frac{x-1}{6} \\
\qquad \begin{array}{r}
6 x=5 x-5 \\
6 x-5 x=-5 \\
x
\end{array}=-5
\end{array}
\end{array}
$$

3. $0.4(\mathbf{3 x}-\mathbf{1})=\mathbf{0 . 5 x}+\mathbf{1}$

Sol.

$$
\begin{aligned}
& 0.4(3 x-1)=0.5 x+1 \\
& 1.2 x-0.4=0.5 x+1 \\
& 1.2 x-0.5 x=1+0.4 \\
& 0.7 x=1.4 \\
& x=\frac{1.4}{0.7}=2
\end{aligned}
$$

4. $8 x-7-3 x=6 x-2 x-3$

Sol.
$8 x-7-3 x=6 x-2 x-3$
$5 x-7=4 x-3$
$5 x-4 x=-3+7$
$x=4$
5. $5(x-1)-2(x+8)=0$

Sol. $\quad 5(x-1)-2(x+8)=0$

$$
\begin{aligned}
& 5 x-5-2 x-16=0 \\
& 3 x-21=0 \\
& 3 x=21 \\
& x=7
\end{aligned}
$$

6. Solve the equation:

$$
\begin{array}{ll}
-1.5 x=-4.5 \\
\text { Sol. } & -15 x=-4.5 \\
& x=\frac{-4.5}{-1.5} \\
\text { or, } & x=3
\end{array}
$$

7. Write the equation for the following statements:
a. A number increased by 34 gives 86 .
8. Twice a number equals to 20.
a. Let the number be x

Then $x+34=86$
6. Let the number by y,

$$
\text { Then } 2 y=20
$$

8. Seven times a number is 49. What is the number?

Sol. Let the number be x,
Then

$$
\begin{aligned}
& 7 x=49 \\
& x=\frac{49}{7}=7
\end{aligned}
$$

Hence, the number is 7.
9. Solve : $\frac{\mathbf{5}(-7 y-1)}{\boldsymbol{y}}=-\mathbf{7 0}$

$$
\begin{array}{ll}
\text { Sol. } & \frac{5(-7 y-1)}{y}=-70 \\
& 5(-7 y-1)=-70 y \\
& -35 y-5=-70 y \\
& -35 y+70 y=5 \\
& 35 y=5 \\
& y=\frac{5}{35}=\frac{1}{7}
\end{array}
$$

II. Very Sfort Answer Question

$$
\begin{aligned}
& \text { 1. Solve } 2 y+\frac{5}{3}=\frac{26}{3}-y \\
& \text { Sol. } 2 y+\frac{5}{3}=\frac{26}{3} \cdot y \\
& \text { or } \quad 2 y+y=\frac{26}{3}-\frac{5}{3}
\end{aligned} \begin{array}{lll}
\text { or } & 3 y=\frac{26-5}{3} \\
\text { or } \quad 3 y=\frac{21}{3}=7 & \text { or } & y=\frac{7}{3}
\end{array}
$$

2. Solve $\frac{5 x}{2 x-1}=2$

Sol. $\frac{5 x}{2 x-1}=2$

$$
\begin{array}{lll}
\text { or } 5 x=2(2 x-1) & \text { or } & 5 x=4 x-2 \\
\text { or } 5 x-4 x=-2 & \text { or } & x=-2
\end{array}
$$

3. Solve $\mathbf{5}(\boldsymbol{x}-\mathbf{1})-2(x+8)=0$

Sol. $\quad 5(x-1)-2(x+8)=0$

or

$$
5 x-5-2 x-16=0
$$

$$
\text { or } \quad 5 x-2 x=16+5
$$

or

$$
3 x=21 \quad \text { or } \quad x=\frac{21}{3}=7
$$

4. Solve $0.4(3 x-1)=0.5 x+1$.

Sol. $0.4(3 x-1)=0.5 x+1$
or $\quad 1.2 x-0.4 x=0.5 x+1 \quad$ or $\quad 1.2 x-0.5 x=1+0.4$
or $\quad 0.7 x=1.4$

$$
\text { or } \quad x=\frac{1.4}{0.7}=2
$$

5. Two numbers are in the ration 5:3. If they differ by 18 what are the numbers?

Sol. Let the numbers be $5 x$ and $3 x$

$$
\therefore 5 x-3 x=18
$$

or $\quad 2 x=18 \quad$ or

$$
x=9
$$

So, the numbers are 45 and 27.
III. Very Sfort Answer Questions.

1. Find the solution of $2 y+18=30$
2. Solve $\frac{13}{5} \cdot 5 x=13$
3. What should be subtracted from thrice the rational number $\frac{-13}{4}$ to get $\frac{5}{8}$?
4. Find the solution of $\frac{3 x+4}{2 x+5}=1$
5. Solve $0.25(8 a-0.5)=7.5$
6. A rational numberx such that when we multiplied $6 y \frac{3}{4}$ and added 5 , then it became $\frac{1}{2}$. Find the rational number.
7. What should be added to five seventh of rational number $\frac{-3}{5}$ so that it becomes $\frac{3}{7}$?
8. Find the solution of $\frac{1}{x}-\frac{3}{x}=\frac{5}{2 x}-3$
9. Solve $0.44 t-1.05=2(0.71 t-0.01)+1.11$.
10. Find the solution of $\frac{3 m-5}{m-3}+\frac{1}{2}(4 m-6)=2 m-3$
$\mathfrak{A n s}:$
11. We have $2 y+18=30$

$$
\begin{aligned}
& \Rightarrow 2 y=30-18 \Rightarrow 2 y=12 \\
& \Rightarrow y=12+2 \Rightarrow y=6
\end{aligned}
$$

2. We fave, $\frac{13}{5}-5 x=13$

$$
\begin{aligned}
& \Rightarrow \frac{13}{5} \cdot 13=5 \chi \Rightarrow \frac{13-65}{5}=5 \chi \\
& \Rightarrow \frac{-52}{5}=5 \chi \Rightarrow x=\frac{52}{25}
\end{aligned}
$$

3. Let x be the required number

$$
\begin{aligned}
& \therefore 3 x\left(\frac{-13}{4}\right)-x=\frac{5}{8} \\
& \Rightarrow \frac{-39}{4} \cdot x=\frac{5}{8} \Rightarrow \frac{-39}{4} \cdot \frac{5}{8}=x \\
& \Rightarrow \frac{-78-5}{8}=x \Rightarrow x=\frac{-83}{8}
\end{aligned}
$$

4. We fiave $\frac{3 x+4}{2 x+5}=1$

$$
\frac{(3 x+4)}{(2 x+5)} \quad(2 x+5)=1 x(2 x+5)
$$

\langle multiplying $(2 x+5)$ in both sides \rangle

$$
\begin{aligned}
& \Rightarrow(3 x+4)=(2 x+5) \\
& \Rightarrow 3 x-2 x=5-4 \Rightarrow x=1
\end{aligned}
$$

5. We have $0.25(8 a-0.5)=7.5$

$$
\begin{aligned}
& \Rightarrow 0.25 \times 8 a-0.25 \times 0.5=7.5 \\
& \Rightarrow 0.25 \times 8 a=7.5+0.25 \times 0.5 \\
& \Rightarrow 2.0 \times a=7.5+0.125 \\
& \Rightarrow a=7.625 \times \frac{1}{2}=3.8125
\end{aligned}
$$

6. Given \mathcal{N} umber $=\chi$

$$
\begin{aligned}
& =\frac{3}{4} x+5=\frac{1}{2} \Rightarrow \frac{3}{4} x=\frac{1}{2}-5=\frac{1-10}{2} \\
& \Rightarrow \frac{3}{4} x=\frac{-9}{2} x \frac{4}{3} \Rightarrow \mathrm{x}=-6
\end{aligned}
$$

7. Let x be the required number then, according to the question,

$$
=\frac{5}{7} \chi\left(\frac{-3}{5}\right)+\chi=\frac{3}{7} \Rightarrow x=\frac{3}{7}+\frac{3}{7} \Rightarrow x=\frac{6}{7}
$$

8. We have, $\frac{1}{\mathrm{x}}-\frac{3}{x}=\frac{5}{2 x}=-3 \Longrightarrow \frac{1-3}{x} \cdot \frac{5}{2 x}=-3$
$\Rightarrow \frac{-2}{x} \cdot \frac{5}{2 x}-3 \Rightarrow \frac{-4-5}{2 x} \cdot \frac{5}{2 x}=-3$
$\Rightarrow \frac{-9}{2 x}=-3$
$\Rightarrow x=\frac{-9}{2} x\left(\frac{-1}{3}\right) \Rightarrow x=\frac{3}{2}$
9. We have
$0.44 t-1.05=2 x 0.71 t-2 \chi 0.01+1.11$
$\Longrightarrow 0.44 t-1.05=1.42 t-0.02+1.11$
$\Longrightarrow 0.44 t-1.42 t=1.05-0.02+1.11$
$\Longrightarrow 0.98 t=2.14$
$\Longrightarrow \quad t=\frac{2.14 \times 100}{-0.98 \times 100}$
$\Rightarrow \quad t=\frac{214}{-98}=\frac{-107}{49}$
10. Give $n, \frac{3 m-5}{m-3}+\frac{1}{2}(4 m-6)=2 m-3$
$\Longrightarrow \frac{3 m-5}{m-3}+2 m-3=2 m-3 \Rightarrow \frac{3 m-5}{m-3}=0$
$\Rightarrow 3 m-5=0 x(m-3) \Longrightarrow 3 m-5=0$
$\Rightarrow 3 m=5 \Rightarrow m=\frac{5}{3}$
II. Sfort Answer Question
11. Sum of two numbers is 95. If one exceeds the other by 15, find the number.

Sol. Let the smallest number $=x$
\therefore The other number $=x+15$
According to the condition, we have

$$
x+(x+15)=95
$$

$$
2 x+15=95
$$

or $\quad 2 x=95-15$
or, $\quad 2 x=80$
or $\quad x=\frac{80}{2}=40$
\therefore The smaller number $=40$
The other number $=40+15=55$
2. $\frac{1}{2}(x+1)+\frac{1}{3}(x-1)=\frac{5}{12}(x-2)$

Sol. $\quad \frac{1}{2}(x+1)+\frac{1}{3}(x-1)=\frac{5}{12}(x-2)$
$\frac{1}{2} x+\frac{1}{2}+\frac{1}{3} x-\frac{1}{3}=\frac{5 x}{12}-\frac{5}{6}$
$\frac{6 x+4 x-5 x}{12}=\frac{2-3-5}{6}$

$$
\begin{aligned}
& \frac{5 x}{12}=\frac{-6}{6} \\
& \frac{5 x}{12}=-1 \\
& 5 x=-1 \\
& x=\frac{-12}{5}
\end{aligned}
$$

3. Simplify and solve the equation.

4. The sum of three consecutive even natural numbers is 48 . Find the greatest of these numbers.
[NCERT Exemplar]
Sol. Let the three consecutive even natural numbers be $2 x, 2 x+2$ and $2 x+4$
According to condition,

$$
\begin{aligned}
& 2 x+2 x+2+2 x+4=48 \\
& 6 x+6=48 \\
& 6 x=48-6 \\
& 6 x=42 \\
& x=\frac{42}{6}=7
\end{aligned}
$$

Greatest number $=2 x+4$

$$
=2 \times 7+4=18
$$

5. Two numbers are in the ration 5: 3. If they differ by 18. What are the numbers?

Sol. Let the two number be $5 x$ and $3 x$.
According to the condition, we have

$$
5 x-3 x=18
$$

$$
2 x=18
$$

Dividing both sides by 2, we have
or

$$
\frac{2 x}{2}=\frac{18}{2}
$$

$$
x=9
$$

$\therefore \quad 5 x=5 \times 9=45$
and $\quad 3 x=3 \times 9=27$
\therefore The required numbers are 45 and 27 .
6. Solve:

$$
\frac{3 x+5}{4 x+2}=\frac{3 x+4}{4 x+7}
$$

Sol. Since $\frac{3 x+5}{4 x+2}=\frac{3 x+4}{4 x+7}$

$$
\begin{aligned}
& \text { or } \quad(3 x+5) \times(4 x+7)=(4 x+2) \times(3 x+4) \text {, } \\
& \text { [6y cross-multiplication] } \\
& \text { or } \quad 12 x^{2}+21 x+20 x+35=12 x^{2}+16 x+6 x+8 \\
& \text { or } \quad 12 x^{2}+41 x+35=12 x^{2}+22 x+8 \\
& \text { or } \quad 12 x^{2}+41 x-12 x^{2}-22 x=8-35 \\
& \text { or } \quad 19 x=-27 \\
& \text { or } \\
& x=-\frac{27}{19} \\
& \text { Hence, } \\
& x=-\frac{27}{19}
\end{aligned}
$$

7. The present age of father is four times the age of his son. After 10 years, age of father will become three times the age of his son. find the ir present ages.

Sol. Let the present age of son be x years
\therefore The present age of father $=4 x$ years
After 10 years
Age of son $=(x+10)$ years
Age of father $=(4 x+10)$ years
According to the given condition,

$$
\begin{aligned}
& 4 x+10=3(x+10) \\
& 4 x+10=3 x+30 \\
& 4 x-3 x=30-10 \\
& x=20
\end{aligned}
$$

\therefore Present age of son $=20$ years.
and present age of father $=4 x=4 \times 20=80$ years.
8. The age of \mathcal{A} is give years more than that of \mathcal{B}. 5 years ago, the ratio of the ir ages was 3:2. Find the ir present ages.

Sol. Let the age of B be x years, then

$$
\text { age of } A=x+5
$$

According to condition, 5 year ago

$$
\begin{aligned}
& \mathcal{B}^{\prime} \text { s age }=x-5 \\
& \mathcal{A}^{\prime} \text { s age }=x+5-5
\end{aligned}
$$

or, $\quad \frac{x}{x-5}=\frac{3}{2}$
or, $\quad 2 x=3 x-15$
or, $\quad 2 x-3 x=15$
or,$\quad x=15$

$$
\text { Present age of } A: x=15 \text { years }
$$

Present age of $B: x-5=15-5=10$ years
II. Sfort Answer Question.

1. Solve $\frac{2 x-3}{4 x+5}=\frac{1}{3}$
[$\mathcal{N C E R T}$ Exemplar]
Sol. $\quad \frac{2 x-3}{4 x+5}=\frac{1}{3}$
Oncross multiplication, we get

$$
6 x-9=4 x+5 \text { or } 6 x-4 x=5+9
$$

or $\quad 2 x=14$
or $\quad x=\frac{14}{2}=7$
2. Solve $\frac{0.2 x+5}{3.5 x-3}=\frac{2}{5}$

Sol. $\frac{0.2 x+5}{3.5 x-3}=\frac{2}{5}$
or $\quad 2(3.5 x-3)=5(0.2 x+5)$
or $\quad 7.0 x-6=1.0 x+25$
or $\quad 7.0 x-1.0 x=25+6$
or $7.0 x-1.0 x=25+6$
or $\quad 6 x=31 \quad$ or

$$
x=\frac{31}{6}
$$

3. Solve $\mathbf{1}-(\boldsymbol{x}-\mathbf{2})-[(\boldsymbol{x}-\mathbf{3})-(\boldsymbol{x}-\mathbf{1})]=\mathbf{0}$

$$
\text { Sol. } \quad 1-(x-2)-[(x-3)-(x-1)]=0
$$

$$
\begin{array}{ll}
\text { or } & 1-x+2-[x-3-x+1]=0 \\
\text { or } & 3-x-(-2)=0 \\
\text { or } & 3-x+2=0 \\
\text { or } & 5-x=0 \text { or } x=5
\end{array}
$$

4. Two numbers differ by 40. When each number is increased by \mathcal{B}, the bigger becomes thrice the lesser number is \boldsymbol{x}, then find the other number.
[N (CERT Exemplar]
If one number $=x$
Then other number $=x+40$
According to question, $x+40+8=3(x+8)$
or

$$
\begin{aligned}
x+48 & =3 x+24 \\
48-24 & =3 x-x
\end{aligned}
$$

$$
24=2 x \text { or } x=\frac{24}{2}=12
$$

So, the numbers are 12 and $12+40$ i.e. 52 .
5. Divide 54 into two parts such that one part is $\frac{\mathbf{2}}{\mathbf{7}}$ of the other

Sol. Let one part be x.
So, other part $=54-x$
According to question,

$$
x=\frac{2}{7}(54-x)
$$

or $\quad 7 x=2(54-x)$ or $7 x=108-2 x$
or $\quad 7 x+2 x=108$ or $9 x=108$
or $\quad x=\frac{108}{9}=12$
One part $=x=12$
Other part $=54-x=54-12=42$
6. The sum of three consecutive odd natural numbers is 69, Find the prime numbers out of these numbers.
[NCERI Exemplar]
Sol. Let the required numbers be $(2 x+1),(2 x+3)$ and $(2 x+5)$
According to question

$$
\begin{aligned}
& 2 x+1+2 x+3+2 x+5=69 \\
& \text { or, } 6 x+9=69 \\
& \text { or } \\
& 6 x=69-9 \\
& \text { or } \quad 6 x=60 \quad \text { or } \quad x=\frac{60}{6} \\
& \text { or } \quad x=10
\end{aligned}
$$

Three numbers are $(2 \times 10+1),(2 \times 10+3)$ and $(2 \times 10+5)=21,23$ and 25 .
\therefore The prime number among these is 23.
7. If $\frac{\mathbf{1}}{\mathbf{2}}$ is subtracted from a number and the difference is multiplied by 4 , the result is 5 . What is the number?
[N (CERT Exemplar]
Let the number be x.

According to question
$4\left(x-\frac{1}{2}\right)=5$
or $\quad 4 x-2=5$
or $\quad x=\frac{7}{4}$ or $4 x=5+2$
\therefore Required number $=\frac{7}{4}$
III. Sfort Answer Type Question.

1. Simplify and solve the following line ar equation

$$
3(5 y-7)-2(9 y-11)=4(8 y-13) \cdot 17
$$

2. The organisers of an essay competition decide that a winner in the competition decide that a winner in the competitiongets a prize of $\mathcal{R s} .500$ and a participant. Who does not wingets a prize of Rs.100. The total prize money distributed is Rs.4800. Find the number of winners, if the total number of participants is 36.
3. The sum of digits of a two-digit number is 17 . On reversing its digits the newnumber is 9 more than the original number. Find the number.
4. Divide 400 into two parts such that $\frac{\mathbf{1}}{\mathbf{3}}$ rd of the first part is 40 less than the other.
5. The sum of three consecutive odd number is 219. Find the least of the se odd numbers.
6. Show that $y=4$ is a solution of the equation $y+7-\frac{8 y}{3}=\frac{\mathbf{1 7}}{6} \cdot \frac{\mathbf{5 y}}{8}$
7. Solve for $z, \frac{3 x-5}{17}+\left(\frac{11-x}{76}-\frac{3}{4}\right)=\frac{4+x}{2}-13$.
8. Find the root of the equation $\frac{(\mathbf{2}+\boldsymbol{y})(\mathbf{7}-\boldsymbol{Y})}{(\mathbf{5}-\boldsymbol{Y})(\mathbf{4}+\boldsymbol{Y})}=1$.
9. Solve $\frac{x}{2}+\frac{x}{4}+\frac{x}{5}+10000=x$.
10. Radfika takes some flowers in a basket and visits three temples, one by one. At each temple. She offers one half of the flowers from the basket. If she is left with 3 flowers at the end. Find the number of flowers she fiad in the beginning.
11. The present age of father is four times the age of his son. After 10 yr. age of father will become three times the age of fis son. Find their present ages.
12. Anusfka and Aarusfi are friends. They have equal amount of money in the ir pockets. Anushaka gave $\frac{\mathbf{1}}{\mathbf{3}}$ of her money to Aarushi as her birthday gift. Then Aaruski gave a party at a restaurant and cleared the bill by paying falf of the total money with her. If the remaining money in Aarusfi's pocket is $\mathcal{R} s .1600$, then find the money gifted by Anusfika.
13. The sum of three consecutive odd natural numbers is 69. Find the prime number out of these numbers.
14. The sum of three consecutive numbers is 156 . Find the number, which is a multiple of 13 out of these numbers.
15. Solve $\frac{3 t-2}{3}+\frac{2 t+3}{2}=t+\frac{7}{6}$.
16. The base of an isosceles triangle is $\frac{\mathbf{4}}{\mathbf{5}} \mathrm{cm}$. The perimeter of the triangle is $5 \frac{\mathbf{5}}{\mathbf{1 3}} \mathrm{~cm}$. What is the length of either of the remaining equal sides?
17. Find a number, whose fifth part increased by 30 is equal to its fourth part decreased by 30.
18. Madfulika thought of a number, doubled it and added 20 to it. On dividing the resulting number by 25, she gets 4 . What is the number?

Answer :

1. We have $3(5 y-7)-2(9 y-11)=4(8 y-13)-17$
$15 y-21-18 y+22=32 y-52-17$
$\Rightarrow-3 y+1=32 y-69$
$\Rightarrow 1+69=32 y+3 y \Rightarrow 70=35 y \Rightarrow y=2$
Check on putting $y=2$ in both sides of the given equation, we get
$3(5 \times 2-7)-2(9 \times 2-11)=4(8 \times 2-13)-17$
$\Rightarrow 3(10-7)-2(18-11)=4(16-13)-17$
$\Rightarrow 3 \times 3-2 x 7=4 \times 3-17$
$9-14=12 \cdot 17$
$-5=-5$
$\Rightarrow L H S=R H S$
So, $y=2$ is solution of the given line ar equation.
2. Let the number of winners be x

Then, the number of participants who did not win $=36 \cdot x$
Amount spent on xprizes $=\mathcal{R s . 5 0 0 x} x=\mathcal{R s} .500 x$
Amount spend ton $(36-x)$ prizes $=\operatorname{Rs} .100 \chi(36-x)=\operatorname{Rs}(3600-100 \chi)$
But 500 x $+(3600-100 \chi)=4800$
$\Rightarrow 500 x+3600-100 x=4800$
$\Rightarrow 400 x=4800-3600$
$\Rightarrow x=1200 \times \frac{1}{400} \Rightarrow x=3$
So the number if winners is 3 .
3. \because sum of the digits $=17$

Let the units'digit of the number be x
\therefore Ten's it of the number $=(17-\chi)$
So, the number $=10(17-x)+x$
On reversing the digits, the new number $=10 \chi+(17-x)$
But according to the question
$\Rightarrow 10(17-x)+x+9=10 x+(17-x)$
$\Rightarrow 170-10 x+x+9=10 x+17-x$
$\Rightarrow 179-9 x=9 x+17$
$\Rightarrow 162=18 x$
$\Rightarrow 162 x \frac{1}{18}=\chi \Rightarrow x=9$
\therefore Ten's digit of the number $=17-x=17-9=8$
\because Required number $=10(8)+9=89$
4. Let the first part be x. Then, second part will be (400-x)
\mathcal{N} ow, as per the given condition,
$\frac{1}{3} x x=400(400-x)-40$
$\Rightarrow \frac{x}{3}=400-x-40 \Rightarrow \frac{x}{3}=360-x$
$\Rightarrow \frac{x}{3}+x=360$
$\Rightarrow \frac{x+3 x}{3}=360$
$\Rightarrow \frac{4 x}{3}=360$
$x=360 \times \frac{3}{4}=27$

Other part $=\cdot(400-270)=130$
5. Let first odd number be $(2 x+1)$

Second consecutive odd number $=(2 x+1)+2$
$=2 x+3$
And third consecutive odd number $=(2 x+1)+4$
$=2 x+5$
As per the given the condition
$2 x+1+2 x+3+2 x+5=219$
$\Rightarrow 6 x+9=219$
$\Rightarrow 6 x=219-9$
$\Rightarrow x=210 \times \frac{1}{6}=35$
So the le ast odd number $=2 \chi+1=2 \times 35+1=71$
6. On substituting $y=4$ in the given equation, we get $\mathcal{L H S}=4+7-\frac{8 \times 4}{3}=11-\frac{32}{3}=\frac{33-32}{3}=\frac{1}{3}$
$\mathcal{A n d} \mathcal{R H S}=\frac{17}{6}-\frac{5 \times 4}{8}=\frac{17}{6}-\frac{20}{8}=\frac{68-60}{24}=\frac{8}{24}=\frac{1}{3}$
Thus, $\mathcal{L H S}=\mathcal{R H S}$
So, $y=4$ is the solution of the given equation.
7. We fave, $\frac{3 x-5}{17}+\left(\frac{11-x}{76}-\frac{3}{4}\right)=\frac{4-x}{2}-13$
$\Rightarrow \frac{3 x}{17}-\frac{5}{7}+\frac{11}{16}-\frac{x}{76}-\frac{3}{4}=2+\frac{x}{2}-13$
$\Rightarrow \frac{456 \mathrm{x}-34 \mathrm{x}-1292 \mathrm{x}}{2584}$
$=\frac{3 x}{17}-\frac{x}{76}-\frac{x}{2}-11+\frac{5}{17} \quad \frac{-11}{76}+\frac{3}{4}$
$=\frac{-56848+1520-748+3876}{5168}$
$\Rightarrow \frac{456 x-1326 x}{2584}=-\frac{52200}{5168} \Rightarrow \frac{-870 x}{2584}=\frac{-52200}{5168}$
$X=\frac{-52200}{5168} \chi\left(\frac{-2584}{870}\right)=\frac{60}{2}=30$
8. We fave, $\frac{(2+y)(7-y)}{(5-y)(4+y)}=1$
$\mathcal{B} y \operatorname{cross}-m u l t i p l i c a t i o n$, we get
$(2+y)(7-y)=(5-y)(4+y)$
$\Rightarrow 14-2 y+7 y-y^{2}=20+5 y-4 y-y^{2}$
$\Rightarrow 14+5 y=20+y \Longrightarrow 5 y-y=20-14$
$\Rightarrow 4 y=6 \Rightarrow y=\frac{6}{4}=\frac{3}{2}$
This, solution of the given equation is $\frac{3}{2}$
9. We have, $\frac{x}{2}+\frac{x}{4}+\frac{x}{5}+10000=x$
$\Rightarrow \frac{x}{2}+\frac{x}{4}+\frac{x}{5}-x=-10000$
$\Rightarrow \frac{10 x+5 x+4 x-20 x}{20}=-10000$
$\Rightarrow \frac{19 x-20 x}{20}=-10000$
$\Rightarrow \frac{-x}{20}=-10000$
$\Rightarrow \frac{-x}{20}=-10000 \quad \therefore x=200000$
10. Suppose Radfika takes x flowers in the basket. At first temple. She offers flowers from the basket $=\frac{x}{2} \mathcal{N}$ ow flowers left, Nowflowers left after visiting first temple
$=x-\frac{x}{2}=\frac{2 x-x}{2}=\frac{x}{2}$
Thus, at second temple she offers flowers
$=\frac{x}{2} \div 2=\frac{x}{4}$
\mathcal{N} (ow, flowers left after visiting second temple
$=\frac{x}{2}-\frac{x}{4}$
$=\frac{4 x-2 x}{8}=\frac{2 x}{8}=\frac{x}{4}$
Again at third temple $=\frac{x}{4} \div 2=\frac{x}{8}$
And flowers left after visiting third temple $=\frac{x}{8}$
But from the given condition, she has 3 flowers at the end.
$\therefore \frac{x}{8}=3 \Rightarrow x=24$
Hence, Radfika takes 24 flowers.
Alternate method

Suppose she has x flowers in the basket
\therefore Suppose she has x flowers in the basket.
\therefore She has flowers at the end
$=x \div 2 \div 2 \div 2$
$=\chi \chi \frac{1}{2} \chi \frac{1}{2} \chi \frac{1}{2}=\frac{x}{8}$
Also, $\frac{x}{8}=3 \Rightarrow x=24$.
11. Let the present age of son $=x y r$ Then, present age of father $=4$ xyr

After 10 yr . Age of son $=(x+10) \mathrm{yr}$
And age of father $=(4 x+10) y r$.
According to the given condition
$4 x+10=3(x+10)$
$\Rightarrow 4 x+10=3 x+30$
$\Rightarrow 4 x-3 x=30-10 \Rightarrow x=20$
\therefore Present age of son $=20 \mathrm{yr}$
And present age of father $=4 \chi=m 4 \times 20=80 \mathrm{yr}$.
12.S uppose, Anushka and Aarushifave the ir equal amount of sum, which is \mathcal{R}. X

After giving $\frac{1}{3}$ of the money to Aarushi.
Anushka fias the amount $=\mathcal{R s} \cdot\left(x-\frac{x}{3}\right)$
And then amount of \mathcal{A} arus $\mathfrak{F i}=\mathcal{R} s .\left(x+\frac{x}{3}\right)$
\mathcal{N} ow, as per the given condition, we have
$\left\langle x+\frac{x}{3}\right\rangle-\frac{1}{2} x\left\langle x+\frac{x}{3}\right\rangle=1600$
$\Rightarrow\left\langle x+\frac{x}{3}\right\rangle\left\langle 1-\frac{1}{2}\right\rangle=1600$
$\Rightarrow\left\langle x+\frac{x}{3}\right\rangle \times \frac{1}{2}=1600$
$\Rightarrow \frac{3 x+x}{3}=1600 \times 2=3200$
$\Rightarrow \frac{4 x}{3}=3200 \Rightarrow x=3200 \times \frac{3}{4}=2400$
So, money gifted by Anushka $=\frac{1}{3}$ of 2400
$=\frac{1}{3} \times 2400=R s .800$
13. Let the three consecutive odd naturalnumbers be $\chi,(\chi+2)$ and $(x+4)$

As per the given condition, we have $x+(x+2)+(x+4)=69 \Rightarrow 3 x+6=69$
$\Rightarrow 3 x=69-6 \Rightarrow 3 x=69$
$x=63 \times \frac{1}{3}=21$
Thus the numbers are 21, $(21+2)$ and $(21+4)$ i.e. $21,23,25$. Out of the se only 23 is the prime number.
14. Let the consecutive numbers be $x,(x+1)$ and $(x+2)$ as per the given condition, we have
$x+(x+1)+(x+2)=69=156$
$\Rightarrow 3 x+3=156$
$\Rightarrow 3 x=156-3=153$
$\Rightarrow x=63 x \frac{1}{3}=51$
Thus, we get the numbers,51,52 and 53. Out of these only 52 is a multiple of 13.
15. We have, $\frac{3 t-2}{3}+, \frac{2 t-3}{2}=t+\frac{7}{6}$
$\Rightarrow \frac{3 t-2}{3}+\frac{2 t+3}{2}=\frac{t}{1}+\frac{7}{6}$
$\Rightarrow \frac{2 \times(3 t-2)+3 \times(2 t+3)-6 \times t}{6}=\frac{7}{6}$
$\Rightarrow \frac{6 t-4+6 t+9-6 t}{6}=\frac{7}{6}$
$\Rightarrow \frac{6 t+5}{6}=\frac{7}{6}$
$\Longrightarrow(6 t+5)=\frac{7 \times 6}{6} \Rightarrow 6 t+5=7$
$\Rightarrow 6 t=7-5=2$
$\therefore t=\frac{2}{6}=\frac{1}{3}$
16. Let the length of either of the remaining equal sides be $x \mathrm{~cm}$
$\therefore \frac{4}{5}+(2 \chi x)=5 \frac{5}{13}$
$\Rightarrow \frac{4}{5}+2 x=\frac{68}{13} \Rightarrow 2 x=\frac{68}{13}-\frac{4}{5}$
$\Rightarrow 2 x=\frac{340-52}{65}=\frac{288}{65}=\chi=\frac{288}{65} \chi \frac{1}{2}=\frac{144}{65} \mathrm{~cm}$
So, length of either of the remaining equal sides $=\frac{144}{65} \mathrm{~cm}$
17. Let the number be x. According to the question
$\frac{x}{5}+30=\frac{x}{4}-30 \Rightarrow \frac{x}{5}-\frac{x}{4}=-30-30$
$\Rightarrow \frac{4 x-5 x}{20}=-60 \Rightarrow-x=-60 \quad x 20=-1200$
$\therefore \chi=1200$
18. Let the number be x According to the question.
$\frac{2 x+20}{25}=4 \Rightarrow 2 x+20=100$
$\Rightarrow 2 x=80 \Rightarrow x=40$
Hence, the required number is 40
I. Long Answer Type Question.

1. Solve for \boldsymbol{x} :

$$
\frac{(2+x)(7-x)}{(5-x)(4+x)}=1
$$

Sol. We fave, $\frac{(2+x)(7-x)}{(5-x)(4+x)}=1$
$\mathcal{B} y$ cross - multiplication, we get

$$
\begin{array}{lc}
& (2+x)(7-x)=(5-x)(4+x) \\
\text { or, } & 2(7-x)+x(7-x)=5(4+x)-x(4+x) \\
\text { or, } & 14-2 x+7 x-x^{2}=20+5 x-4 x-x^{2} \\
\text { or, } & 14+5 x=20+x \\
\text { or, } & 5 x-x=20-14 \\
\text { or, } & 4 x=6 \\
\text { or, } & x=\frac{6}{4}=\frac{3}{2}
\end{array}
$$

Thus, the solution of the given equation is $x=\frac{3}{2}$
2. Solve the equation $\frac{x}{5}+11=\frac{\mathbf{1}}{\mathbf{1 5}}$ and check the result.

Sol. Since, $\quad \frac{x}{5}+11=\frac{1}{15}$
or $\bigcirc \frac{x}{5}=\frac{1}{15}-\frac{11}{1}$
or $\quad \frac{x}{5}=\frac{1-165}{15}=\frac{-164}{15}$
or $\quad x=\frac{-164}{15} \times 5$
or $\quad x=-\frac{164}{3}$

Hence, $x=-\frac{164}{3}$ is the solution.
Checking: Putting $x=-\frac{164}{3}$ in the given equation, then

$$
\text { LHS }=\frac{\mathrm{x}}{5}+11
$$

$$
=\frac{-164 / 3}{5}+11
$$

$$
=\frac{-164}{3} \times \frac{1}{5}+11
$$

$$
=\frac{-164}{15}+\frac{11}{1}
$$

$$
=\frac{-164+165}{15}=\frac{1}{15}
$$

and

$$
R H S=\frac{1}{15}
$$

Therefore, \quad LHS $=$ RHS $=\frac{1}{15}$
Hence Verified
3. A steamer goes downstream from one point to another in 7 hours. It covers the same distance upstream in 8 hours. If the speed of stream be $2 \mathrm{~km} / \mathrm{hr}$, find the speed of the steamer in still water and the distance between the ports. [$\mathcal{N C E R T}$ Exemplar]

Sol. Let speed of steam in still water $=x \mathrm{hm} / \mathrm{hr}$
Speed of stream $=2 \mathrm{~km} / \mathrm{hr}$
Speed downstream $=(x+2) \mathrm{km} / \mathrm{hr}$
Speed upstream $=(x-2) \mathrm{km} / \mathrm{hr}$
Distance covered in 7 hours while downstream $=7(x+2)$
Distance covered in 8 fours while upstream $=8(x-2)$
According to the condition,
4. Distance betwe en two stations Aand B is 690 km . T wo cars start simultane ously from A and b towards each other, and the distance between them after 6 hours is 30 km . If the speed of one car is less than the other by $10 \mathrm{~km} / \mathrm{hr}$, find the speed of each car.
[NCERT Exemplar]
Sol. Let speed of faster car $==x \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
& 7(x+2)=8(x-2) \\
& 7 x+14=8 x-16 \\
& x=30 \mathrm{~km} / \mathrm{hr} \\
& \text { Totaldistance }=7(x+2) \mathrm{km} \\
& =7(30+2) \mathrm{km} \\
& =7 \times 32 \mathrm{~km} \\
& =224 \mathrm{~km}
\end{aligned}
$$

then speed of other $=(x-10) \mathrm{km} / \mathrm{hr}$
Let $1^{\text {st }}$ one start from A and other from B. M and N be the ir position after 6 hours.

$$
A M=6 x, B N=6(x-10)
$$

According to condition,

$$
\begin{array}{r}
6 x+6 x-60+30=690 \\
12 x=690+30 \\
12 x=720 \\
x=60 \mathrm{~km} / \mathrm{hr} \\
\text { Speed of other car }=50 \mathrm{~km} / \mathrm{hr}
\end{array}
$$

5. If numerator is 2 less than denominator of a rational number and when 1 is subtracted from numerator and denominator both, the rational number in the simplest from is $\frac{\mathbf{1}}{\mathbf{2}}$. What is the rational number?

Sol. Let the denominator be x, the numerator $=x-2$

$$
\therefore \quad \text { Fraction }=\frac{x-2}{x}
$$

According to given condition,

$$
\begin{aligned}
& \frac{x-2-1}{x-1}=\frac{1}{2} \\
& \frac{x-3}{x-1}=\frac{1}{2} \\
& 2 x-6=x-1 \\
& 2 x-x=6-1 \\
& x=5
\end{aligned}
$$

\therefore Rational number $=\frac{x-2}{2}=\frac{5-2}{5}=\frac{3}{5}$
6. For what value of \boldsymbol{x} is the perimeter of shape 77 cm ?

Sol. Perimeter $=(x+2)+(x+1)+(x+1)+(2 x+1)+(2 x+2)$

$$
=7 x+7
$$

Since, perimeter of the given shape is 77 cm .

$$
\begin{array}{ll}
\therefore & 7 x+7=77 \\
& 7(x+1)=77 \\
& x+1=\frac{77}{7}=11 \\
& x+1=11 \\
& x=11-1 \\
& x=10
\end{array}
$$

7. In a two digit number, digit in units place is twice the digit in tens place. If 27 is added to it, the digits are reversed. Find the number.

Sol. Let the tens place digit be x then the unit place digit $2 x$
Hence, two digit number $=10 x+2 x=12 x$
According to condition,

$$
\begin{gathered}
12 x+27=10 x 2 x+x \\
12 x+27=20 x+x \\
21 x-12 x=27 \\
9 x=27 \\
x=3
\end{gathered}
$$

$\mathcal{H e n c e}$, two digit number $=12 x=12 \times 3$

$$
=36
$$

8. Radfa takes some flowers in a basket and visits three temples one by one. At each temple, she offers one half of the flowers from the basket. If she is left with 3 flowers at the end, find the number of flowers she had in the beginning.
[N (CERT Exemplar]
Sol. Let she had x flowers,
I temple visit

$$
\begin{aligned}
\mathcal{N} \text { o of flowers } & =x-\frac{x}{2} \\
& =\frac{x}{2}
\end{aligned}
$$

II temple visit
\mathcal{N} o. of flowers $=\frac{x}{1}-\frac{1}{2}\left(\frac{x}{2}\right)$

$$
\begin{aligned}
& =\frac{x}{2}-\frac{x}{4} \\
& =\frac{2 x-x}{4} \\
& =\frac{x}{4}
\end{aligned}
$$

III temple visit

$$
\begin{aligned}
\mathcal{N} \text { (o. of flowers } & =\frac{x}{4}-\frac{1}{2}\left(\frac{x}{4}\right) \\
& =\frac{x}{4}-\frac{x}{8} \\
& =\frac{2 x-x}{8} \\
& =\frac{x}{8}
\end{aligned}
$$

According to condition,

$$
\begin{aligned}
& \frac{x}{8}=3 \\
& x=24
\end{aligned}
$$

9. Two volume of water in tank is twice of that in the other. If we draw out 25 litres from the first and add it to the other, the volumes of the water in each tank will be the same. Find the volume of water in each tank.
[N CERT Exe mplar]
Sol. Let volume of smaller tank $=x L$

$$
\text { volume of larger tank }=2 x L
$$

According to condition,

$$
\begin{gathered}
2 x-25=x+25 \\
2 x-x=25+25 \\
x=50
\end{gathered}
$$

Volume of smaller tank $=50 \mathrm{~L}$
Volume of larger tank $=100 L$
10. Hamid has three boxes of different fruits. Box \mathcal{A} weighs $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}} \mathrm{kg}$ more than $\mathcal{B o x}$ B and Box C Weighs $\mathbf{1 0} \frac{\mathbf{1}}{\mathbf{4}} \mathbf{k g}$ more than Box B. The total weight of three boxes is $\mathbf{4 8} \frac{\mathbf{3}}{\mathbf{4}} \mathbf{k g}$. How many kilograms (kg) does $\mathcal{B o x} \boldsymbol{A}$ weighs?

Sol. Let the weight of $\mathcal{B o x} B$ be $x \mathrm{~kg}$
Since, box A weighs $2 \frac{1}{2} \mathrm{~kg}$ more than $\mathcal{B o \chi} B$
$\therefore \quad$ Weight of $\mathcal{B o x} A=\left(x+2 \frac{1}{2}\right) \mathrm{kg}$

$$
=\left(x+\frac{5}{2}\right) k g
$$

Again, Box C weighs $10 \frac{1}{4} \mathrm{~kg}$ more than $\mathcal{B o \chi} B$
$\therefore \quad$ Weight of $\mathcal{B o} x C=\left(x+10 \frac{1}{4}\right)$

$$
=\left(x+\frac{41}{8}\right) k g
$$

According to condition,

$$
x+\frac{5}{2}+x+x+\frac{41}{4}=48 \frac{3}{4}
$$

$$
\begin{aligned}
& 3 x+\frac{5}{2}+\frac{41}{4}=\frac{195}{4} \\
& \frac{12 x+10+41}{4}=\frac{195}{4} \\
& 12 x+51=195 \\
& 12 x=195-51 \\
& 12 x=144 \\
& x=\frac{144}{12} \\
& x=12
\end{aligned}
$$

Hence, we ight of $\mathcal{B o x} A=x+\frac{5}{2}=12+\frac{5}{2}$

$$
\begin{aligned}
& =\frac{24+5}{2} \\
& =\frac{29}{2}=14 \frac{1}{2} \mathrm{~kg}
\end{aligned}
$$

II. Long Answer Question

1. Solve $\frac{y-(4-3 y)}{2 Y-(3+4 y)}=\frac{1}{5}$

Sol. $\quad \frac{y-(4-3 y)}{2 y-(3+4 y)}=\frac{1}{5}$
$\Rightarrow \quad 5[y-(4-3 y)]=2 y-(3+4 y)$
$\Rightarrow \quad 5[y-4-3 y]=2 y-3-4 y$
$\Rightarrow \quad 5 y-20+15 y=2 y-3-4 y$
$\Rightarrow \quad 20 y-20=-2 y-3$
$\Rightarrow \quad 20 y+20 y=20-3$
or $\quad 22 y=17 \quad$ or $\quad y=\frac{17}{22}$
2. Solve $\frac{x}{2}-\frac{1}{4}\left(x-\frac{1}{3}\right)=\frac{1}{6}(x+1)+\frac{1}{12}$

Sol. $\frac{x}{2}-\frac{1}{4}\left(x-\frac{1}{3}\right)=\frac{1}{6}(x+1)+\frac{1}{12}$
or $\quad \frac{x}{2}-\frac{x}{4}+\frac{1}{12}=\frac{x}{6}-\frac{1}{6}+\frac{1}{12} \quad$ or $\quad \frac{x}{2}-\frac{x}{4}-\frac{x}{6}=\frac{1}{6}+\frac{1}{12}-\frac{1}{12}$
or $\frac{6 x-3 x-2 x}{12}=\frac{1}{6} \quad$ or $\quad \frac{6 x-5 x}{12}=\frac{1}{6}$
or $\quad \frac{x}{12}=\frac{1}{6} \quad$ or $6 x=12$ or $\quad x=2$
3. `13, 500 are to be distributed among Salma, Kiran and genifer in such a way that Salmagets` 1,000 more than Kiran and genifer gets ` 500 more than Kiran. Find the money received by genifer. [NCERI Exemplar] Sol. Letmoney received by Kiran =` x

Money received by genifer $=`(x+500)$
Money received by Salma $=`(x+1,000)$
According to question,

$$
\begin{array}{ll}
& x+x+500+x+1000=13500 \\
\text { or } & 3 x+1500=13500 \\
\text { or } & 3 x=12000 \text { or } x=\frac{12000}{3}=4000
\end{array}
$$

Money received by genifer $=` 4,000+` 500=` 4,500$.
4. Sum of the digits of a two -digit number is 11 . The given number is less than the number obtained by interchanging the digits by 9. Find the number. [NCERT Exemplar] Sol. Let the digit at unit place be x.

Then digit at ten's place $=11-x$
$\mathcal{N u m b e r}=(10$ digit at ten's place $)+$ digit at unit place.

$$
=10(11-x)+x=110-10 x+x=110-9 x
$$

\mathcal{N} umber formed by interchanging the digits $=10 x+(11-x)=10 x+11-x=11+9 x$ According to question

$$
(11+9 x)-(110-9 x)=9
$$

$$
\text { or } \quad 9 x+11-110+9 x=9 \quad \text { or } \quad 18 x-99=9
$$

$$
\text { or } \quad 18 x=108 \quad \text { or } x=\frac{108}{18} \quad \text { or } \quad x=6
$$

$$
\text { So, number }=10(11-x)+x
$$

$$
=10(11-6)+6=10 \times 5+6=50+6=56
$$

5. Two equal sides of a triangle are each 4 m less than three times the third side. Find the dimensions of the triangle, if its perimeter is 55 m . Let third side be x

Then length of equal side $=3 x-4$
Sum of all sides of triangle $=$ perimeter

$$
3 x-4+3 x-4+x=55
$$

or $\quad 7 x-8=55$
or $\quad 7 x=63$ or $x=\frac{63}{7}$
or $\quad x=9$
Third side $\quad=x=9 \mathrm{~m}$
Length of equal sides $=3 x-4=3 \times 9-4=27-4=23 m$
6. The age of \mathcal{A} is five years more than that of \mathcal{B}. 5 years ago, the ration of the ir age was 3:2. Find the ir present age.,

Sol. Let present age of $B=x$ years
Present age of $A=x+5$ years
Five years ago, Age of $B=x-5$

$$
\text { Age of } A=x+5-5=x
$$

According to question.

$$
\begin{array}{lll}
& \frac{x}{x-5}=\frac{3}{2} & \\
\text { or } & 3(x-5)=2 x & \text { or } \\
\text { or } & 3 x-2 x=15 & \text { or } \\
\therefore & \text { Present age of } A= & x+5=15+5=20 \text { years } \\
& \text { Present age of } B=x=15=2 x \\
& & x=15 \\
& \text { years. }
\end{array}
$$

7. A streamer goes downstream and covers the distance between two ports in 3 fours. It covers the same distance in 5 hours when it goes upstream..If the stream flows at $3 \mathrm{~km} / \mathrm{h}$ then find what is the speed of the steamer up stream. [$\mathcal{N C E R T}$ Exemplar]

Sol. Let the speed of steamer in still water $=x \mathrm{~km} / \mathrm{h}$
Speed of stream $=3 \mathrm{~km} / \mathrm{h}$
Speed downstream $=(x+3) \mathrm{km} / \mathrm{h}$
Speed upstream $=(x-3) \mathrm{km} / \mathrm{h}$
Distance covered in 3 hours while downstream $=3(x+3)$
Distance covered in 5 hours while upstream $=5(x-3)$
According question
$5(x-3)=3(x+3)$
or $\quad 5 x-15=3 x+9$
or $\quad 5 x-3 x=9+15=24 \quad$ or $\quad 2 x=24$
or $\quad x=12 \mathrm{~km} / \mathrm{h}$
Speed upstream $=x-3=12-3=9 \mathrm{~km} / \mathrm{h}$
8. Distance between two places. \mathcal{A} and \mathcal{B} is 210 km . Two cars start simultaneously from \mathcal{A} and \mathcal{B} in opposite direction and distance between them after 3 fours is 54 km . If speed of one car is less than that of other by $8 \mathrm{~km} / \mathrm{hr}$. Find the speed of each.
[N CERT Exe mplar]

Sol. Let the speed of faster car $=x \mathrm{~km} / \mathrm{h}$
Then speed of their $=(x-8) \mathrm{km} / \mathrm{h}$
Let first car starts from A and the other from B
P and Q be their position after 3 hours

(Distance $=$ speed χ time $)$

$$
\begin{aligned}
& A P=3 x \mathrm{~km}, P Q=54 \mathrm{~km} \\
& Q B=3(x-8) \mathrm{km}
\end{aligned}
$$

According to condition

$$
\begin{aligned}
& 3 x+54+3(x-8)=210 \\
& \text { or } \quad 3 x+54+3 x-24=210 \\
& \text { or } \quad 6 x+30=210 \text { or } \quad 6 x=210-30 \\
& \text { or } 6 x=180 \quad \text { or } \quad x=\frac{180}{6} \\
& \text { or } x=30 \\
& \text { So, Speed of faster car }=30 \mathrm{~km} / \mathrm{h} \\
& \text { Speed of other car }=x-8 \\
& =30-8=22 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

III. Long Answer Type Questions

1. A man was engaged as typist for the month of February in 2009. He was paid Rs. 500 per day but Rs. 100 per day were deducted for the days he remained absent. He received Rs. 9200 as salary for the month. For fow many days did he work?
2. About buys two kinds of cloth material for school uniforms shirt material which consists fim Rs. 50 per metre and trouser material that costs fim Rs. 90 per metre. For every 2 m of the trouser material he buys 3 m of the shirt material. He sells the material at 12% and 20% profit respectively. He sells the material respectively. His total sale is Rs.38160. How much trouser material did the buy?
3. Denominator of a number is 4 less than its numerator. If 6 is added to the numerator, it becomes thrice the denominator. Find the fraction.
4. Kusum buys some chocolates at the rate of Rs. 10 per chocolate. She also buys an equal number of candies at the rate of Res. 5 percandy. She makes a 20% profit on chocolates and 8% profit on candies. At the end of the day, all chocolates and candies are sold out and her profit is Rs. 240 . Find the number of chocolates purcfiased.
5. In a rare coin collection, there is one gold coin for every three non-gold coins. If 10 more gold coins are added to the collection the ration of gold coins to non-gold coins becomes 1:2. Based on the information, find the totalnumber of coins in the collection now?
6. Find the value of $2 m+\frac{\mathbf{1}}{\mathbf{2}} n$, if m and n the solutions of the equations $\frac{m+3}{7-\mathbf{2} \boldsymbol{m}}=\frac{\mathbf{1}}{\mathbf{2}}$ and $\frac{\mathbf{1}}{\mathbf{4}}$ $(n+4)=2 n-3$, respectively.
7. It cost of five pencils is same as the cost of one notebook. If the cost of 7 pencils and 7 notebooks together is 210 . Then, find the cost of 2 pencils and 3 note books.
8. Safli and Suraj are close friends. Safil's montfly salary is 3 times less than S uraj. Suraj helps shail everymonth with RTs. 6000 , after which Safil is left with total money half of the money Suraj fias. Then,
a) find the salary of S afil and S uraj
6) What type of value is depicted by suraj?

Answer :

1. Suppose the man was absent on x days. Then he worked for (28-x) days.

Thus, he willget the amount as per the given condition for the February month.
$\therefore(28-x) \times 500-x \times 100=9200$
$\Rightarrow 28 x 500-500 x-100 x=9200$
$\Rightarrow-600 x=9200-14000 \Rightarrow-600 x=-4800$
$\Longrightarrow x=-4800 x\left(-\frac{1}{600}\right)=8$
So, the man works for $(28-8)$ i.e. 20 days
2. Let $\mathcal{A b d u l}$ buys $2 \times \mathrm{m}$ of trouser material $\mathcal{T h e n}$, the sfirt material bought by fim $=3 \times \mathrm{m}$ Sale price of 1 m of trouser material
$=$ Rs. $(90+12 \%$ of 90$)$
$=\mathcal{R s} \cdot\left\langle 90+\frac{12 \times 90}{100}\right\rangle=\mathcal{R s} .100 .80$
Sale price of $2 \times m$ of trouser material $=\mathcal{R} s .(2 \chi x 100.80)=R \operatorname{Rs} .201 .60 \chi$
Sale price of 1 m of shirt material
Sale price of $1 \times m$ of trouser material $=\mathcal{R s} .50+20 \%$ of $\mathcal{R s} .50=\mathcal{R s} .\left(50+\frac{20 \times 50}{100}\right)$ Rs. 60
Sale price of $3 \times \mathrm{m}$ of shirt material $=\mathcal{R s} .3 x \times 60=\mathcal{R s} .180 \times$
\therefore Total sale $=$ Rs. $(201.60+180) \quad x=$ Rs. $381.60 x$
$\therefore 381.60 x=38160$
$\Rightarrow \chi=\frac{38160}{38.160}=100$
So, $\mathcal{A b d u l}$ bought $2 \times 100=200 \mathrm{~m}$ of trouser material.
3. Let the numerator of the number be x Then denominator of the number be (x-4)

So, fraction $=\frac{x}{x-4}$
According to the question, if 6 is added to numerator, it becomes thrice the denominator
$\therefore \frac{x+6}{x-4}=\frac{3(x-4)}{x-4} \Rightarrow \frac{x+6}{x-4}=3$
$\Rightarrow 3 x-12=x+6$ ($6 y$ cross multiplication)
$\Rightarrow 2 \chi=18 \Rightarrow \chi=9$
Put $x=9$ in $E q$. (i) we get
Fraction $=\frac{x}{x-4}=\frac{9}{9-4}=\frac{9}{5}$
4. Let Kusum purchased x chocolates. Then totalcost of chocolates $=10 \chi$

Similarly, she purchased x candies. Then totalcost of candies $=5 x$
According to the question
Profit on chocolates $=20 \%$ of $10 x=\frac{20}{100} \chi 10 \quad x=2 \chi$
And profit on candies $=8 \%$ of $5 x=\frac{8}{100} \quad x 5 x=0.4 x$
\therefore Total profit $=2 x+0.4 x=2.4 x$
Again according to the question
Total profit $=240 \Rightarrow x=100$
Hence, she purchased 100 chocolates.
5. Le the number of gold coins initially be x then, the number of non-gold coins be $3 x$ when, 10 more gold coins added Then, according to the question $\frac{(10+x)}{3 x}=\frac{1}{2}$
$[\therefore(10+x) ; 3 x=1: 2]$
$\Rightarrow 2(10+x)=3 x \Rightarrow 20+2 x=3 x \Rightarrow x=20$
Then, total number of coins at last $=3 x+10+\chi$
$=4 x+10=4 \times 20+10=90$
6. Give $n \frac{m+3}{7-2 m}=\frac{1}{2}=2(m+3)=1 \times(7-2 m)$
$\Rightarrow 2 m+6=7-2 m \Rightarrow 2 m+2 m=7-6$
$\Rightarrow 4 m=1 \quad \Rightarrow m=\frac{1}{4}$
\mathfrak{N} ow $\frac{1}{4}(n+4)=2 n-3 \Rightarrow n+4=4(2 n-3)$
$\Rightarrow n+4=8 n-12 \Longrightarrow 8 n-n=12+4$
$\Rightarrow 7 n=16 \Rightarrow n=\frac{16}{7}$
Then, $2 m+\frac{1}{2} n=2 \times \frac{1}{4}+\frac{1}{2} \chi \frac{16}{7}$
$=\frac{1}{2}+\frac{8}{7}=\frac{7+16}{14}=\frac{23}{14}$
So, $2 m+\frac{1}{2} n=\frac{23}{14}$
7.

Let cost of one pencil be Rs. X
Then cost of one note 6ook $=$ Rs. $5 x$
According to the question $7 x x+7 \times 5 x=210$
$\Rightarrow 7 x+35 x=210 \Rightarrow 42 x=210$
$\Rightarrow x=\frac{210}{42}=5$
So, cost of one pencil $=R$ s. 5
And cost of one note 6ook $=5 \times 5=\operatorname{Rs.} 25$
Then, cost of 2 pencils and 3 note6ooks. $=2 \times 5+3 \times 5=10+75=\operatorname{Rs} .85$
8. Let Safil's montily salary be Rs.x

Then Suraj's montily salary be Rs. $3 x$
After giving Rs6000 to Safil has money
$=x+6000$ and Suraj has money $=3 x-6000$
Then, according to the question
$2(x+6000)=(2 x-6000)$
$\Rightarrow 2 x+12000=3 x-6000$
$\Rightarrow 3 x-2 x=12000+6000=18000 x=18000$
So, Safils monthly salary $=$ Rs. 18000
And Suraj's montfly salary $=$ Rs. 54000
6. The value depicted by Surajis is the ir helpfulnature. He helps fis friend in the need.
I. High Order Thinking Skills (Hots) Questions.

1. The perimeter of a rectangle is 240 cm . If its length is increased $6 y 10 \%$ and its Greadth is decreased by 20% we get the same perimeter. Find the length and breadth of the rectangle.

Sol. Let the length of rectangle be x

$$
\begin{aligned}
& 2(x+b)=\text { Perimeter } \\
& 2(x+B)=240 \\
& x+b=\frac{240}{2} \\
& x+b= 120 \\
& b=120-x \\
& \text { or, } \quad=x+10 \% \text { of } x \\
& \text { Ne length } \\
&=x+\frac{10 x}{100}=x+\frac{x}{10} \\
&=\frac{11 x}{10} \\
& \mathcal{N e w} \text { breadth }=(120-x)-20 \% \text { of }(120-x) \\
&=(120-x)-\frac{20}{100} \times(120-x) \\
&=120-x-\frac{1}{5}(120-x) \\
&=120-x-\frac{120}{5}+\frac{x}{5} \\
&=120-x-24+\frac{x}{5} \\
&=96-x+\frac{x}{5} \\
&=\frac{480-5 x+x}{5} \\
&=\frac{480-4 x}{5}
\end{aligned}
$$

According to condition,

$$
\begin{aligned}
& \text { or, } 2\left(\frac{11 x}{10}+\frac{480-4 x}{5}\right)=240 \\
& \text { or, } \frac{11 x}{10}+\frac{480-4 x}{5}=120 \\
& \frac{11 x+960-8 x}{10}=120 \\
& \frac{3 x+960}{10}=120 \\
& 3 x+960=1200 \\
& 3 x=1200-960 \\
& 3 x=240 \\
& x=\frac{240}{3}=80
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \text { Length }=x=80 \mathrm{~cm} \\
& \text { Greadth }=120-x=120-80=40 \mathrm{~cm}
\end{aligned}
$$

II. High Order Thinking Skills (Hots) Questions.

1. The sum of three consecutive numbers is 156. Find the number which is a multiple of 13 out of these numbers.

Sol. Let one number $=x$
Second number $=x+1$
Third number $=x+2$
According to question,

$$
x+x+1+x+2=156
$$

or $\quad 3 x+3=156$
$3 x=153 \quad$ or

$$
\begin{aligned}
& 3 x=156-3 \\
& x=\frac{153}{2}=51
\end{aligned}
$$

Three consecutive numbers are 51,52, and 53.
Out of these, multiple of $13=152$
2. How much pure alcohol be added to 40 mL of a 15% sotution to make its strength 32% ?

Sol. Let $x \mathrm{~mL}$ pure alcofolbe to 400 mL of a 15% solution to make its strengh 32%.
Here, 15% solution means that there is 15 mL pure alcofol in a solution of 100 mL .
\mathcal{N} ow, quantity of alcofol in 100 mL solution $=15 \mathrm{~mL}$
$\therefore \quad$ Quantity of alcofolin 400 mL solution $=\frac{15}{100} \times 400 \mathrm{~mL}=60 \mathrm{~mL}$
Totalquantity of the solution $=(400+x) m L$

Totalquantity of alcofolin in $(400+x) m L$ solution $=(60+x) m l$
$\therefore \quad$ Quantity of alcofolin $1 \mathrm{~mL}=\frac{60+x}{400+x} \mathrm{~mL}$
Quantity of alcofol in $100 \mathrm{~mL}=\frac{60+x}{400+x} \times 100 \mathrm{~mL}$
$\Rightarrow \quad$ Strength of the solution $=\left(\frac{60+x}{400+x}\right) \times 100 \%$
But, the strength of the solution is given as 32%.
$\therefore \quad \frac{60+x}{400 x} \times 100=32$
$\Rightarrow \quad 100(60+x)=32(400+x) \quad \Rightarrow \quad 6000+100 x=12800+32 x$
$\Rightarrow \quad 100 x-32 x=12800-6000$
$\Rightarrow 68 x=6800 \quad \Rightarrow \quad \frac{68 x}{68}=\frac{6800}{68}$
$\Rightarrow \quad x=100$
Thus, 100 mLalcofolmust be added to make 32% strength of the solution.
3. If $\mathcal{D e n n i s}$ is $\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{r} \boldsymbol{d}$ the age of his father Keith now, and was $\frac{\mathbf{1}}{\mathbf{4}} \boldsymbol{t h}$ the age of his father 5 years ago, then how old will his father 保ith be 5 years from now?

Sol. Let Keitf's age now be x years.
Dennis's age now $=\frac{x}{3}$ years
Keith's age 5 years ago $=(x-5)$ years
Dennis's age 5 years ago $=\left(\frac{x}{3}-4\right)$ years
According to question,

$$
\begin{array}{llll}
& \left(\frac{x}{3}-5\right)=\frac{1}{4}(x-5) & \Rightarrow & \frac{x-15}{3}=\frac{x-5}{4} \\
\Rightarrow & 4(x-15)=3(x-5) & \Rightarrow & 4 x-60=3 x-15 \\
\Rightarrow \quad 4 x-3 x=-15+60 & \Rightarrow & x=45
\end{array}
$$

$\therefore \quad$ Keith's age 5 years from now $=(45+5)$ years $=50$ years.
I. Value Based Questions.

1. a. After 12 years I shall be 3 times as old as I was 4 years ago. Find my present age.
2. Verify that $\boldsymbol{x}=\mathbf{4}$ is a root of the equation $\mathbf{2 x}-\mathbf{3}=\mathbf{5}$.

Sol. a. Letmy present age $=x$ years

After 12 years my age $=(x+12$ years
4 years ago my age $=(x-4)$ years
According to questions,

$$
x+12=3(3-4)
$$

$$
x+12=3 x-12
$$

or $\quad x-3 x=-12-12$
or

$$
-2 x=-24
$$

or

$$
x=\frac{-24}{-2}
$$

or

$$
x=12
$$

Therefore, my present age $=12$ years.
6. Since,
$2 x-3=5$
Putting $x=4$ then

$$
L H S=2 x-3
$$

	$=2 \times 4-3=8-3=5$
and	$R H S=5$
Hence,	$L H S=R H S=5$

> [Hence, verified]
2. a. Divide 34 into two parts in such a way that $\left(\frac{4}{7}\right)^{\text {th }}$ of one part is equal to $\left(\frac{2}{5}\right)^{\text {th }}$ of the other.
6. Which of the following equation are line ar equation in one variable.
a. $x^{2}+x=1$
6. $2 x-7=\frac{2}{3}$
c. $x^{2}+x=10$
d. $x-15=3 x$

Sol.
a. Let, \quad Ist part $=x$

Then, IInd part $(34-x)$
According to question,

$$
\left(\frac{4}{7}\right)^{t \hbar} \text { of Ist part }=\left(\frac{2}{5}\right)^{t h} \text { of I Ind part }
$$

or

$$
\frac{4}{7} x=\frac{2}{5}(34-x)
$$

or

or

$$
\begin{aligned}
& 20 x=14 x 34-14 x \\
& 20 x+14 x=14 \times 34 \\
& 34 x=14 \times 34
\end{aligned}
$$

$$
\text { or } \quad 20 x+14 x=14 \times 34
$$

or

$$
x=\frac{14 \times 34}{34}
$$

or

$$
x=14
$$

$\mathcal{H e n c e}$, two parts are 14 and $34-14=20$
i.e., \quad Ist part $=14$ and IInd part $=20$
6. Line ar equation in one varifle are
6. $2 x-7=\frac{2}{3}$ and (d) $x-15=3 x$
3. a. The sum of the digits of a two-digit number is 15. If the number formed by reversing the digits is less than the original number by 27 , find the original number.
6. Verify that $\boldsymbol{x}=\mathbf{2}$ is a solution of the equation $\mathbf{2}(\boldsymbol{x}+\mathbf{1})=\mathbf{3}(\boldsymbol{x}+\mathbf{1})-\mathbf{3}$

Sol.
Let the unit place $=x$
Then the tens place $=(15-x)$
Therefore, original number $=10(15-x)+x$

$$
=(150-9 x)
$$

$\mathcal{B} y$ reversing the digits, we get

$$
\begin{aligned}
\text { New number } & =10 x+(15-x) \\
& =9 x+15
\end{aligned}
$$

According to question,
(original number) - (new number) $=27$

$$
(150-9 x)-(9 x+15)=27
$$

or
or
or
or
or

$$
\begin{aligned}
& 135-18 x=27 \\
& 18 x=135-27 \\
& 18 x=108 \\
& x=\frac{108}{18} \\
& x=6
\end{aligned}
$$

Hence, original number

$$
\begin{aligned}
& =150-9 x \\
& =150-9 \times 6 \\
& =150-9 \times 6 \\
& =150-54=96
\end{aligned}
$$

6. Verification: Since

The putting $x=2$, then
Theputing $x=2$, then
$2(x+1)=3(x+1)-3$
and

Hence

$$
\begin{aligned}
\text { LHS } & =2(x+1) \\
& =2(2+1) \\
& =2 \times 3=6 \\
\text { RHS } & =3(x+1)-3 \\
& =3(2+1)-3 \\
& =3 \times 3-3 \\
& =9-3=6 \\
\text { LHS } & =R H S=6
\end{aligned}
$$

