Name: \qquad
Grade : VI
Subject: Mathematics

Chapter 2: Whole Numbers

I. Multiple Choice Questions

1. The product of non-zero whole number and its successor is always
a. an even number
2. an odd number
c. a prime number
d. divisible by 3
3. A whole number is added to 25 and the same number is subtracted from 25. The sum of the resulting number is
a. 0
6.25
c. 50
d. 75
4. The whole number which fias no predecessor is
a. 1
5. 0
c. 2
d. 3
6. $77+23=23+77$ is an example of
a.closure property
7. associative property
c. commutative property
d. distributive property
8. By using dot (•) patterns, which of the following numbers can be arranged in all the three ways namely a line, a triangle and a rectangle?
a. 9
9. 10
c. 11
d. 12
10. The predecessor of 1 lakf is
a.99000
11. 99999
c. 999999
d. 100001
12. The successor of 1 million is
a. 2 million
13. 1000001
c. 100001
d. 10001
14. Which of the following is not zero?
a. 0×0
15. $\frac{0}{2}$
c. $\frac{(8-8)}{2}$
d. $2+0$
16. The product of two whole numbers is atways a
a. natural number
17. even number
c. odd number
d. none of these
18. The greatest number which always divides the product of the predecessor and successor of an odd natural number other than 1, is

a.6 6.4	c. 16	d.32		
1. aneven number	2.50	3.0	4. commutative property	5.10
6.99999	7.1000001	$8.2+0$	9.none of these	10.4

II. Multiple Choice Questions

1. Number of whole numbers between 38 and 68 is:
a. 31
2. 30
c. 29
d. 28
3. The product of successor and predecessor of 999 is
a. 999000
6.998000
c. 989000
d. 1998
4. Which of the following is not true?
a. $(7+8)+9=7+(8+9)$
$6 .(7 \times 8) \times 9=7 \times(8 \times 9)$
c. $7+8 \times 9=(7+8) \times(7+9)$
d. $7 \times(8+9)=(7 \times 8)+(7 \times 9)$
5. Which of the following statements is not true?
a. Both addition and multiplication are associative for whole numbers
6. Zero is the identity for multiplication of whole numbers
c. Addition and multiplication both are commutative for whole numbers.
d. Multiplication of distributive over addition for whole numbers.
7. Which of the following statements is not true?
a. $0+0=0$
$6.0-0=0$
c. $0 \times 0=0$
d. $0 \div 0=0$
8. Which is the successor of 1099999?
a. 1100001
9. 1100000
c. 1099998
d. 9999999
10. Which is the predecessor of 208090?
a. 208089
11. 208091
c. 218090
d. 198090
12. What is the value of $8 \times 1769 \times 125$:
a. 1769000
13. 1768000
c. 1768010
d. 1769010
14. What is the value of $81265 \times 169-81265 \times 69$:
a. 81265000
b.zero
c. 8126500
d. 8026500
15. Which of the following is the additive identity in the set of whole numbers?
a. 1
6.zero
c-1
d. any number
16. The schoolcanteencharges ₹ 20 for hunch $\mathcal{G} 5$ for milk each day. How much money will be charged in 5 days on these things?
a. ₹ 125
17. ₹ 25
c. ₹ 75
d. ₹ 100
18. The successor of the smallest counting number is:
a. 0
6.1
c. 2
d. 3
19. The successor of the largest 2 digit number is
a. 98
6.99
c. 100
d. 101
20. When any counting number is multiplied by 0 , the product is:
a. the counting number
21. 1
c. 0
d. none of these itself
22. When \mathcal{N} is divided $b y \mathcal{D}, Q$ and \mathcal{R}, then they are connected by the relation $(\mathcal{D}=$ Divisor, $\mathcal{N}=\mathcal{N}$ umber, $Q=$ Quotient and $\mathcal{R}=$ Remainder $):$
a. $\mathcal{N}=\mathcal{D} \mathcal{X} Q+\mathcal{R}$
23. $\mathcal{D}=Q \mathcal{X} \mathcal{N}+\mathcal{R}$
c. $Q=\mathcal{N} X \mathcal{D}+\mathcal{R}$
d. $\mathcal{N}=\mathcal{D} X Q-\mathcal{R}$

$1 . c$	2.6	$3 . c$	4.6	$5 . d$
6.6	$7 . a$	$8 . a$	$9 . c$	10.6
$11 . a$	$12 . c$	$13 . c$	$14 . c$	$15 . a$

III. Multiple Choice Questions

1. The successor of 99 is.
a. 99
6.98
c. 100
d.none of these
2. The predecessor of 100 is
a. 101
3. 100
c. 99
d.none of these
4. The successor of 27 is
a. 26
b. 25
c. 24
d. 28
5. The predecessor of 36 is
a. 32
6.35
c. 33
d. 37
6. The natural number that has no predecessor in naturalnumber is
a. 1
7. 10
c. 100
d. 1000
8. The difference between the successor of a number and the number itself is
a. 0
9. - 1
c. 1
d.none of these
10. The difference between the predecessor of a number and the number itself is
a. 1
11. - 1
c. 2
d. -2
12. The difference betweenthe successor and the predecessor of a number is
a. 1
13. 2
c. -1
d. -2
14. To find the predecessor of number, we have to subtract from the number itself.
a. 1
15. 2
c. 3
d. 4
16. To Find the successor of a number, we have to add to the number itself
a. 4
6.3
c. 2
d. 1
17. The smallest whole number is
a. 0
18. 1
c. -1
d.none of these
19. Which of the following statements is true?
a. All natural numbers are also whole numbers
20. All whole numbers are also natural numbers
c. There is no smallest whole numbers.
d. The greatest whole number is 100 .
21. Which of the following is true?
a. $210>201$
$6.210<201$
c. $210=201$
d.none of these
22. Which of the following statements is true?
a. 1 is the smallest natural number
6.50 is the predecessor or 49
c. 1 is the smallest whole number.
d. 599 is the successor of 600 .
23. Which of the following statements is true?
a. The whole number 0 has no predecessor in whole numbers.
24. There are 10 whole numbers between 11 to 21.
c. The successor of a two digit number is always a two digit number.
d. The predecessor of a two digit number is never a single digit number.
25. How many naturalnumbers are there between 1 and 10?
a. 6
6.7
c. 8
d. 9
26. Find $27 \div(9 \div 3)$.
a. 3
6.6
c. 9
d. 27
27. Find $(24 \div \mathbf{4})+\mathbf{2}$
a. 1
28. 3
c. 4
d. 2
29. Which of the following will not represent zero?
a. $0+1$
$6.0 x 0$
c. $\frac{0}{2}$
d. $\frac{2-2}{2}$
30. $1+0=$
a. 1
6.0
c. 2
d. not define d.
31. Whole numbers are closed under addition and multiplication. This property is know as
a. Closure property
32. Commutativity of addition and multiplication
c.associativity of addition and multiplication
d. distrigutive of multiplication over addition.
$22 \cdot 3+5=5+3 \prime$
The above is known as
a.closure property
c. commutativity of multiplication.
33. commutativity of addition d. none of these.
$23 . ' 3 \times 5=5 \times 3$ '
The above is known as
a.closure property
34. commutativity of addition
c.commutativity of multiplication.
d. none of these.
$24 \cdot(1+2)+3=1+(2+3)$)
The above is Knows as
a. commutativity of addition
35. associativity of addition
c.commutativity of multiplication
d.associativity of multiplication.
36. ($2+3) \times 4=2 x(3 \times 4) \prime$

The above is knows as
a. commutativity of addition
6. associativity of addition
c.commutativity of multiplication
d.associativity of multiplication
26.' $2 x(3+4)=(2 \times 3)+(2 \times 4)$ '

The above is Knows as
a. distributivity of multiplication over addition
6. associativity of addition
c. associativity of multiplication
d. none of these
27. I purchased 10 litres of milk in the morning and 5 litres of milk in the evening. If the milk costs ₹ 30 per litre, how much money will I have to pay to the milkman?
a. ₹ 450
6. ₹ 300
c. ₹ 150
d.none of these
28. Which of the following is true?
a. the number 2 can be arranged as a line.
6. The number 2 can be arranged as a square
c. The number 2 can be arranged as a triangle
d. The number 2 can be arranged as a rectangle
29. The number 5 can be arranged as a
a. line
6. rectangle
c. square
d. triangle
30. The number 5 cannot be sfown as a
a.square
b.rectangle
c. line
d. triangle
31. The number 10 cannot be shown as a
a.square
6.rectangle
c. Sine
d. triangle
32. Which of the following numbers can be shown as square?
a. 11
6. 12
c. 13
d. 16
33. First triangular number is
a. 3
6. 6
c. 10
d. 13
34. Which of the following numbers cannot be shown by two rectangles?
a. 12
6. 16
c. 18
d. 15
35. Which of the following numbers is not a triangular number?
a. 3
6. 6
c. 10
d. 9
36. Which of the following numbers cannot be arranged as a rectangle?
a. 4

$$
\text { 6. } 6
$$

c. 8
d. 7

1. c	2.c	3.d	4. 6	5.a	6. c	7.a	8. 6	9. a
10.d	11. a	12.a	13. a	14.a	15.a	16.c	17.c	18.6
19. a	20.d	21. a	22.6	23.c	24.6	25.d	26.a	27.a
28.a	29.a	30.a	31. a	32.d	33.a	34.d	35.d	36.d

1. The product of the place values of two 2 's in $4,28,721$ is
a. 4
2. 40,000
c. $4,00,000$
d. $4,00,00,000$
3. The face value of 4 in $8,92,47,605$ is
a. 4
$6.40,000$
c. 47605
d. 8,924
4. The product of the place value of two 5 's in $6,53,250$ is
a. 25
5. 25,000
c. $2,50,000$
d. 25, 00, 000
6. If I is added to the greatest 7 -digit number, it will be equal to
a. 10 thousand
7. 1 lakf
c. 10 lakf
d. 1 crore
8. The difference of the smallest three digit number and the largest two digit number is
a. 100
9. 1
c. 10
d. 99
10. When rounded off to nearest thousands, the number 85, 642 is
a. 85,600
$6.85,700$
c. 85,000
d. 86,000
11. The greatest number which on rounding off to ne arest thousands gives 5,000, is
a. 5,001
12. 5,559
c. 5,999
d. 5,499
13. The smallest number which when rounded off to ne arest fundred as 600, is
a. 550
14. 595
c. 604
d. 599
15. The difference between the greatest and smallest numbers which when rounded off a number to the nearest fundred as 6,700 is
a. 100
6.99
c. 98
d. 101
16. How many 8 -digit numbers are there?
a. 9, 99, 99,999
17. 8, 99, 99,999 c. $9,00,00,00,000$
d. none of these
18. In Indian system of \mathfrak{N} (umeration, the number 58695376 is written as
a. $58,69,53,76$
$6.58,695,376$
c. $5,86,95,376$
d. $586,95,376$
12.The largest 4-digit number, using any one digit twice, from digits 5, 9, 2 and 6 is
a. 9652
19. 9562
c. 9659
d. 9965
20. $3 \times 10,000+7 \times 1,000+9 \times 100+0 \times 10+4$ is the same as
a. 3,794
21. 37,940
c. 37,904
d. 3, 79, 409
22. Which of the following numbers in Roman numerals is incorrect?
a. LXXX
b. $\mathcal{L X X}$
c. $\angle X$
d. $\operatorname{cs} x$
23. The expanded form of the number 9578 is
a. $9 \times 10,000+5 \times 1,000+7 \times 10+8 \times 1$
24. $9 \times 1,000+5 \times 100+7 \times 10+8 \times 1$
c. $9 \times 1,000+57 \times 10+8 \times 1$
d. $9 \times 100+5 \times 100+7 \times 10+8 \times 1$.

$1 . c$	$2 . a$	$3 . d$	$4 . d$	5.6	$6 . d$	$7 . d$	$8 . a$
9.6	$10 . c$	$11 . c$	$12 . d$	$13 . c$	$14 \cdot d$	$15 \cdot 6$	

I. Fill in the Blanks

1. 300 is the predecessor of \qquad -.
2. 450 is the successor of \qquad
3. \qquad is the successor of the largest 3-digit number
4. Whole numbers are closed under \qquad and under \qquad .
5. Division of whole number by \qquad is not defined.
6. Multiplication is distributive over \qquad for whole numbers.
$7.10005 \times 0=$ \qquad
$8 \cdot 125+(68+32)=(125+$

$9.1785 \times 3+1785 \times 7=$ \qquad
$10.28 \times 25=28 \times \frac{-}{4}=700$
7. The smallest 6-digit natural number ending in 5 is \qquad .
$12.1001 \times 2002=1001 \times(1001+\ldots \ldots .$.
8. $786 \times 3+786 \times 7=$ \qquad
$14.24 \times 25=24 \times \frac{-}{4}=600$

1.301	2.449	3.1000	 multiplication	5.0	6. addition	7.0
8.68	9.17850	10.100	11.100005	12.1001	13.7860	14.100

II. Fill in the Blanks

1. The smallest whole number is \qquad -
2. Successor of 106159 is \qquad .
3. 400 is the predecessor of \qquad -.
4. If 0 is subtracted from a whole number then the result is the --------_itself.
5. The smallest 6 digit natural number ending in 5 is \qquad .
6. Natural numbers are closed under \qquad , and under
\qquad -.
7. $2395 x$ \qquad $=6195 \times 2695$.
8. $2916 \chi_{\text {_- }}=----1=0$.
9. 9128 x \qquad 9128.
$10.125+(68+17)=(125+$ \qquad $)+17$.
10. $8925 \times 1=$ \qquad
$12.19 \times 12+19=19 \times(12+$

11. $24 \times 35=24 \times 18+24 x$

$14.32 \times(27 \times 19)=\left(32 \times \ldots----n_{-}\right) \times 19$.
12. Dividend $=$ \qquad X Quotient $+$ \qquad
13. Whole numbers are represented by \qquad and natural numbers are represented by \qquad
14. \qquad is the additive identity of the whole numbers.
15. Product of even number is always \qquad
16. Natural number 1 has no \qquad -

1.0	2. 106160	3.401	4. number	5.100005	6.additional, multiplication	7.6195
8.0	9.1	10.68	11.8925	12.1	13.17	14.27
15. Divisor, Remainder	$16 . \mathcal{W}, \mathcal{N}$	17. zero	18. Even	19. Predecessor		

I. Match the following

a. $127+73=73+127$	i. Associative property of multiplication
6. 15×10) is a whole number	ii. Commutative property of multiplication
c. $128 \times 20=20 \times 128$	iii. Distributive property of multiplication over addition
d. $64 \times(16 \times 25)=(64 \times 16) \times 25$	iv. Commutative property of addition
e. $17 \times(20+5)=17 \times 20+17 \times 5$	v. Closure property of multiplication

a. iv	$2 . v$	$3 . i i$	$4 . i$	$5 . i i i$

II. Match the following

1. Division Algorithm is	a. None
2. Number of whole numbers betwe en 0 and 1 aer	6. O and 1
3. Whole number satisfying a x $a=a$ is	c. Repeated subtracted
4. Division by 0 is	d. Dividend = divisor x quotient + remainder
5. Division also means	e. Not defined

$1 . d$	$2 . a$	3.6	$4 . e$	$5 . c$

1. True or False
2. Successor of 1-digit number is always a one - digit number.
3. Successor of 3-digit number is always 3-digit number.
4. Predecessor of a 2-digit number is always a 2-digit number
5. $716 \times 3+716 \times 7=7160$
6. 999999 is the largest whole number.
7. $17 \times(5+3)=17 \times 5+17 \times 3$
8. 1 has no predecessor in the whole numbers
9. 3996 is a successor of 3995
10. Every whole numbers is except zero the successor of another whole number.
11. Sum of two whole numbers is always less than their product.
12. There is a whole number which when added to a whole number, gives the second whole number.
13. If a whole number is divided by another whole number which is greater than the first one, then the quotient is not equal to zero.
14. If the sum of two distinct whole numbers is odd, then their difference also must be odd.

1. False	2. False	3. False	4. True	5. False	6. $\mathcal{T r u e}$	7. False
8. True	9. True	10. False	11. True	12. False	13. True	

II. True or False

1. Every whole number fias its successor.
2. Between any two natural numbers, there is one naturalnumber.
3. The smallest 4-digit number is the successor of the largest 3-digits number.
4. Of the given two natural number, the one faving more digits is greater.
5. Natural numbers are closed under addition.
6. Natural number are not closed under multiplication.
7. Natural numbers are closed under subtraction.
8. Addition is commutative for natural numbers.
9. 1 is the identity for addition of whole numbers.
10.1 is the identity for multiplication of whole numbers.
10. There is a whole number which when added to a whole numbergive the number itself.
11. There is a natural number which when added to a natural number gives the number itself.
12. Any non-zero whole number divided by itself gives the quotient 1 .
13. The product of two whole numbers need not be a whole number.
14. A whole number divided by another whole number greater than 1 never give the quotient equal to the former.
15. The natural number 1 has no predecessor.
16. If a and b are whole numbers and $a<6$, then $a+1<6+1$.
17. Every whole number has its predecessor.
18. $10 \div\left(\begin{array}{lll}5 & \times 2\end{array}\right)=\left(\begin{array}{ll}10 & \times 5\end{array}\right) \times(10 \div 2)$.
$20 .(20 \div 5)+2=(20+2)+5$.

1. True	2. Fatse	3. True	4. True	5. True	6. False	7. False
8. True	9. False	10. True	11. True	12. False	13. True	14. False
15. True	16. True	17. True	18. False	19. False	20. True	

9
I. Very Short Answer Type Questions

1. Write the two immediate predecessors of 2945 .

Given number is 2945
Immediate predecessors are 2944 and 2943.
2. Write the three immediate successors of 3956

Given number is 3956
So, three immediate successors of 3956 are $3957,3958,3959$.
3. How many natural numbers are there between 60 and 72 ?

Given number is 60 and 72.
Hence, natural numbers between 60 and 72

$$
=(6-a)-1=72-60-1=11
$$

4. Find the sum by suitable rearrangement $47+953+6437$.

We have, $47+953+6437=(47+953)+6437$

$$
=1000+6437=7437
$$

5. Find the product by suitable rearrangement $2 \times 1768 \times 50$.

We have, $2 \times 1768 \times 50=(2 \times 50) \times 1768=100 \times 1768=176800$
6. Find the value of $92165 \times 179-92168 \times 79$

We fave, $92165 \times 179-92165 \times 79$

$$
\begin{aligned}
& =92165(179-79) \\
& (\text { taking } 92165 \text { as common term) } \\
& =92165 \times 100 \\
& =9216500 .
\end{aligned}
$$

7. What is the additive identity of 498 ?

We know that, additive identity of any whole number is 0 . So, additive identity of 498 is 0 . i.e. $0+498=498$
8. What is the multiplicative identity of 539?

We know that, multiplicative identity of any whole number is 1. So, multiplicative of 539 is 1 .
i.e. $539 \times 1=539$
9. Can you divide 0 by 219? If yes, then what is the answer?

Yes, we can divide 0 by 219 and answer is 0. i.e. $0 \div 219=0$
II. Very Sfort Answer $\mathcal{T y p e}$ Questions

1. State the property used in
$29+(14+16)=(29+14)+16$.
Associativity.
2. Does $15 \div 0$ represent zero?
$\mathcal{N} 0$.
3. Name a four digit number whose predecessor is 3 digit number. 1000
4. Write one pair of numbers whose quotient is 4.

12 and 3 (as $12 \div 3=4$)
5. Replace each by the correct digit in each of the following:

III. Very Sfort Answer Type Questions

1. Are all natural numbers also whole numbers? Are all whole numbers also natural numbers?

Yes, every natural number is a whole numbers, but all whole numbers are not naturalnumbers. For example, 0 is a whole number which is not a natural number.
2. Write the next three whole numbers after 50,999. $51,000,51,001,51,002$.
3. Write the predecessor of:
(i) 27
(ii) 10,000
(i) Predecessor of $27=(27-1)=26$
(ii) Predecessor of $10,000=(10,000-1)=9,999$
4. Write the successor of:
(i) $10,00,909$
(ii) $70,39,999$
(i) Successor of $10,00,909=(10,00,909+1)=10,00,910$
(ii) Successor of $70,39,999=(70,39,999+1)=70,40,000$.
5. Give arguments in support of the statement that there does not exist the largest natural number.

There is no largest natural number because every natural number fas its successor.
6. The product of two whole numbers is zero. What do you conclude? If the product of two numbers is zero it means at least one of them is zero.
7. If the product of two whole numbers is 1, can we say that one or both of them will be 1? I ustify through examples.
Yes, both the numbers will be 1 as the product of the whole numbers is 1.
8. Which is the smallest whole number?
S mallest whole number is 0 .
9. How many whole numbers are there betwe en 32 and 53? There are 20 whole numbers between 32 and 53.
10. How many whole numbers are there between 1, 032 and 1, 209. There are 176 whole numbers between 1, 032 and 1, 209.
I. Short Answer Type Questions

1. Write the predecessor of the following:
a. 96
6.9998

We know that, predecessor is one less than the given whole number.
a. Predecessor of 96-1 =95
6. Predecessor of 9998=9998-1 = 9997
2. Determine the sum of the four numbers as given below:
a. Successor of 32
6. Predecessor of 49
c. Predecessor of the predecessor of 56
d.Successor of the successor of 67
a. Successor of $32=32+1=33$
6. Predecessor of $49=49-1=48$
c. Predecessor of 56 is 65

So, predecessor of the predecessor of

$$
56=55-1=54
$$

d. Successor of 67 is 68

So, Successor of the successor of $67=68+1=69$
Hence, the sum of four numbers

$$
33+48+54+69=204
$$

3. Write the successor of the following
a. 299
4. 2923

We know that, successor is one more than the given whole number.
a. Successor of $299=299+1=300$
6.Successor of $2923=2923+1=2924$
4. In each of the following pairs of numbers, state which whole number is to the left of the other on the number line. Ulse appropriate symbol
($>$ or $<$).
a.497,495 6.3059,3096

We know that, the number which lies to the right of other is a greater number.
a. 497 lies to the right of 495 , so, $497>495$
6.3059 lies to the 3096 , so, $3059<3096$
5. Find $5+2$ on the number line.

We start from 5, make 2 jumps to the right, we reach at 7.

So, $5+2=7$
6. Find 10-3 on the number line

We start from 10, make 3 jumps to the left, we reach at 7 .

So, 10-3 $=7$
7. Find 5×4 on the number line.

We start from 0 , move 5 units at a time to the right, make 4 such moves. We reach at 20.

So, $5 \times 4=20$.
8. Find the product of the largest three-digit number with the smallest four-digit number.

Largest 3-digit number $=999$
And smallest 4-digit number $=1000$
\therefore Product $=999 \times 1000=999000$
9. There are two whole numbers, which when multiplied by itself gives the same number. What are they?
If we multiply 0 by itself, it gives same number
i.e. $0 \times 0=0$, and similarly, $1 \times 1=1$.
\therefore The required whole number are 0 and 1.
10. Write the following numbers as directed using dots.
a. 16 as a square
6. 26 as a rectangle

$26 \rightarrow$

11. Find the whole number n, when
$2 n-6=0 ?$
We fave $2 n-6=0$
$2 n=6 \Rightarrow n=\frac{6}{2}=3$
12. Find the value of $968 \times 73+968 \times 27$?

We have, $968 \times 73+968 \times 27$)

$$
\begin{aligned}
& =968(73+27) \text { [taking } 968 \text { as common term] } \\
& =968 \times 100=96800
\end{aligned}
$$

```
II. Sfort Answer Iype Questions - I
```

1. Taking $a=7,6=4, c=15$, ve rify:
$a \chi(6+c)=a \chi 6+a \chi c$.

$$
\begin{aligned}
\mathcal{L H S} & =a X(6+c) \\
& =7 \chi(4+15) \\
& =7 \times 19=133 \\
\mathcal{R H S} & =a \chi 6+a \chi c \\
& =7 \times 4+7 \chi 15 \\
& =28+105=133 \\
\mathcal{L H S} & =\mathcal{R H S}
\end{aligned}
$$

Hence, $a \chi(6+c)=a \chi b+a \chi c$.
2. Find the value of $24579 \times 93+7 \times 24579$ using suitable property.

$$
\begin{aligned}
& 24579 \times 93+7 \times 24579 \\
&=24579 \times 93+24579 \times 7 \\
&=24579 \times(93+7) \\
&=24579 \times 100 \\
&=2457900 .
\end{aligned}
$$

3. The number of people in agame is 96209. If number of boys are 29642 and that of girls are 29167, then determine the number of old age people?

$$
\begin{aligned}
& \text { Boys }=29642 \\
& \text { Girls }=+29167 \\
& \text { Total }=\underline{58809}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total people }=96209 \\
& \text { Old age people }=\underline{-58809} \\
& \hline \underline{37400}
\end{aligned}
$$

4. Divide 16025 by 135 and verify the division.

$$
135) 16025(118
$$

.135

$$
\begin{aligned}
\text { Dividend } & =\text { Divis or } X \text { Quotient }+ \text { Re mainder } \\
& =135 \times 118+95 \\
& =15930+95
\end{aligned}
$$

Dividend $=16025$
5. A builder constructed 690 fours at the rate of $5,25,175$ house. What is total construction cost?

$$
=525175
$$

$\begin{array}{r}\times 690 \\ \hline\end{array}$
00000
$4726575 x$
$3151050 x X$ 362370750

Girls $=+29167$
Total $=\underline{58809}$
Total people $=96209$

$$
=-58809
$$

Old age people 37400
Total construction cost $=525175 \times 690$

$$
=₹ 36,23,70,750 .
$$

6. Find the product using distributive property:
a. 728×101
6.824×25
a. $728 \times 101=728 \times(100+1)$

$$
\begin{aligned}
& =728 \times 100+728 \times 1 \\
& =72800+728 \\
& =73528
\end{aligned}
$$

$$
\begin{aligned}
6.824 \times 25 & =824(20+5) \\
& =824 \times 20+824 \times 5 \\
& =16480+4120 \\
& =20600
\end{aligned}
$$

7. Find the value of $887 \times 10 \times 461-8870$ using suitable property.

$$
\begin{array}{rl}
887 \times 10 \times 461-3 & 61 X 8870 \\
& =8870 \times 461.361 \times 8870 \\
& =8870(461.361) \\
& =8870 \times 100 \\
& =887000 .
\end{array}
$$

II. Sfort Answer $\mathcal{T} y p e$ Questions - II

1. A loading tempocarry 482 boxes of 6 iscuits weighing 15 Kg each where as a van carry 518 boxes each of the same weight. Find the total weight that can be caused by both the veficles.

The total weight carried by loading tempo

$$
\begin{aligned}
& =\mathcal{N} \text { o. of boxes } X \text { weight of biscuits in each box } \\
& =482 \times 15=7,230 \mathrm{~kg}
\end{aligned}
$$

The Total weigft carried by van
$=$ no. of 6 oxes in van X weight of 6 iscuits in each 6 ox
$=518 \times 15=7,770 \mathrm{~kg}$

Hence total weight of both the vehicles

$$
\begin{aligned}
= & \text { Total we ight carried by loading te mpo } \\
& + \text { Total weight carried by van } \\
= & 7,230+7,770 \\
= & 15,000 \mathrm{~kg}
\end{aligned}
$$

2. Write down the next three consecutive whole numbers starting from 4009998 Since, number $=4009998$

Then, $1^{\text {st }}$ consecutive number $=4009998+1$

$$
\begin{aligned}
& =4009999 \\
& =4009999 \\
& =4010000 \\
& =4010000 \\
& =4010001 .
\end{aligned}
$$

$$
\text { IInd consecutive number }=4009999+1
$$

and IIIrd consecutive number $=4010000+1$
III. Sfort Answer Type Questions

1. Find the product using suitable property

$$
\begin{aligned}
& 4 \times 178 \times 25 \\
& 4 \times 178 \times 25 \quad=\left(\begin{array}{lll}
4 \times 25) \times 178 \\
& =100 \times 178=17,800
\end{array}\right.
\end{aligned}
$$

2. Simplify: $126 \times 55+126 \times 45$.

$$
\begin{aligned}
126 \times 55+126 \times 45 \quad & =126 \times(55+45) \\
& =126 \times 100=12,600 .
\end{aligned}
$$

3. Find the product using suitable properties.
(i) 738×103
ii) $258 \times 1,008$
(i) 738×103
$=738(100+3)$
$=738 \times 100+738 \times 3$
$=73,800+2,214=76,014$
(ii) $258 \times 1,008$
$=258 \times(1000+8)$
$=258 \times 1,000+258 \times 8$
$=2,58,000+2,064=2,60,064$.
4. Find the following products using distributivity.
(i) 11×69
(ii) 824×25
(i) 11×69

$$
\begin{aligned}
& =(10+1) \times 69 \\
& =10 \times 69+1 \times 69 \\
& =690+69=759
\end{aligned}
$$

(ii) 824×25
$=824 \times(20+5)$
$=824 \times 20+824 \times 5$
$=16,480+4,120=20,600$.
5. Find the sum by sfort method:
(i) $6,784+9,999$
(ii) $10,578+99,999$
(i) $6784+9,999$

$$
=6784+(10,000-1)
$$

$$
=(6784+10,000)-1
$$

$$
=16,784-1
$$

$$
=16,783
$$

(ii) $10,578+99,999$

$$
=10,578+(1,00,000)-1
$$

$$
=1,10,578-1
$$

$$
=1,10,577
$$

6. Fill in the blanks:
(i) $125+(69+17)=(125+$ \qquad $)+17$
(ii) $24 \times 25=24 x-=600$ 4
(iii) $786 \times 3+786 \times 7=$ \qquad -
(iv) If 0 is subtracted from a whole number, thenthe result is the
\qquad itself.
3.7,860
7. Acar moves at a uniform speed of 75 km per hour. How much distance will it cover in 98 hours?

Car's speed $\quad=75 \mathrm{~km}$ per four
Time taken $=98$ fours
So, distance covered by car would be
Distance $=$ speed X Time
So, distance covered bycar is 98 hours $=75 \times 98$

$$
\begin{aligned}
& =75 \times(100-2) \\
& =75 \times 100-75 \times 2 \\
& =7,500-150=7,350 \mathrm{~km}
\end{aligned}
$$

8. Study the following pattern in triangular numbers and extend it to 3 more steps:
$8 \times 1+1=9=3 \times 3$
$8 \times 3+1=25=5 \times 5$
$\mathcal{8} \times 6+1=49=7 \times 7$
$8 \times 10+1=81=9 \times 9$
$8 \times 15+1=121=11 \times 11$
...............................
...............................
\mathcal{N} ow, fill in the 6 lanks:
(i) 8 times the $12^{\text {th }}$ triangular number plus $1=$ \qquad x \qquad $=$ \qquad .
(ii) 8 times the \qquad triangular number plus $1=27 \times 27=$

Extending the pattern to three steps, we get
$8 \times 1+1==3 \times 3$
$8 \times 3+1==5 \times 5$
$8 \times 6+1==7 \times 7$
$8 \times 10+1=9 \times 9$
$8 \times 15+1=11 \times 11$
$8 \times 21+1=13 \times 13$
$8 \times 28+1=15 \times 15$
$8 \times 36+1=17 \times 17$

(i) 8 times the $12^{\text {th }}$ triangular number plus $1=8 \times 78+1=25 \times 25$
(ii) 8 times the $27^{\text {th }}$ triangular number plus $1=27 \times 27=8 \times 91+1$.
9. State whether the following statements are \mathcal{T} rue or $\mathcal{F a l s e}$:
(i) Successor of a two digit number is always a 3-digit number.
(ii) Predecessor of a two digit number is always a two digit number.
(iii) The smallest 4-digit number is the successor of the largest 3-digit number.
(iv) Of the given two natural numbers, the one faving more digits is greater.

1. Fatse	2. False	3. True	4. True

10. Find a number which when divided by 35 gives the quotient 20 and remainder 18 .

We Gave, Divisor $=35$
Quotient $=20$
Remainder $\quad=18$
We have to find dividend. By the division algorithm we have,
Dividend $=$ Divisor X Quotient + Remainder
Dividend $=35 \times 20+18$
$=700+18=718$
Required number is 718.
11. Find the sum: $(1,546+498)+3,589$.

Also, find the sum: $1,546+(498+3,589)$.
Are the two sums equal? State the property satisfied.
Sum of $(1,546+498)+3,589=2,044+3,589$

$$
=5,633
$$

\mathcal{N} ow, the sum of $1,546+(498+3,589)=1,546+4,087$

$$
=5,633
$$

So, sum in both the cases are same.
The property here used is associative property and under this property we know that

$$
(a+b)+c=a+(b+c)
$$

12. On dividing 55, 390 by 299, the remainder is 75. Find the quotient using the division algorithm.
Dividend $=55,390$
Divis or $\quad=299$
Remainder $=75$
We have to find the quotient by applying division algorithm, we have
Divide $d=($ Divis or X Quotient $)+75$
(299XQuotient) $=55,390-75$
$299 \times$ Quotient $=55,315$
Quotient $=\underline{55,315}$
299
Quotient $=185$.
```
I. Long Answer Type Questions
```

1. Mr. Rajesf withdraws ₹ 100000 from his 6ank account. He purchased a TV set for ₹ 38650 , a refrigerator for ₹ 23880 and jewellery worth₹ 35560 . How much was left with fim?

Given, money withdraws from bank =₹ 100000

Money spent on $\mathcal{T V}=₹ 38650$
Money spent on refrigerator $=₹ 23880$
Money spent on jewellery $=₹ 35560$
Total amount spent $₹$

$$
\begin{aligned}
& =38650+23830+35560 \\
& =98090
\end{aligned}
$$

Leftmoney $=₹ 100000$ - ₹ $98090=₹ 1910$
2. Find the difference between the smallest number of 7 -digit and the largest number of 4-digit

The smallest number of 7 -digit $=1000000$

And the largest number of 4 -digit $=9999$
\therefore The difference between them

$$
=1000000-9999=990001 .
$$

3. In a city, polio drops were given to 212583 children on S unday in $\operatorname{Marcf} 2013$ and to 216813 cfildren in next month.
a) Find the difference of the number of childrengetting polio drops in the two montfis.
6) What is the value of vaccinating children for polio in India?
a. Given, number of cfildren, whogot polio drops in Marcf $2013=212583$
$\mathcal{N u m b e r}$ of children, whoget polio drops in next month $=216813$
\therefore Difference of the number of children getting polio drops in two months.

$$
=216813-212583=4230 \text { children }
$$

6. Importance of pulse polio drops

The children are vaccinated for their protection against deadly polio virus. All the babies below 5 yrs of age are given oral polio vaccine simultane ously; it helps to eradicate the virus.
4. Study the following patterns.

$$
\begin{array}{r}
1=1^{2} \\
1+3=2^{2} \\
1+3+5=3^{2} \\
1+3+5+7=4^{2}
\end{array}
$$

Hence, find the sum of
a) First 12 odd number
b) First 50 odd number

The given pattern is

$$
1=1^{2}
$$

$$
1+3=2^{2}
$$

$$
1+3+5=3^{2}
$$

$$
1+3+5+7=4^{2}
$$

a. Sum of first 12 odd numbers

$$
1+3+7+9+11+13+15+19+21+23+25=12^{2}=144
$$

6.S imilarly, sum of first 50 odd numbers.

$$
=50^{2}=2500
$$

II. Long Answer \mathcal{T} ype Questions

1. Determine the sum of the four numbers as given below:
a. Successor of 32
2. Predecessor of 49
c. Predecessor of the predecessor of 56
d. Successor of the successor of 67
a. Successor of $32=32+1=33$
3. Predecessor of $49=49-1=48$
c. Predecessor of $56=56-1=55$

Again, Predecessor of 55=55-1=54
d. Successor of $67=67+1=68$

$$
\begin{gathered}
\text { Again, successor of } 68=68+1=69 \\
\therefore \quad \text { Sum } 33+48+54+69 \\
=204
\end{gathered}
$$

2. Find the value of: $3845 \times 5 \times 782+769 \times 25 \times 218$. $3845 \times 5 \times 782+769 \times 25 \times 218$

$$
\begin{aligned}
& =3845 \times 5 \times 782+(769 \times 5) \times 5 \times 218 \\
& =3845 \times 5 \times 782+3845 \times 5 \times 218 \\
& =3845 \times 5 \times(782+218) \\
& =3845 \times 5 \times 1000 \\
& =19225 \times 1000 \\
& =19225000 .
\end{aligned}
$$

3. Determine the product of the greatest number of four digits and the greatest number of three digits?

We know that
Greatest number of four digits $=9999$
Greatest number of three digits =999
\therefore required product

$$
\begin{aligned}
& =9999 \times 999 \\
& =9999 \times(1000-1) \\
& =9999 \times 1000-9999 \times 1 \\
& \qquad[\therefore a \times(6-c)=a \times 6-a \times c] \\
& =(10000-1) \times 1000-(1000-1) \times 1 \\
& =10000000-1000-10000+1 \\
& =10000001-11000 \\
& =9989001 .
\end{aligned}
$$

III. Long Answer Type Questions

1. Find the product using suitable properties.
i. 738×103
ii. 854×102
iii. $258 \times 1,008$

iv. 1,005 $\times 168$
i. $738 \times 103=738 \times(100+3)$

$$
=73,800+2,214=76,014
$$

ii. $854 \times 102=854 \times(100+2)$

$$
=2,58,000+2,064=2,60,064
$$

iii. $258 \times 1008=258 \times(1,000+8)$

$$
=2,58,000+2,064=2,60,064
$$

iv. 1, $005 \times 168=1,68,000+840=1,68,840$

$$
=1,68,000+840=1,68,840
$$

2. Find the value of the following:
i. $297 \times 17+297 \times 3$
ii. $54,279 \times 92+8 \times 54,279$
iii. $81,265 \times 169-81,265 \times 69$
iv. $3,845 \times 5 \times 782+769 \times 25 \times 218$
i. $297 \times 17+297 \times 3$
$\mathcal{B} y$ distributive law over addition, we have

$$
\begin{aligned}
297 \times 17+297 \times 3 & =297(17+3) \\
& =297 \times 20 \\
& =5,940
\end{aligned}
$$

ii. $54,279 \times 92+8 \times 54,279$
$\mathcal{B} y$ using distributive law, we have:

$$
\begin{aligned}
54,279 \times 92+8 \times 54,279 & =54,279(92+8) \\
& =54,279(100) \\
& =54,27,900
\end{aligned}
$$

iii. 81, $265 \times 169-81,265 \times 69$

Using distributive law, we fave:
81, $265 \times 169-81,265 \times 69=81,265(169-69)$

$$
\begin{aligned}
& =81,265(100) \\
& =81,26,500
\end{aligned}
$$

iv. 3, 845 $\times 5 \times 782+769 \times 25 \times 218$

We can write this as $19,225 \times 782+19,225 \times 218$
Using distributive law, we have
$19,225 \times 782+19,225 \times 218=19,225(783+218)$

$$
\begin{aligned}
& =19,225(1000) \\
& =1,92,25,000
\end{aligned}
$$

3. Find the value using distributive property:
i. 728×101
ii. $5,437 \times 1,001$
iii. 824×25
iv. $4,275 \times 125$
v. 504×35
i. 728×101

We can write this as $728 \times(100+1)$
Clsing distributive property, we fave
$728 \times(100+1)=728 \times 100+728 \times 1$

$$
=72,800+728=73,528
$$

ii. $5,437 \times 1,001$

We can write this as, 5, 437 $\times(1000+1)$
\mathcal{N} ow using distributive property, we have

$$
5,437 \times(1000+1)=5,437 \times 1000+5,437 \times 1
$$

$$
=54,37,000+5,437=54,42,437
$$

iii. 824×25

We can write this as $824 \times(20+5)$
\mathcal{N} ow using distributive property, we have

$$
\begin{aligned}
824 \times(20+5) & =824 \times 20+824 \times 5 \\
& =16,480+4,120=20,600
\end{aligned}
$$

iv. $4,275 \times 125$

We can write this as 4, 275x(1000+25)
\mathcal{N} ow using distributive property, we have

$$
\begin{aligned}
4,275 \times(100+25) & =4,275 \times 100+4,275 \times 25 \\
& =4,27,500+1,06,875 \\
& =5,34,375
\end{aligned}
$$

v. 504×35

We can write this as $504 \times(50-15)$
\mathcal{N} ow using distributive property, we have

$$
\begin{aligned}
504 \times(50-15) & =504 \times 50-504 \times 15 \\
& =25,200-7,560=17,640
\end{aligned}
$$

4. Match the following

1. Successor of 7	a. not defined
2. Predecessor of 6	6.o
3. Sum of two consecutive whole numbers	c. 1
4. Difference of any two consecutive whole numbers	d.5
5. Product of two non-zero consecutive whole numbers	e.6
6. Product of a whole number byzero	f.7
7. Quotient whenany whole number is divided by zero	g.8
8. 2 added two times, to the smallest naturalnumber	f.even
9.3 added two times, to the smallest whole number	i.odd

$1 . g$	$2 . d$	$3 . i$	$4 . f$	$5 . h$
6.6	$7 . a$	$8 . f$	$9 . e$	

5. In the marriage of her daughter, Leela spent $₹ 2,16,766$ on food and decoration,₹ 1, 22, 322 on jewellery, ₹ 88, 234 on furniture and ₹ 26,780 on Kitchen items. Find the total amount spent by fier on the above items.

Money spent on food and decoration $=₹ 2,16,766$
Money spent on jewellery=₹1,22,322
Money spent on furniture $=₹ 88,234$
Money spent onkitchen items =₹26,780.
Total amount spent $=$ Money spent on food and decoration $+j e w e l l e r y+$ furniture

> Kitchen items

$$
\begin{aligned}
& =₹ 2,16,766+₹ 1,22,322+₹ 88,234+₹ 26,780 \\
& =(2,16,766+88,234)+1,22,322+26,780 \\
& =3,05,000+1,22,322+26,780 \\
& =(3,05,000+26,780)+1,22,322 \\
& =3,31,780+1,22,322=₹ 4,54,102
\end{aligned}
$$

6. Find the product by suitable rearrangement
i. $2 \times 1,768 \times 50$
ii. $4 \times 166 \times 25$
iii. $8 \times 291 \times 15$
iv. $625 \times 279 \times 16$
v. $285 \times 5 \times 60$
vi. $125 \times 40 \times 8 \times 25$

i. $2 \times 1,768 \times 50$

Ulsing Associative law,

$$
\begin{aligned}
2 \times 1768 \times 50 & =1,768 \times(2 \times 50) \\
& =1,768 \times(100)=1,76,800
\end{aligned}
$$

ii. $4 \times 166 \times 25$

Using Associative law,

$$
\begin{aligned}
4 \times 166 \times 25 & =166 \times(25 \times 4) \\
& =166 \times 9100)=16,600
\end{aligned}
$$

iii. $8 \times 291 \times 15$

Ulsing Associative law,

$$
\begin{aligned}
8 \times 291 \times 125 & =291 \times(125 \times 8) \\
& =291 \times(1000)=2,91,000
\end{aligned}
$$

iv. $625 \times 279 \times 16$

Ulsing Associative law,

$$
625 \times 279 \times 16=279 \times(625 \times 16)
$$

$$
=279 \times(10,000)=27,90,000
$$

v. $285 \times 5 \times 60$

Ulsing Associative law,

$$
\begin{aligned}
285 \times 5 \times 60 & =285 \times(60 \times 5) \\
& =285 \times 300=85,500
\end{aligned}
$$

vi. $125 \times 40 \times 8 \times 25=125 \times 40 \times(8 \times 25)$

$$
=125 \times 40 \times 200
$$

Using Associative law,

$$
\begin{aligned}
125 \times 40 \times 200 & =200 \times(125 \times 40) \\
& =200 \times(5000)=10,00,000
\end{aligned}
$$

7. Find the difference:
i. $463-9$
ii. $5,632-99$
iii. $8,640-999$
iv. 13, 3006-9,999
i. $463-9$

We can write this as 463-(10-1)
$463-(10-1)=463-10+1$

$$
=464-10=454
$$

ii. 5, 632-99

We can write this as 5, 632-(100-1)
$5,682-(100-1)=5,632-100+1$

$$
\begin{aligned}
& =5,632-100 \\
& =5,533
\end{aligned}
$$

iii. $8,640-999$

We can write this as 8, 640-(1,000-1)
$8,640-(1,000-1)+1$

$$
\begin{aligned}
& =(8,640+1)-1,000 \\
& =8,641-1,000 \\
& =7,641
\end{aligned}
$$

iv. 13, $3006-9,999$

We can write this as 13,006-(10,000-1)
$16,006-(10,000-1)=13,005-10000+1$

$$
\begin{aligned}
& =13,007-10,000 \\
& =3,007 .
\end{aligned}
$$

8. A box contains 5 strips faving 12 capsules of 500 mg medicine in each capsule.

Find the total weight in grams of medicine in 32 such boxes.
We have,
Strips in a $60 x=5$
Weight of medicine in each capsules $=500 \mathrm{mg}$
So now,
Totalno. of capsules in a $60 x=$ strips in $60 x x$ capsules in each strip

$$
\begin{aligned}
& =5 \times 12 \\
& =60
\end{aligned}
$$

Weight of medicine in the capsules ineach 6ox

$$
\begin{aligned}
& =\text { weight of medicine in each capsules } X \text { totalno. of capsules } \\
& =500 \mathrm{mg} \times 60 \\
& =30,000 \mathrm{mg}
\end{aligned}
$$

Now we have to find total weight ingrams in 32 boxes. So,
Total weight $=$ Totalno. of boxes X total weight of medicine in capsules in each box.

$$
\begin{aligned}
& =32 \times 30,000 \mathrm{mg} \\
& =9,60,000 \mathrm{mg}
\end{aligned}
$$

Total weight in grams $=960 \mathrm{~g}$
$[1 \mathrm{gram}=1,000 \mathrm{mg}]$
I. High Order Thinking Skills Questions

1. Find the number which when divided $6 y 46$ gives a quotient 11 and remainder 18 .

$$
\text { Since, } \quad \text { Divis or }=46
$$

$$
\text { Quotient }=11
$$

$$
\text { and Remainder } \quad=18
$$

We know that,
Dividend $=$ Divis or X quotient + Remainder
Then, \quad Dividend $=46 \times 11+18$

$$
=506+18=524
$$

Hence, the required number is $=524$.
2. Which least number should be added to 1000 so that 45 divides the sum exactly?

Let r is the remainder, then the required number $=45-r$ 45) $1000(22$

90

 100$\frac{90}{10}$

Hence, the required number $=45-10=35$.
II. High Order Thinking Skills Questions

1. How much greater is the smallest 5-digit number with three different digits than the largest 4 -digit number with all different digits?
S mallest 5 -digit number $=10,000$
Smallest5-digit number with three different digits $=10,002$
Largest 4-digit number $=9$, 999
Largest 4-digit number with all different digits $=9876$
Difference between the smallest 5-digit number with three different digits and the largest 4-digit number with all different digits $=10,002-9,876=126$

So, the smallest 5-digit number with three different digits is greater than the largest 4-digit number with all different digits $6 y 126$.
2. Fill in the blank cells in the following magic square:

	$\mathcal{8}$	13
	12	
11		

Since, diagonal $13+12+11=36$, so, unknown number in first row is

$$
36-(8+13)=15
$$

$$
\begin{aligned}
\text { Unknown number in second column } & =36-(8+12) \\
& =16 \\
& =36 \cdot(16+11) \\
& =36 \cdot 27
\end{aligned}
$$

$$
\begin{aligned}
& =9 \\
& =36-(12+14) \\
& =36-26 \\
& =10
\end{aligned}
$$

3. In a large fousing complex, there are 14 small buildings and 28 large buildings. Each of the large buildings afs 12 floors with 2 apartments on each floor. Each of the small buildings has 14 floors with 3 apartments on each floor. How many apartments are there in all?
$\mathcal{N u m b e r}$ of small buildings $=14$
$\mathcal{N u m b e r}$ of floors in each building $=14$
\therefore Number of floors in 14 Guildings $=14 \times 14=196$
$\mathcal{N u m b e r}$ of apartments on each floor in a small building $=3$
Totalnumber of apartments in small buildings $=196 \times 3$

$$
=588
$$

\mathcal{N} (umber of large buildings $=28$
$\mathcal{N u m b e r}$ of floors in each building $=12$
\therefore Number of floors in 28 buildings $=12 \times 28$

$$
=336
$$

$\mathcal{N u m b e r}$ of apartments on each floor in large building $=2$
Totalnumber of apartments in large building $=336 \times 2$

$$
=672
$$

Totalnumber of apartments $=$ Total number of apartments in small buildings

$$
\begin{aligned}
& \text { + Total number of apartments in large buildings } \\
& =588+672 \\
& =1,260
\end{aligned}
$$

4. The product of 2-digit numbers is 3,285. If the product of the ir unit's digit is 15 and that of ten's digit is 28 , find the numbers.
We have,
Product of unit's digits $=15$
Product of units digits $=3 \times 5$
So, units'digits are 3 and 5
Product of ten's digits $=28$
Product of tens digits $=4 \times 7$
Ten's digits are 4 and 7
Thus, the two numbers are either 43 and 75 or 45 and 73.
Now, $43 \times 75=43 \times(70+5)$

$$
\begin{aligned}
& =43 \times 70+43 \times 5 \\
& =3010+215
\end{aligned}
$$

$$
\begin{aligned}
& =3,225 \\
45 \times 73 & =73 \times(40+5) \\
& =73 \times 40+73 \times 5 \\
& =2920+365 \\
& =3,285
\end{aligned}
$$

It is given that the product of the numbers is 3285 . Hence, the numbers are 45 and 73.

I. Value Based Questions

1. i. Multiply 475 by 64
ii. Find 3×3 using the number line.
i. 475×64

Thus, $475 \times 64=30,400$.
ii. For finding : 3×3

Start from 0, move 3 units at a time to the right, make such 3 moves, we reach at 9 .

$$
3 \times 3=9
$$

2. i. A dealer purchased 125 C television sets. If the cost of each set is ₹ 19820 , find the cost of all sets together.
ii. Write the successor and predecessor of one million.
i. Since the cost of each colour television set

$$
=₹ 19820
$$

Therefore, the cost of 125 sets $=₹ 19820 \times 125$

$$
=₹ 2477500
$$

ii. Since,

1 million

$$
=1000000+1
$$

$$
=1000001
$$

And predecessor of 1 million $=1000000-1$

$$
=999999 .
$$

