Name : \qquad
Grade : VI
Subject : Mathematics

Chapter: 1. Knowing Our Numbers

I. Multiple Choice Questions

1. In Indian system of numeration, the number 58695376 is written as
a. $58,69,53,76$
2. $58,695,376$
c. $5,86,95,376$
d. $586,95,376$
3. The expanded form of the number 9578 is
a. $9 \times 10000+5 \times 1000+7 \times 10+8 \times 1$
4. $9 \times 1000+5 \times 100+7 \times 10+8 \times 1$
c. $9 \times 1000+57 \times 10+8 \times 1$
d. $9 \times 100+5 \times 100+7 \times 10+8 \times 1$
5. The greatest natural number Is
a. 1 crore
6. 10 crores
c. 10 Lakfs
d. undefine d
7. Which of the following roman symbol is never repeated?
a. I
8. V
c. X
d.C
9. The number formed by interchanging the digits 6 and 2 in 465271 is
a. 467521
10. 425671
c. 165274
d. None of these

1.6	$2 . c$	$3 . d$	4.6	5.6

1. The greatest of the numbers 123, 27,65, 2342, 40000 is
a. 40000
2. 2342
c. 27
d. 650
3. The greatest of the numbers 1000, 10000, 10, 1000000, is
a. 1000000
4. 100000
c. 10000
d. 1000
5. The smallest of the numbers $1000,50000,111,3222,225$ is
a. 111
6. 225
c. 1000
d. 3222
7. The smallest of the numbers 2325,2352,2235,2523,2532 is
a. 2235
8. 2253
c. 2325
d. 2532
9. Using the digits $1,2,3,4$ without repetition, the greatest 4 -digit number that can be made is
a. 4321
10. 4312
c. 4213
d. 4231
11. using the digits 1,5,7,2 without repetition, the greatest 4 -digit number that can be made is
a. 7521
12. 7512
c. 7215
d. 7251
13. Using the digits $3,5,7,0$ without repetition the greatest 4 -digit number that can be made is
a. 7530
14. 7503
c. 7350
d. 7305
15. The smallest 4-digit number that can be made using the digits $1,8,5,3$ without made using the digits $1,8,5,3$ witfout repetition is
a. 1583
16. 1538
c. 1385
d. 1358
17. The smallest 4-digit number that can be made using the digits 5,3,6,4 without repetition is
a. 3546
18. 3564
c. 3456
d. 3465
19. The smallest 4-digit number that can be made using the digits 6,5,0,4 without repetion is
a. 4560
20. 4056
c. 4065
d. 4506
21. Make the greatest 4-digit number by using any one digit of $2,6,5$ twice.
a. 6652
22. 6625
c. 6256
d. 6265
23. Make the greatest 4-digit number 6y using any one digit of 0,3,6 twice.
a. 6630
24. 6603
c. 6360
d. 6306
25. Make the smallest 4-digit number by using any one digit of $4,3,2$ twice.
a. 2234
26. 2243
c. 2432
d. 2324
27. Make the smallest 4-digit number by using any one digit of 7,0,6 twice.
a. 6007
6.6070
c. 6700
d. None of these
28. Take two digits, say 1 and 2. Make the greatest 4 -digits number using 6 oth the digits eaual number of times.
a. 1122
29. 2112
c. 2121
d. 2211
30. Take two digits, say 3 and 4. Make the smallest 4-digit number using both the digits equal number of times.
a. 3344
6.4433
c. 4343
d. 4334
31. Take two digits 0 and 1. Make the smallest 4-digit number using both the digits equal number of times.
a. 1100
32. 1001
c. 1010
d. None of these
33. Take two digits, 0 and 1. Make the smallest 4 -digit number using both the digits equal number of times.
a. 1001
34. 1010
c. 1100
d. None of these
35. Make the greatest 4-digit number using any four different digits with the condition that 5 is at ones place.
a. 9875
6.9857
c. 9758
d. 9785
36. Make the smallest four-digit number using any four different digits such that 5 is at ones place.
a. 1025
37. 1205
c. 1250
d. None of these
38. Arrange the following numbers in ascending order: 132, 2000, 7500,525.
a. $7500,2000,525,132$
39. $132,525,2000,7500$
c. $132,525,7500,2000$
d. $7500,2000,132,525$
40. Arrange the following numbers in descending order: 4000,8500,50600,7235.
a. $50600,8500,7235,4000$
41. $50600,8500,4000,7235$
c. $50600,7235,8500,4000$
d. $50600,7235,4000,8500$.
42. The greatest 2-digit number is
a. 98
6.99
c. 79
d. 89
43. The smallest 2-digit number is
a. 31
44. 21
c. 11
d. 10
45. The greatest 3 digit number is
a. 991
6.997
c. 999
d. 998
46. The smallest 3-digit number is
a. 100
47. 101
c. 111
d. None of these
48. The greatest 4-digit number is
a. 8888
6.6789
c. 9876
d. 9999
49. The smallest 4-digit number is
a. 1001
50. 1000
c. 1111
d. 9999
51. Which of the following numbers comes next to 900?
a. 100
6.998
c. 1000
d. None of these
52. Which of the following numbers comes just before 1000?
a. 999
53. 1001
c. 990
54. Which of the following numbers is equal to 1 lakh?
a. 100000
6.10000
c. 1000
d. 100
55. Which of the following numbers is equal to 1 crore?
a. 10000000
56. 1000000
c. 100000
d. 10000
57. 1 million = fow many lakf?
a. 10
58. 100
c. 1000
d. 10000
59. 1 crore $=$ fow many million?
a. 100000
60. 10000
c. 100
d. 10
61. 1 billion $=$ fow many million?
a. 10
62. 100
c. 1000
d. 10000
63. 1 lakf = how many ten thousand?
a. 1
64. 10
c. 100
d. 1000
65. 1 milfion $=$ fiow many fundred thousand?
a. 10
66. 100
c. 1
d. None of these
38.1 Crore $=$ how many ten lakhs?
a. 100
67. 1
c. 10
d. None of these
68. Insert comma suitably in 67810138 by using international system.
a. $67,810,138$
$6.67,81,01,38$
c. $6,78,10,138$
d. $678,10,138$
40.1 centimetre =? Millimeters
a. 10
69. 100
c. 1000
d. None of these
70. 1 metre $=$? centimeters?
a. 10
71. 100
c. 1000
d. None of these
72. 1 metre $=$? millimeters
a. 10
73. 100
c. 1000
d. None of these
43.1 Kilometre =? metres
a. 1000
74. 10
c. 100
d. none of these
75. $1 \mathrm{~km}=$? mm
a. $10,00,000$
76. 1,00,000
c. 10,000
d. 1000
45.49 to the nearest tens is
a. 50
6.40
c. 45
d. 55
77. 123 to the nearest tens is
a. 130
78. 120
c. 125
d. 123
79. Which of the following rounding off is correct?
a. $841 \rightarrow 800$
80. $286 \rightarrow 200$
c. $9870 \rightarrow 9800$
d. $87 \rightarrow 80$
81. In Roman numerats Lstands for
a. 100
82. 50
c. 70
d. 90
83. In Roman numerals C stands for
a. 10
84. 100
c. 1000
d. 1
85. In Roman numerals \mathcal{D} stand for
a. 100
86. 1000
c. 500
d. 10
87. In Roman numerals \mathcal{M} stands for
a. 1000
88. 100
c. 10
d. None of these
52.60 in Roman numerals is
a. $\angle X$
89. $\angle x x$
c. $\operatorname{sxx} x$
d. $x\llcorner ₹$
53.80 in roman numerals is
a. $\angle X X X$
90. $\angle x X$
c. $\angle x$
d. $X \times X \mathcal{L}$
54.90 in Roman numerals is
a. $\chi \mathcal{L}$
b. $X C$
c. $C X$
d. $\angle x$
91. I made an expenditure of $\begin{aligned} 2725 & \text { in } \mathcal{N o v e m b e r , ~} 2009 \text { and of } ₹ 2275 \text { in December, } 2009 .\end{aligned}$

What is the totalexpenditure made by me in \mathcal{N} ovember, 2009 and December, 2009
together?
a. ₹ 2000
6. ₹ 3000
c. ₹ 4000
d. ₹ 5000
56. The difference between the greatest number of 4-digit and the smallest number of 5-digit is
a. 1
6. 10
c. 100
d. 11
57. The monthly salary of Apala is 20975 and that of menu is 15875 . The difference of the ir montfily salaries is.
a. ₹ 6000
6. ₹ 4900
c. $₹ 5000$
d. ₹ 5100
58. To stitch a trouser 1 m 25 cm cloth is required. Out of 10 m cloth. How many trousers can be stitched?
a. 2
6. 4
c. 6
d. 8
59. Manish multiplied 100 6y 89 instead of multiplying 6y 79. How much was his answer greater than the correct answer?
a. 100
6. 1000
c. 10000
d. None of these
60.S angeeta types 25 pages per day. How many pages will she type in the month of November?
a. 900
6.800
c. 700
d. 750

1.a	2.a	$3 \cdot a$	4. a	5.a	6. a	7. a	8.d	9.c	10.6
11. a.	12.a	13. a	14.a	15.d	$16 . a$	$17 . a$	18. a	19.a	20.a
21. 6	22.a	23.6	24.d	25.c	26.a	27.d	28.6	29.c	$30 . a$
31.a	$32 . a$	33.a	34.d	35.c	36.6	37.a	$38 . c$	39.a	40.a
41. 6	42.c	43.a	44.a	45.a	46.6	$47 . a$	48.6	49.6	$50 c$
51. a	52.a	53.a	54.6	55.d	56.a	57.d	58.d	59.6	$60 . d$

1. i. Write the difference between biggest 7-digit number and the smallest 8-digit number.
ii. Write in words the sum of the biggest 4 digit number and the smallest 2-digit number. iii. Write in figures the sum of 1 and the biggest 8 -digit number.
iv. Write in words, the sum of 1 and the biggest number of 5 digits.
v. What is the difference between one lakf and the biggest 5 digits.
2. Answer the following questions.
i. How many thousands make one lakh?
ii. How many lakts make a million?
iii. How many millions make a crore?
iv. How many milligrams make a gram?
v. How many metres make a kilometer?
vi. How many milliliters make a litre?
vii. How many centrimetres make a metre?
3. Fill in the 6lanks:
i. The successor of the 4-digit greatest number is the \qquad 5 -digit number.
ii. the place value of 1 in 7105623 is \qquad
iii. The Place value of 0 in 7105623 is \qquad
iv. The difference of two place values of 7 in 570076 is \qquad .
v. The difference of two place values of 2 in 3230452 is \qquad -.
4. Write the:
i. Greatest 4-digit number using different digits such that the digit-5 is always at ones place.
ii. Smallest 4-digit number using different digit such that the digit 9 is always at the units place.
iii. S mallest 5-digit number using different digits such that the digit 7 is always at the fundreds place.
iv. Face value of 3 in 123456 .
v. Difference between the place value and face value of 5 in 14352.
5. i. Write the smallest 5-digit number using all different digits.
ii. Write the greatest 5 -digit number using the digits 1,2,3,4 and 0 .
iii. Write the greatest 5-digit number using all the different digits.
iv. write the smallest 5-digit number using the digits 0,1 and 2.
v. Write the greatest 5-digit number using the digits 0,1 and 2.
6. Match the following;

ColumnA	Column \mathcal{B}
a. 10 lakh	i. 1000 times larger
6. 10 million	ii. 1000 times smaller
c. Killo	iii. 1 Million
d. Milli	iv. 1 crore

7. Choose the correct answer for each of the following:
i. the symbols $\mathcal{V} . \mathcal{L}$, and \mathcal{D} are (never/always) repeated.
ii. If a symbol of smaller value is written to the (left/right) of greater value, its value is subtracted.
iii. for comparing two numbers faving the same number of digits, we start comparing the digits from (Leftmost/rightmost) position.
iv. $1 \mathrm{Kg}=(1000 \mathrm{~g} / 1000 \mathrm{mg})$
8. Answer the following questions:
i. Write the smallest three digit number which does not change on reversing its digits.
ii. How many lakfis make a million?
iii. Which of these symbols are not used in Roman \mathcal{N} (umerals. $0, I, \mathcal{M}$?
iv. What is the smallest 9-digit number called in words.
9. The greatest five-digit number using the digits 3, 1 and 0 .
i. 30001
ii. 10003
iii. 31000
iv. 13000
10. The place value of 2 in 91023045 is.
i. 2000
ii. 20000
iii. 200
iv. 200000
11. Number of symbols used in Roman numbers is:
i. 9
ii. 8
iii. 7
iv. 10
12. Number of 'lakhs'required to make a million
i. 10
ii. 100
iii. 1000
iv. 10,000
13. Which of the following is the smallest three digit number that does not change even if the digits are written in reverse order?
i. 110
ii. 101
iii. 330
iv. 909

II. Multiple Choice Questions
14. The product of the place value of two 2 's in 428721 is:
a. 4
6.40000
c. 400000
d. 4000000
$2.3 \times 10000+71000 \div 9 \times 100+0 \times 10+4$ is the same as:
a. 3794
6.39740
c. 37904
d. 379409
15. If 1 is added to the greatest 7 digits number, it will be equal to;
a. 10 thousand
16. 1 1akh
c. 10 Cakh
d. 1 crore
17. The expanded form the numbers 9578 is;
a. $9 \times 10000+5 \times 1000+7 \times 108 \times 1$
$6.9 \times 1000+5 \times 100+7 \times 10+8 \times 1$
c. $9 \times 1000+57 \times 10+8+1$
d. $9 \times 100+5 \times 100+7+\times 10+8 \times 1$
18. When rounded of f to nearest thousands, the number 85642 is:
a. 85600
6.85700
c. 85000
d. 86000
19. The largest 4-digits number, using any one digit twice, from digits 5,9,2 and 6 is:
a. 9652
20. 9562
c, 9659
d. 9965
21. In Indian system of numeration, the number 58695376 is written as;
a. $58,69,53,76$,
22. $58,695,376$
c. $5,86,95,376$
d. $586,95,376$
23. One million is equal to;
a. 1 Cak
24. 10 lakf
c. 1 crore
d. 10 crore
25. The greatest number which on rounding off to ne arest thousands gives 5000, is:
5001
26. 5539
c. 5999
d. 5499
27. Keeping the place of 6 in the number 6350947 same, the smallest number obtained by rearranging other digits is:
a. 6975430
28. 6043579
c. 6034579
d. 6034759
29. Which of the following numbers in roman numerals is incorrect?
a. $\angle X X X$
30. $\angle x X$
c. $\angle x$
d. $\operatorname{Ls} x$
31. The largest 5-digit number having three different digits is:
a. 98978
6.9987
c. 99987
d. 98799
32. The smallest 4-digit number having three different digits is:
a. 1102
33. 1012
c. 1020
d. 1002
34. One Km is fow many centimeter?
a. 100000
35. 10000
c. 1000
d. 100
36. The population of town in the year 2000 was 200000 . In the year 2005 , it was found to be increased 6y 10359, what was the population of the town in 2005 ?
a. 220359
6.210000
c. 210359
d. 20359
37. A mackine, on an average, manufactures 2825 screws a day. How many screws did it manufacture in the month of Ianuary?
a. 84750
38. 87575
c. 81925
d. 79100
39. A vesselfas 4 litre ef 500 ml of milk. In fowmany glasses, eachof $25 \mathrm{mlcapacity}$, Fille d ?
a. 150
40. 160 (2) c. 170
41. Which of the following is the Roman Numeralfor 69 ?
a. $\mathcal{L X X I}$
42. $\angle x x$
c. CXIX
d. CXXI
43. How many times does the digit 9 occur between 1 and 100 ?
a. 11
44. 15
c. 18
d. 20
45. How many symbols are used to represents digits?
a. 7
46. 8
c. 9
d. 10
47. (7268-2427) estimated of the nearest fundred is:
a. 4800
6.4900
c. 4841
d. 5000

$1 . c$	$2 . c$	$3 . d$	4.6	$5 \cdot d$	$6 . d$	$7 . c$
8.6	$9 . d$	$10 . c$	$11 . d$	$12 \cdot c$	$13 . d$	$14 . a$
$15 . c$	16.6	$17 . d$	18.6	$19 \cdot d$	$20 . d$	$21 . a$

III. Multiple Choice Questions

1. The product of the place values of two 2 's in $4,28,721$ is
a. 4
2. 40,000
c. $4,00,000$
d. $4,00,00,000$
3. The face value of 4 in $8,92,47,605$ is
a. 4
4. 40,000
c. 47,605
d. 8,924
5. The product of the place value of two 5 's in $6,53,250$ is
a. 25
6. 25,000
c. $2,50,000$
d. $25,00,000$
7. If 1 is added to the greatest 7 -digit number, it will be equal to
a. 10 thousand
8. 1 lakf
c. 10 lakf
d. 1 crore
9. The difference of the smallest three digit number and the largest two digit number is
a. 100
6.1
c. 10
d. 99
10. When rounded off to nearest thousands, the number 85,642, is
a. 85,600
11. 85,700
c. 85,000
d. 86,000
12. The greatest number which on rounding off to ne arest thousands gives 5,000 is
a.5,001
13. 5,559
c. 5,999
d. 5,499
14. The smallest number which when rounded off to the nearest fundred as 600, is
a. 550
6.595
c. 604
d. 599
15. The difference between the greatest and smallest numbers which when rounded off a number to the nearest fundred as 6,700 is
a. 100
6.99
c. 98
d. 101
16. How many 8 -digit numbers are there?
a. $9,99,99,999$
17. $8,99,99,999$
c. $9,00,00,000$
d. none of these
18. In Indian system of $\mathcal{N u m e r a t i o n}$, the number 58695376 is written as
a. $58,69,53,76$
19. $58,695,376$
c. $5,86,95,376$
d. $586,95,376$
12.The largest 4-digit number, using any one digit twice, form digits 5,9,2 and 6 is
a. 9,652
20. 9,562
c. 9,659
d. 9,965
$13.3 \times 10,000+7 \times 1,000+9 \times 100 \times 100+0 \times 10+4$ is the same as
a. 3,794
$6.37,940$
c. 37,904
d, 3,79,409
21. Which of the following numbers in roman numerals is incorrect?
a. LXXX
22. LxX
c. $\angle X$
D. $\mathcal{L L} X$
23. The expanded form of the number 9578 is
a. $9 \times 10,000+5 \times 1,000+7 \times 10+8 \times 1$
24. $9 \times 10,000+5 \times 100+7 \times 10+8 \times 1 \quad$ c. $9 \times 1,000+57 \times 10+8 \times 1$
d. $9 \times 100+5 \times 100+7 \times 10+8 \times 1$

$1 . c$	$2 . a$	$3 . d$	$4 . d$	5.6
$6 . d$	$7 . d$	$8 . a$	9.6	$10 . c$
$11 . c$	$12 . d$	$13 . c$	$14 . d$	15.6

I. Very Short Answer Type Questions

1. Can you tell how much one million is equal to ?

1 Million $=10$ lakfs
2. How many lakfs make a billion?

1 billion $=10,000$ lakfs.
3. How many billions make a trillion?

1 Trillion $=1,000$ bilfions.
4. What is the smallest 4-digit number having three different digits 0,1,2?

1,002.
5. Write the smallest 3-digit number which does not change if the digits are written in reverse order.

The number is 101.
6. What is the small number obtained by keeping the place of 6 in number 63,50,947 same and rearranging the others?

The smallest number is $60,34,579$
7. What is the greatest number which on rounding off to ne arest thousand gives 5, 000 ?

The number is 5,499
8. Which digits have the same face value and place value in 9,20,78,634?

The digits are 0 and 4.
9. According to international system of \mathfrak{N} (umeration, fow will $11,12,323$ be written?

It will be written as 1,112,323.
10. Write the expanded form of 39,746.

Expanded from of $39,746=3 \times 10000+9 \times 1000+7 \times 100+4 \times 10+6$.
11. Write Roman numeralfor 98.

$$
\begin{aligned}
98 \quad & =90+8 \\
& =(100-10)+8 \\
& =X C+V I I I=X C V I I I
\end{aligned}
$$

12. Write Hindu Arabic numeral for XCIX.

$$
\begin{aligned}
X C I X & = & X C+I X \\
& = & 90+9=99
\end{aligned}
$$

1. Arrange the following number in descending order: $8435,4835,13584,5348,25843$,

Descending order is: $25843>13584>8435>5348>4835$.
2. Of the following numbers which is the greatest? Which is the smallest?

38051425,30040700 , 67205602 ,
We have, 38051425,30040700 and 67205602. On comparing the given numbers, we get the greatest number $=67205602$ and the smallest number $=30040700$.
3. In a city, polio drops were given to 2,12,583 children on S unday in March, 2008 and to 2,16813 children in the next month. Find the difference of the number of childrengetting polio in the two months.

Given, polio Drops given in March $2008=212583$ and polio drops given in $\mathcal{A p r i l} 2008=$
\mathcal{N} ow, difference of the numbers of Children

$$
\begin{aligned}
& =216813-212583 \\
& =4230
\end{aligned}
$$

4. Out of 180000 tablets of vitamin $\mathcal{A}, 18734$ are distributed among the students in a district. Find the number of the remaining vitamin tablets.

We have,

Hence, the \mathcal{N} (umber of the remaining vitamin a tablets is 161266.
5. In the marriage of her daughter, leela spent₹ 216766 on food and decoration, ₹ 122322 on jewellery, ₹ 88234 of furniture and ₹ 26780 onkitchen items. Find the total amount spent by fer on the above items.

Given, amount spent on food and decoration
Amount spent on jewellery
Amount spent on furniture
And amount spent on kitcken items
Totalamount spent

$$
\begin{aligned}
& =₹ 216766 \\
& =₹ 122322 \\
& =₹ 88234 \\
& =₹ 26780 \\
& =₹^{2} 16766+122322+88234+26780 \\
& =₹_{454,102}
\end{aligned}
$$

6. A garment factory produced 216315 sfirts, 182736 trousers and 58704 jackets in a year. What is the total production of all the three items in that year?

Given, a garment factory produced shirt	$=216315$
Produced trousers	$=182736$
Produced jackets	$=58704$.

Total production of all the three items in that year =sum of all items $=216315+$ $182736+58704$

Hence, the total production of all the three items in that year is 457755.
7. How many times 9 appear in this (10,000,000-1)

7 times.
8. Separate the periods of the numerical $893654786 y$ commas and write in words.
$8,93,65,478$

In words, we write it as :
Eight crore, ninety three lakh, sixty five thousand, four hundred seventy eight.
9. Arrange in ascending order;
$571,8320,9754,874$.
Ascending order is:
$571<847<8320<9754$.
10. Write 69 in Roman numerals.
$\angle X I X$

1. a. Here, ten thousand digit is 4 in both numbers, 6 ut thousands digit in 47645 is 7 and thousands digit in 48740 is 8. So, $8>7$

Hence, 48740>47645
6. In 15896, ten thousands digit is 1 and ten thousands digit in 26760 is 2. So, $2>1$. Hence, $26760>15896$.
2. In the given numbers, we see that 28706 is the smallest and 87604 is the greatest.
3. Here, given digits are 3,5,4,6 for the smallest number, we write the digits in ascending order.

So, the smallest four-digit number is 3456 .
4. The ascending order of the given numbers are as follows:
$1462<1562<2605<3164$
5. Given, digits are $1,2,7,9,4$. For greatest number, we write the digits in descending order.

So, The greatest five-digit number is 97421 .
6. According to Indian system of numeration,
a. $24,64,056$
6. $68,96,462$
7. Expanded form of given numbers as
a. $76496=7 \times 10000+6 \times 1000+4 \times 100+9 \times 10+6$
$6.986256=9 \times 100000+8 \times 10000+6 \times 1000+2 \times 100+5 \times 10+6$
8. According to international system of numeration
a. $2,546,726$
6. $7,869,420$
9. The numeral form is $20,502,632$.
10. The place value of 6 in $762540=60000$
11. We know that, $1 \mathrm{~kg}=1000 \mathrm{~g}, 5 \mathrm{~kg}$ So,5 kg 290 g

$$
\begin{aligned}
& =60000 \\
& =5000 \mathrm{~g} \\
& =(500+290) \mathrm{g} \\
& =5290 \mathrm{~g}
\end{aligned}
$$

12. We know that,

$$
1 \mathrm{~km}=1000 \mathrm{~cm}
$$

13. We know that,

$$
\begin{aligned}
1 \mathrm{~m}=100 \mathrm{~cm} \text { and } 1 \mathrm{~cm} & =10 \mathrm{~mm} \\
1 \mathrm{~m}=100 \mathrm{~cm} & =100 \times 10 \mathrm{~mm} \\
& =1000 \mathrm{~mm}
\end{aligned}
$$

14. a. in 3945, we know that, ones digits 5, the, rounded form of $3945=3650$
15. in 4942, ones digit is $2<5$ then, rounded form of $4942=4940$
16. Here, rounded form of 945
$=900$
And rounded form of 923
$=+600$
So, estimated sum
$=1500$
17. Here, 945 is rounded off
$=-600$
560 is rounded off
$=300$
18. Here, 39 is rounded off
$=40$

And 42 is rounded off	$=x 40$
Estimated product	$=1600$

18. Here, given numbers are 137 and 198.

$$
\begin{aligned}
& 137=100+30+7 \\
& 198=100+90+8
\end{aligned}
$$

$$
=C X X X \mathcal{V} I I
$$

$$
=C X \subset V I I I
$$

19. We fave,
a. $X X I \mathcal{V}$
0
$=20+(5-1)=24$
20. $x \perp \mathcal{V} I$
$=(50-10)+5+1=46$

21. How many million make 3 crore?

We know that,

1 crore	$=$
3 crore	$=3$ million
	$=3 \times 10$ million
	$=30$ million

2. Chinmay had ₹ 610000 . He gave ₹ 87500 to gyoti, ₹ 126380 to javed and ₹ 350000 to jofn.

How much money was left with fim?
Given, Chinmay's totalmoney
$=₹ 610000$
Money given to jyoti by cfinmay
$=₹ 87500$
Money left given to jofin by chinmay $\quad=$ ₹ 126380
And moneygiven to jofn bychinmay $=₹ 350000$
Money left with Chinmay

$$
\begin{aligned}
& =\text { Total money-Distributed money } \\
& =610000-(87500=126380=350000) \\
& =610000-563880=₹ 46120
\end{aligned}
$$

Hence, ₹ 46120 was left with fim.
3. The population to town is 450772. In a survey, it was reported that one out of every 14 persons is illiterate, in all how many illiterate persons are there in the town?

Given, total population of town $=450772$
One out of every 14 persons, is ilfiterate.
\mathcal{N} ow,
Totalilliterate persons
$=$ Total population of town $/ 14$
$=450772 / 14=32198$
Hence, the number of ilfiterate persons in the town is 32198.
4. Person had ₹1000000 with him. he purchased a colour T.V. for ₹ 16580 , a motor cycle for
₹45890
and a flat for 870000 . How much money was left with fim?
Given, total money
Money spent on a colour $\mathcal{T V}$
Money spent on a motor cycle
And money spent on a flat
Total amount spent
Money left with fim

$$
\begin{array}{ll}
= & F 1000000 \\
= & ₹ 16580 \\
= & ₹ 45890 \\
= & ₹ 870000 \\
= & 16580+45890+870000=₹ 932470 \\
= & 1000000-932470=₹ 67530
\end{array}
$$

Hence, ₹ 67530 was left with him.
5. In 2001, the populations of Tripura and Megfalaya were 3,199,203 and 2,318,822, respectively. Write the populations of these two states in words.

$$
\text { Population of Tripura }=3,199,203
$$

In words, three million, one fundred ninety nine thousand, two fundred three, and population of Megfalaya $=2,318,822$.

In words, two million, three fundred eighteenthousand, eight fundred twenty two.
6. The diameter of \mathcal{I} upiter is 142800000 metres. insert commas suitably and write the diameter according to international system of $\mathcal{N} u m e r a t i o n$.

Given, diameter of gupiter $=142800000 \mathrm{~m}$
The diameter of the \mathcal{I} upiter is $1,42,800,000$ metre 142870000 in IS \mathcal{N} :
Fourteencrore twenty eight lakhs.
7. Radius of the Earth is 6400 km and that of Mars is 4300000 m . whose radius is 6igger and 6y how much?

Given, radius of the Earth

And radius of Mars

$$
\begin{aligned}
& =6400 \mathrm{~km} \\
& =6400000 \mathrm{~m}(1 \mathrm{~km}=1000 \mathrm{~m}) \\
& =4300000 \mathrm{~m}
\end{aligned}
$$

On comparing both the radii, we get
Radius of Earth $>$ Radius of Mars
Difference between the two radii $=6400000-4300000=2100000 \mathrm{~m}$.
$\mathcal{H e n c e}$, the radius of Earth is 6igger and 6y 2100000 m .
8. India's population has been steadily increasing from 439 millions in 1961 to 1028 million in 2001. Find the total
increase in population from 1961 to 2001. Write the increase in population in Indian system of \mathcal{N} umeration, using commas suitably.

Given, population of India in $1961=439$ million $=439 x 1000000=439000000(1$ million $=1000000)$ and population of Indian in $2001=1028 \mathrm{milfion}=1028 \times 1000000=$ $1028000000=(1 \mathrm{million}=1000000)$

Total increase in population from 1961 to 2001
$=\quad$ Population in 2001-Population in 1961
$=\quad 1028000000-439000000=589000000$
$=589 \times 1000000=589$ million
So, the increase population in Indian system of \mathcal{N} (umeration $=58,90,00,000$
9. As per the census of 2001 , the population of four states are givenbelow, arrange the states in ascending and descending order to their population.
$\begin{array}{ll}\text { a. Mafarasfitra } & 96878627 \\ \text { 6. AndfraPradesh } & 76210007 \\ \text { c. Bifar } & 82998509 \\ \text { d. Ultar Pradesh } & 166197921\end{array}$
On arranging the population of four states in ascending order we get
$76210007<82998509<96878627<166197921$.
(Andfra Pradesh) (Bifiar) (Maharasftra) (Ultar Pradesf)
Again, rearranging the population of four states in descending order, we get
$166197921>96878627>82998509>76210007$,
(Uttar Pradesf) (Mafarashtra) (Biłar) (Andfra Pradesk)
10. Make greatest and smallest 4 digit numbers by using any one digit twice:
a. $3,8,7$
a. Greatestno.
b. $9,0,5$
$\begin{array}{rlr}\text { Smallestno } & = & 3378 \\ \text { d. Greatestno } & = & 9950 \\ \text { Smallestno } & = & 5009\end{array}$
11. Tlse digit 7 at ones place and make smallest and greatest number of 4 digits.
a. Greatest \square 6. Smallest \square
a. Greatest $\mathfrak{N} o$.

$=$| 9 | 8 | 6 | 7 |
| :--- | :--- | :--- | :--- |

6. Smalle st $\mathfrak{N} o$

$=$| 1 | 0 | 2 | 7 |
| :--- | :--- | :--- | :--- |

12. The cost of 20 tons of steel is 350000 , find cost of 2 kg of steel.

Cost of 20 tons of steel $=₹ 350000$
Cost of 1 kg steel

$$
=\frac{350000}{2000}=₹ 17.5
$$

Cost of 2 kg of steel $\square=2 \chi 17.5$

$$
=₹ 35
$$

1. Write in expanded form:
$\begin{array}{lll}\text { a. } 74836 & 6.574021 \quad \text { c. } 8907010\end{array}$
Expanded form of given numbers are
a. $74836=7 \times 10000+4 \times 1000+8 \times 100+3$
$6.574021=2 \times 100000+7 \times 10000+4 \times 1000+0 \times 100+2 \times 10+1 \times 1$
c. $8907010=8 \times 1000000+9 \times 100000+0 \times 10000+7 \times 1000+0 \times 100+1 \chi 10+0 \times 1$
2. Estimate the product 758×6784 using the general rule.

We have 758×6784
Rounded off 758 to nearest hundreds $=800$
and rounded off 6784 nearest thousands $=7000$.
So, estimated product $\quad 800 \times 700=5600000$
3. How many lakhs make five billions?

We know that,
10 lakf $=1$ million
100 lakf $=10$ million
100 lakf $=1$ crore
1000 million $=100$ crore
1 billion $=100$ crore $=100 \chi 100$ Cakh
10000 lakf
So, 5 billion $=5 \times 10000=50000$ Cakf .
4. The population of a town was 78787 in the year 1991 and 95833 in the year 2001. Estimate the increase in population by rounding off each population to ne arest fundreds

Here, population of a town in 1991	$=78787$
Rounded off 78787 of ne arest fundreds	$=78800$
And population of a town in 2001	$=95833$
Rounded off 95833 to nearest fundreds	$=95800$.
Increase in population	$=95800-78800 \quad=1700$.

5. Find the difference between the largest number of sevendigits and the smallest number of eight digits.
$\begin{array}{lll}\text { The largest } 7 \text { digits number } & = & 9999999 \\ \text { The smallest } 8 \text { digits number } & = & 10000000\end{array}$
\mathcal{N} ow, difference between the smallest 8 digit number and the largest 7 digits numbers

$$
=10000000-9999999=1
$$

6. Find The sum of the greatest and the greatest six digit numbers formed by the digits $2,0,4,7,6,5$, using each digit only once.

Given digit are $2,0,4,7,6$ and 5.
Using each digit only once,
The greatest six-digit number $\quad=765420$.
The smallest six-digit number $\quad=204567$
\mathcal{N} ow, the sum of these numbers $\quad=765420+204567=969987$
7. A factory fas a container filled with $35874 \operatorname{Lof}$ cold drink. In fowmany bottles of 200 mL capacity each, can it be filled?

Given, totalcold drink in the container

(2) (O) $=1,79,370$
8. Make the greatest and the smallest 5 digits numbers using different digits in which 5 appears at ten's places.

According to the question, 5 must appear at ten'place.
\mathcal{N} (ow, for the greatest number, digit (0-9) should be arranged in descending order, i.e
$9,8,7,6,5,4,3,2,1,0$
The greatest number of 5 digits $=98756$
And for the smallest number, digit (0-9) Should be arranged in ascending order, i.e, $0,1,2,3,4,5,6,7,8,9$.

The smallest number of 5 digit $\quad=10253$.
9. How many grams should be added to 2 kg 300 g to make it 5 kg 68 g ?

We will get the required weight 6y subtracting 2 kg 300 g from 5 kg 6 gg .

Kg	g
5	068
-2	300
2	768

$\mathcal{H e n c e}, 2768 \mathrm{~g}$ or $2 \mathrm{~kg} \mathrm{768g}$ should be added to 2 kg 300 gm to make it 5 kg 68 g .
10. A box contains 50 packets of biscuits each weighing 120 g . How many such boxes can be loaded in a van which cannot carry beyond 900 kg ?

Given, total number of packet	$=50$
Weight of each packet	$=120 \mathrm{~g}$
Weight of a 60x	$=50 \times 120 \mathrm{~g}=6000 \mathrm{~g} \quad=6 \mathrm{~kg}(1000 \mathrm{~g}=1 \mathrm{~kg})$
Required number of 6oxes	$=900 / 6 \quad=150$

11. \mathcal{A} vesselfas 13 litres 200 mL of fruit juice. In how many glasses each of capacity 60 mL can it be filled?

Given,
Capacity of fruit juice a vessel $=13$ litres 200 mL

$$
=13200 \mathrm{~mL}(1 \mathrm{Lit}=1000 \mathrm{~mL})
$$

$\mathcal{N u m b e r}$ of glasses that can't be filled

$$
\begin{array}{ll}
=\frac{\text { Total fruit juice }}{\text { Capacity of one glass }} \\
=\frac{13200}{60} & =220
\end{array}
$$

1. Determine the difference between the place value and the face value of 5 in $7,86,54,321$. The 5 is in ten thousand's place. Therefore.

Place value of 5 is $x 10,000=50,000$.
Face value of 5 is 5.: required difference $=50$, 000-5 $=49,995$
2. Determine the product of the place values of two fives in $4,50,758$.

First 5 is in ten's place of the number. Therefore,
Place value of $5=5 \times 10=50$
Second 5 is in ten thousand's place. Therefore,
Place value of $5=5 \times 10,000=50,000$
Required product
$=50 \times 50,000=25,00,000$
3. Determine the difference of ef place values of two 7's in 257,839,705.

First 7 is in fundred's place of number. Therefore,
Place value of $7=7 \times 1000,000$
$=7,000,000$
Required difference $=7,000,000-700$

$$
=6,999,300
$$

4. Fill in the Glanks;
5. By reversing the order of digits of the greatest number made by five different non-zero digits, the newnumber is the \qquad number of five digits.
6. Length of river 'Narmada'is about 1,290 Km, its length in metres is \qquad -.
7. By adding 1 to the greatest \qquad digit number, we get ten lakf.
8. The number 66 in Roman numerals is \qquad .

1. Smallest	ii. $12,90,000 \mathrm{~m}$	iii. 6	iv. $\mathcal{L X V I}$

5. Find the sum of the greatest and the le ast six digit numbers formed by the digits $2,0,4,7,6,5$ using each digit only once.
We fave digits $2,0,4,7,6,5$ which we can use only once, therefore,
Greatest six digit number $=7,65,420$
Smallest six digit number $=2,04,567$
Sum of greatest number $=$ smallest number $=7,65,420+2,04,567$.
Now,

$7,65,420$
$2,04,567$

6. A bookexfibition was held for four days in a school. the number of tickets sold at the counter on the first, second, third and final day was respective [y 1,094, 1,812, 2,050 and 2,751. Find the total number of tickets old on all four days.

Tickets sold on first day $=$ 1,094
Tickets sold on second day $=1,812$
Tickets sold on third day $=2,050$
Tickets sold on fourth day = Total tickets sold

2,751

Tickets sold on first day + Second day + Third day + fourth day

7. In an election, the successfulcandidate registered $5,77,500$ votes and his ne arest rival secured $3,48,700$ votes, $\mathcal{B y}$ what margin did the successfulcandidate win the election?

Votes registered by candidate $=5,77,500$
Votes registered by fis rival $=3,48,700$
Margin with which candidate won $=5,77,500-3,48,700$
\mathcal{N} ow,
5,77,500
$3,48,700$
$2,28,800$
So, candidate won by $2,28,800$ votes.
8. A mackine, on an average, manufactures 2,825 screws in a day, How many screws did it produce in the month of ganuary 2006?

Thus, screws produced in the month of \mathcal{I} anuary is 87,575 .
9. Cold drink in the container

Capacity of each bottle

$$
\begin{aligned}
& =35,874 \text { litres } \\
& =35,874 \times 1,000 \mathrm{~mL} \\
& =3,58,74,000 \mathrm{~mL}
\end{aligned}
$$

$$
=200 \mathrm{~mL}
$$

Hence, number of bottle filled is $3,58,74,000 \div 200 \mathrm{~mL}$
$\sqrt{179370}$

1400
1400

0000
10. The population of a town was 78,787 in the ye ar 1991 and 95,833 in the year 2001. Estimate the increase in population by rounding off each population to ne arest fundred.

Population of town in 1991	$=$	78,787
Here, 78,787 rounds off to nearest fundreds	$=$	$78,800$.
Population of town in 2001	$=$	95,833

Here, 95, 833 rounds off to nearest fundreds 95,800
Estimated increase in population
\mathcal{N} ow,

Thus, estimated increase in population is 17, 000.
11. Estimate the product $758 \times 6,784$ using the generalrule.

Clearly, one factor is three digit number and other is four digit number. So, we round off first factor to nearest fundreds and second to ne arest thousands.
$\mathcal{H e r e}, 758$ rounds off to 800
6,784 rounds off to 7,000
Estimated product $=7,000 \times 800$
\mathcal{N} ow,

7000
$\frac{x 800}{0000}$
$0000 x$
$56000 x x$
5600000
Estimated product $=56,00,000$
II. Long Answer Type Questions

1. Insert commas suitably and write the names according to Indian system of \mathfrak{N} (umeration:
i. 87595762
ii. 8546283
iii. 99900046
iv. 98432701
i. $\quad 8,75,95,762$

Eight crore seventy - five lakhninety - five thousand seven hundred sixty-two.
ii. $\quad 85,46,283$

Eighty-five lakh fory-six thousand two hundred eight-three
iii. $9,99,00,046$
\mathcal{N} ine crore nine ty nine forty - six
iv. $9,84,32,701$

Nine crore eighty - four lakh - two thousand seven fundred one.
2. Match the expression in column I with the ir values in column II.

Column I	Column II
1. Six fundred four mullions three fundred three thousand four hundred six	a. 550
2. Six crore four lakf thirty three thousand four fundred six	6.640
3. $X \mathcal{L V}$	c. 500
4. $\mathcal{C D V}$	$d .600$

5. Estimated value of 548 to the nearest tens	e. $6,04,33,406$
6. Estimated value of 548 to the nearest fundreds	$f .604,303,406$
7. Estimated value of 642 to the nearest fundreds	g. 45
8. Estimated value of 642 to the nearest tens	6.405

$1 . f$	$2 \cdot e$	$3 \cdot g$	4.6
$5 . a$	$6 \cdot c$	$7 . d$	8.6

3. Insert commas suitably and write the names according to internationalsystem of \mathcal{N} umeration.
i. 78921092
ii. 7452283
iii. 99985102
iv. 48049831
i. $78,921,1092$

Seventy-eight million nine fundred twenty - one thousand nine ty-two.
ii. $7,452,283$

Seven million four hundred fifty-two thousand two hundred eight-three.
iii. $99,985,102$
\mathcal{N} (inety - nine million nine fundred eighty-five thous and one fundred two. iv. $48,049,831$

Forty-eight million forty - nine thousand eight hundred thirty - one
4. Write in expanded form:
i. $3,08,927$
ii. $24,05,609$
iii. $5,36,18,493$
iv. $6,06,06,006$
v. $9,10,10,510$
i. $3,08,927=(3 \times 100000)+(8 \times 1,000)+(9 \times 100)+(2 \times 10)+(7 \times 1)$
ii. $24,05,609=(2 \times 10000000)+(4 \times 100000)+(5 \times 1000)=(6 \times 100)+(9 \times 1)$
iii. $5,36,18,493=(5 \times 10000000)+(3 \times 1000000)+(6 \times 100000)+1 \times 10000)+$ $(8 \times 1000)+(4 \times 100)+(9 \times 10)+(3 \times 1)$
iv. $6,06,06,006=(6 \times 10000000)+(6 \times 100000)+(6 \times 1000)+(6 \times 1)$
$v .9,10,10,510=(9 x 10000000)+(1 \times 1000000)+(1 \times 10000)+(5 \times 100)+$ (1×10)
5. Arrange the following numbers in ascending order;
i. $10,23,45,694,83,54,208,65,39,542,6,35,47,21,1,23,45,678$
ii. $18,08,090,18,08,088,1,8,888,1,90,909,1,60,60,666$
i. Out of given numbers, we see that there are one 9 digit number, two 8 -digit numbers and two 7 digit numbers.
a. So 9 digit numbers is $10,23,45,694$.

8-digit numbers are 6,35,47,201, and 1,23,45,678
Clearly, 1,23,45,678<6,35,47,201 and, 7 digit numbers are:
83,54,208 and 65,39,542
Clearly, 65,39,542<83,54,208.
Hence, the given numbers in ascending order are
$65,39,542<83,54,208<1,23,45,678<6,35,47,201<10,23,45,694$
ii. Out of given numbers, we see that there are two 6 digit numbers two 7 digit numbers and one 8 digit number.

So, 6 digit number are $1,81,888$ and 1,90,909
Clearly $1,81,888,<1,90,909$
7 -digit numbers are $18,08,090$ and $18,08,088$
Clearly, $18,08,090>18,08,088$
and, 8 digit number is $1,60,60,666$.
Hence, the given numbers in ascending order are $1,81,888<1,90,909,18,08,088$
$<18,08,090,<1,60,60,666$
6. Roman off each of the following numbers to nearest fundreds:
i. 7,289
ii. 8,074
iii. 14,627
iv. $4,20,387$
$v, 28,826$
i. In 7,289 , the tens digit is $8>5$
The required rounded number $=7,300$.
ii, In 8,074 , the tens digit is $7>5$
The required rounded number $=8,100$
iii. in 14,627, the ten's digit is $2<5$.

The required rounded number $=14,600$
iv. in $4,20,387$, the tens digit is $8>5$.

The required rounded number $=4,20,400$
v. in 28,826 , the tens digit is $2<5$.

The required rounded number $=2 \boldsymbol{8}, 800$.
7. Estimate the following products using general rule:
i. 578×161
ii. 5,281 x 3,491
iii. 1,291×592
iv. $9,250 \times 29$
i. Clearly, both the factors are three digit number, so we round off both the factors to ne arest fundreds.
$\mathcal{H e r e}, 578$ rounds off to 600 and 161 rounds off to 200 .
\mathcal{N} ow,

$$
600
$$

Estimated product $=1,20,000$.
ii. Clearly, both the factors are four digit numbers, so we round off both the factors to nearest thousands.

Here, 5,281 Rounds off to 5,000 and 3,491 rounds off to 3,000
So

Estimated product $=1,50,00000$.
iii. Clearly, one factor is three digit number and other four digit number so we round off botfithe factors.
$\mathcal{H e r e , ~ 1 , 2 9 1 ~ r o u n d s ~ o f f ~ t o ~ 1 , 3 0 0 ~ a n d ~} 592$ rounds off to 600
So

$$
1300
$$

$+7800 x x$
780000

Estimated product $=7,80,000$.
iv. Gere, one factor is four digit number and other two digit number, so we round off Goth the factors.

Here, 9,250 rounds off to 9.300 and 29 rounds off to 30

$27900 x$
279,000
$2,79,000$
8. Estimate the following by rounding off each number to its greatest place.

$$
\begin{array}{ll}
\text { i. } 439+334+4,317 & \text { ii. } 8,325-491 \\
\text { iii. } 1,08,734-47,599 & \text { iv. } 9 \times 795 \\
\text { v. } 87 \times 317 & \\
\text { i. } 439 \text { rounds off to } 400 \\
& 334 \text { rounds off to } 300 \\
& 439+334+4,000 . \\
& 439+334+4,317 \\
=400+300+4,00+4,000=47,00 \\
\text { Required estimation }= & 4,700 . \\
\text { ii. } 8,325 \text { rounds off to } 8000
\end{array}
$$

491 rounds off to 8000

$$
8,325-491
$$

$=8,000-500=7,500$
Required estimation $=7,500$
iii. 1,08,734 rounds off to $1,00,000$

47,599 rounds off to 50,000

iv. 9 rounds off to 10
$9 \times 795=10 \times 800=8000$
Required estimation $=8,000$
v. 87 rounds off to 90

317 rounds off to 300
$87 \times 31=90 \times 300=27,000$
Required estimation $=27,000$
9. Express each of the following as a Roman numeral:
i. 164
ii. 226
iii. 596
iv. 759
i. $164=$
$100+60+4$
$C \perp X I \mathcal{V}$
ii. $226=\quad 200+20+6$
$=\quad \operatorname{CCX} X \mathcal{V} I$
iii. $341=\quad 300+40+1$
$\operatorname{ccc} x \operatorname{LI}$
iv. $596=500+90+6$
$=\quad \mathcal{D X C V I}$
v. $=700+50+9$
$=\operatorname{DCCLI} x$
10. Write each of the following as a Hindu-Arabic numeral:

1. Estimate each of the following by rounding off each number of nearest tens;
a. 11963-9369
2. $76877-7783$
c. $10732-4354$
d. $78203-16407$
a. We have, 11963-9369

Rounded off 11963 to nearest tens $=11960$
And rounded off 11963 to nearest tens $=9370$
So, estimated difference $=11960-9370=2590$
6. We have, 76877-7783

Rounded off 76877 to nearest tens
And rounded off 7783 to ne arest tens
$=7780$
So, estimated difference $=76880-7780$

$$
=69100
$$

c. We have, $10732-4354$

Rounded off 10732 to nearest tens
and rounded off 4354 to nearest tens
$=10730$
$=4350$
so, estimated difference $=10730-4350=6380$.
d. We have, $78203-16407$
rounded off 78203 to nearest tens
and rounded off 16407 to nearest tens
$=78200$
$=16410$
so, estimated difference $=78200-16410$
$=61790$
2. Estimate each of the following products by rounding off each number of nearest tens;
a. 87×32
6. 311×113
c. 3239×28
d. 1385×789
a. We fave, 87×32
Rounded off 87 to nearest tens $=90$

And rounded off 32 to nearest tens $=30$
So, estimated product $=90 \times 30 \quad=2700$
6. We have, 311×113

Rounded of 311 to nearest tens $=310$
And rounded off 113 of nearest tens $=110$
So,estimated product $=310 \times 110=34100$.
c. We have, 3239×28

Rounded off 3239 to nearest tens	$=3240$
And rounded off 28 to nearest tens	$=30$
So, estimated product $=3240 \times 30$	$=97200$

d. We have, 1385×789

Rounded off 1385 to ne arest tens	$=1390$
And rounded off 789 to nearest tens	$=790$
So, estimated product $=1390 \times 790$	$=1,098,100$.

3. Estimate each of the following by rounding off each number to ne arest fundreds
a. $874+478$
$6.793+397$
c. $11244+3507$
d. $17677+13589$
a. We have, $874+478$

Rounded off 874 to nearest fundreds
$=900$

And rounded off 478 to nearest fundreds $=500$
So, estimated sum $=900+500 \quad=1400$.
6. We have, $793+397$

Rounded off 793 to nearest fundreds
And rounded off 397 to nearest fundreds
$=800$

So, estimated sum $=800+400$
$=400$
$=1200$.
c. We have, $11244+3507$

Rounded off 11244 to nearest fundreds $\quad=11200$
And rounded off 3507 to nearest fundreds $=3500$
So, estimated sum $=11200+3500$
$=14700$
d. We have, $17677+13589$

Rounded off 17677 to nearest fundreds
$=17700$
$=13600$
$=31300$.
4. A mobile number consists of ten digits. The first four digit of the number are 9,9,8 and 7 . The last three digits are 3,5 and 5. The remaining digits are distinct and make the mobile number, the greatest possible number. What are these digits?

Given, first four numbers
And last three numbers
$=9,9,8$ and 7
$=3,5$ and 5
Greatest possible mobile number $\quad=9987642355$
\mathcal{A} mobile no.consists of 10 -digits)
Hence, the remaining digits are 6,4 and 2.
5. For making 16 shirt, 44 metres of cloth is needed. How much cloth in required for each shirt?

6. A car cover 1002 km in 16 hour, at what speed per four does the car move?

1. Floor of a room measures $4.5 \mathrm{~m} x 3 \mathrm{~m}$.

Find the minimum number of complete square marble slabs of equal size required to cover the entire floor.

To find the minimum number of square slabs to cover the floor, we have to find the greatest size of eack such slab.

For this purpose, we have to find the $\mathcal{H C F}$ of 450 and 300.
Since, $4.5 \mathrm{~m}=450 \mathrm{~m}$ and 3 m
$=300 \mathrm{~cm}$
\mathcal{N} ow, $\mathcal{H C F}$ of 450 and 300
$=150$
Required size of the slab
$=150 \mathrm{~cm} \times 150 \mathrm{~cm}$

$$
\begin{aligned}
\mathcal{N} u m b e r ~ o f ~ r e q u i r e d ~ s l a b s ~
\end{aligned} \quad=\frac{\text { Area of the floor }}{\text { Area of one slab }}
$$

Hence, the number of slabs is required 6.
2. There was a stock of 17380200 quintal of whe at in a godown oftef food corporation of india. Out of this stock, 2756744 quintal of wheat was sent to $\mathcal{D e}$ lfi and 4863108 quintal to UP. How much is the balance stock now?

We have,

```
Totalsock of wheat = 17380200 quintal
Quantity of wheat sent to Delfi = 2756744 quntal
Quantity of wheat sent to UlP
Total Quantity of wheat taken
out of the godown
Balance stock of whe at in godown
\[
\begin{aligned}
& =2756744+4863108=7619852 \text { quintal } \\
& =(17380200-7619852) \\
& =9760348 \text { quintal }
\end{aligned}
\]
```

Hence, 9760348 quintal balanced stock whe at in godown
3. Find the sum of greatest and the smallest six-digit numbers formed by digits 2, 0, 4, 7,6,3, using each digit only once.

Given digits are $2,0,4,7,6,3$.
Using each digit only once.
The greatest six-digit number is 764320.
The smallest six-digit number is 203467.
\mathcal{N} ow, $\mathcal{S u m}$ of these numbers $=764320+203467=967787$
4. A box contains 50 packets of biscuits, each weighing 120 g . How many such boxes can be Coaded in a van, Which cannot carry beyond 900 kg ?

Given, total number of packets $=50$
Weight of each packet $\quad=120 \mathrm{~g}$
Weight of a $60 x=50 \times 120 g=6000 \mathrm{~g}=6 \mathrm{~kg}$

5. Restima's school is $\frac{8}{10} \mathrm{~km}$ away from her house. Daily she walks a distance and then takes a bus to travel $\frac{1}{2}$ km to reach the school.
a. How far doe she walk?
6. Why she watk some distance daily?
a. Distance between fier house to the school $=\frac{8}{10} \mathrm{~km}$

$$
\begin{aligned}
\text { Distance covered by bus } & =\frac{1}{2} \mathrm{~km} \\
\text { She walks distance } & =\left(\frac{8}{10}-\frac{1}{2}\right)=\frac{8-5}{10}=\frac{3}{10} \mathrm{~km} \\
& =\frac{3 \times 1000}{10}=300 \mathrm{~m}
\end{aligned}
$$

6. S he walk some distance daily, because
i. its strengthenher heart.
ii. its lower disease risk.
iii. it Keeps fier weight balance.
7. India population fas been steadily increasing from 439 millions in 1961 to 1028 millions in 2001. Find the totalincrease in population from 1961 to 2001. Write the increase in population Indian system of numeration, using commas suitably.

Given, population of India in $1961=439$ millions

	$=439 \times 1000000=439000000$
$[1$ million	$=1000000]$
And population of India in 2001	$=1028$ millions
	$=1028 \times 1000000=1028000000$
$[1$ million	$=1000000]$

Totalincrease in population from 1961 to 2001 = Population in 2001 -population in 1961

$$
=1028000000-439000000=589000000
$$

$$
589 \times 1000000 \quad=589 \text { millions }
$$

So, the increase population in Indian system of numeration $=58,90,00,000$
7. A person had ₹ $10,00,000$ with him, he purchased a colour $\mathcal{T} \mathcal{V}$ for $₹ 16580$ a motorcycle for $₹ 45,890$ and a flat for ₹ 8.70 .000 How much money was left with fim?

Given, totalmoney
$=₹ 10,00,000$
Money spent on a colour TV
Money spent on a motorcycle
And money spent on a flat
Total amount spent
$=₹ 16,580$
$=₹ 45,890$
$=$ ₹ $8,70,000$
$=16,580+45,890+8,70,000$
$=₹ 9,32,470$

Money left with fim

$$
\begin{aligned}
& =10,00,000-9,32,470 \\
& =₹ 67,530
\end{aligned}
$$

Hence, ₹ 67,530 was left fim.
8. In a five - digit number, digit at ten's place is 4, digit at unit's place is one fourth of ten's place digit, digit at fundred's place is 0 , digit at thousand's place is 5 times of the digit at unit's place and ten thousand's Place digit is double the digit at ten's place. Find the number.

According to the question.
Digit at ten's place

$$
=4
$$

Digit at unit's place

$$
=\frac{1}{4} \text { of ten's place digit }=\frac{1}{4} \not x 4=1
$$

Digit at fundred's place

$$
=0
$$

$=5 x$ Digit of unit's place
$=5 \times 1=5$
$=2 x$ digit of ten's place

$$
=2 \times 4=8
$$

$$
=85041
$$

9. A garment factory produced 216315 sfirts, 182736 trouser and 58, 704 jackets in a year. What is the total production of all the three items in that year?

According to the question.

A garment factory produced shirts	$=216315$
Produced trousers	$=182736$
Produced jackets	$=58704$

Total production of all the three item in that year

$$
\begin{aligned}
& =\text { sum of all items } \\
& =216315+182736+58704=457755
\end{aligned}
$$

Hence, the total production of all the three items in that year is 457755 .

